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Abstract

Introduction: 1H-MRS signals from brain tissues capture information on

in vivo brain metabolism and neuronal biomarkers. This study aims to advance

the use of independent component analysis (ICA) for spectroscopy data by

objectively comparing the performance of ICA and LCModel in analyzing real-

istic data that mimics many of the known properties of in vivo data. Methods:

This work identifies key features of in vivo 1H-MRS signals and presents meth-

ods to simulate realistic data, using a basis set of 12 metabolites typically found

in the human brain. The realistic simulations provide a much needed ground

truth to evaluate performances of various MRS analysis methods. ICA is applied

to collectively analyze multiple realistic spectra and independent components

identified with our generative model to obtain ICA estimates. These same data

are also analyzed using LCModel and the comparisons between the ground-

truth and the analysis estimates are presented. The study also investigates the

potential impact of modeling inaccuracies by incorporating two sets of model

resonances in simulations. Results: The simulated fid signals incorporating line

broadening, noise, and residual water signal closely resemble the in vivo signals.

Simulation analyses show that the resolution performances of both LCModel

and ICA are not consistent across metabolites and that while ICA resolution

can be improved for certain resonances, ICA is as effective as, or better than,

LCModel in resolving most model resonances. Conclusion: The results show

that ICA can be an effective tool in comparing multiple spectra and comple-

ments existing approaches for providing quantified estimates.

Introduction

Proton (1H) magnetic resonance spectroscopy (MRS)

offers a noninvasive window to observe in vivo brain

metabolism. Though histopathology still remains the gold

standard for tissue diagnosis, many studies have shown

the importance of 1H-MRS in the understanding of major

diseases. Identifying and quantifying the resonances cap-

tured in 1H-MRS data from brain tissues can reveal bio-

markers for neuronal loss, disorder, or dysfunction

(Horska and Barker 2010; Sturrock et al. 2010; Graff-Rad-

ford and Kantarci 2013; Groger et al. 2014). Even as MRS

applications continued to grow, efforts on advancing

methods to improve its performance are still ongoing.

Scanner technology advances (Wiggins et al. 2006), new

pulse sequences (Andronesi et al. 2010), and spectral edit-

ing (Bhattacharyya et al. 2007; Kaiser et al. 2008) are

examples of some efforts to improve quality of acquired

data, whereas, spectral quantification techniques and

latent variable models such as independent component

analysis (ICA) proposed in this manuscript are some of

the postacquisition analysis techniques to improve MRS

performance.

Acquired 1H-MRS data are typically noisy, and obtain-

ing useful information from such data is a nontrivial

exercise that is often time consuming and requires con-

siderable spectroscopic expertise. Nonetheless, for spec-

troscopy to gain a meaningful role in clinical or research

settings it is necessary to minimize the need for such

expertise. One step in that direction is to decompose data

into constituent components, and quantify components

in terms of metabolites and their concentrations. Parame-

terizing MR data through quantifications remains the

most popular way to compare multiple spectra. Most

quantification methods, whether they work on the data in

time domain, such as jMRUI (Naressi et al. 2001), or fre-

quency domain, such as LCModel (Provencher 1993,

2001), employ prior information based on molecular
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structures of metabolites in estimating their concentra-

tions.

Principal component analysis (PCA) (Stoyanova and

Brown 2001) and independent component analysis (ICA)

(Comon 1994) are statistical techniques optimized to

identify structures in high-density data. They both make

no assumptions on the shape of the structures underlying

the data, and typically model data as linear combinations

of such structures (sources or components). While PCA

identifies mutually orthogonal structures in data and

orders them by variance, ICA resolves data into a set of

mutually independent structures. Our study aims to

advance application of data-driven methods in the analy-

sis of 1H-MRS data. Data-driven approaches can help

address some common concerns associated with model

based methods, such as vulnerability to modeling inaccu-

racies (Kreis 2004). The motivation for use of ICA comes

from the hypotheses that observed neurochemical signals

are linear mixtures of signals from metabolites whose

concentrations can independently vary.

ICA has been employed in pediatric studies to identify

and reject individual acquisitions affected by subject

movement (de Nijs et al. 2009). It has also been applied

to resolve simulated and real NMR data earlier in the

classification of healthy and grades of tumor tissues in

tumor studies (Ladroue et al. 2003; Pulkkinen et al.

2005). These studies applied ICA to analyze the starkly

different spectra from healthy and pathology tissues and

showed that ICA can be an effective, noninvasive alterna-

tive to intracranial biopsy in classifying tissue types. Our

research work, rather than classification, focuses on apply-

ing ICA to parameterize 1H-MRS data from nonpatholo-

gical tissues and yield parameters which can be useful in

comparing multiple spectra. In our earlier study we dem-

onstrated the robust performance of ICA in resolving

ideal, noise-, and artifact-free-simulated data compared to

LCModel, using two different spectral generative models,

and observed the need for unambiguous evaluation of

in vivo performances of the two methods (Kalyanam

et al. 2013).

In this study, we examine the utility of ICA in analyz-

ing more realistic 1H-MRS data and thus explore its

applicability in analyzing in vivo datasets. In order to do

that, it becomes necessary to design an artificial dataset

that more closely mimics in vivo data, so that necessary

realistic ground-truth is available to evaluate perfor-

mances. To that effect, we extend simulations in our pre-

vious study by adding noise, line broadening, and other

realistic 1H-MRS artifacts to the data. Some simulation

experiments in tumor studies have also examined the

effect of noise and artifacts on ICA’s ability to classify

spectra (Ladroue et al. 2003; Hao et al. 2009). Ours is the

first study to parameterize spectra using ICA and compare

its performance with that of LCModel. In this manu-

script, we present comparative performances of ICA and

LCModel in analyzing more realistic artificial datasets

simulated with two different sets of basis spectra; in

future, we plan to include other analyses, including

jMRUI, in comparative evaluations.

Theory

In this section, we briefly introduce two key methods

used in our study, not commonly seen in most spectros-

copy publications: ICA, a popular statistical technique

with data-driven applications in a variety of fields, and

Whittaker smoothing, a simple and robust smoothing

technique developed earlier (Whittaker 1922; Macaulay

1931).

Independent component analysis

ICA models data X = [x1 x2 x3. . . xn]
T as a linear combi-

nation of a set of independent sources S = [s1 s2 s3. . .

sk]
T weighed by mixing coefficients A = [a1 a2 a3. . . ak].

For example, the linear construct for the observation xm
is given by the following equation:

xm ¼ am1s1 þ am2s2 � � � þ amksk ¼
Xk
i¼1

amisi ) X ¼ AS

ICA can identify structures or components in data even

when the shape of the distribution function of the data

may be unknown. The goal of ICA is to resolve multivari-

ate data X into linear combination of mutually indepen-

dent components (ICs) Y; ICs are uniquely defined when

at most one component is Gaussian (Comon 1994). ICA

implementation involves iterative estimations of weights

W that results in maximal mutual independence of com-

ponents [Y = WX].

ICA implementations seek to maximize some measure

of independence such as non-Gaussianity or mutual

information: for example, fast ICA uses negentropy as its

measure (Hyvarinen 1999), whereas infomax maximizes

mutual information (Bell and Sejnowski 1995). In our

analyses, we use the infomax algorithm to analyze data

from our in vivo or simulation experiments, in the

spectral domain. Prior to ICA, input data are centered,

whitened and projected onto an orthonormal space in

reduced dimensional space using PCA. We use a sigmoi-

dal nonlinearity y = (1 + exp (�u))�1 to extract statisti-

cally maximally independent components u ¼ WeX þ w0

from the whitened data eX, in an iterative manner, using

stochastic gradient ascent optimization of weights W,

where W0 is the bias. The learning rules to update

weights at each iteration are given by the following

equation:
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DW ¼ ½WT��1 þ eXð1� 2yÞeXT (1)

DW0 ¼ 1� 2y (2)

The algorithm converges and results in a consistent set

of output components. Our previous study has demon-

strated the applicability of ICA model to 1H-MRS prob-

lems validated using ideal, noise-free data (Kalyanam

et al. 2013) and this study aims to evaluate it on more

realistically simulated data.

Whittaker smoothing

Smoothing is commonly carried out to suppress random

data variations, to reveal data trending or to make mean-

ingful predictions based on data. We utilize the Whittaker

smoother, a penalized localized least-squares technique, to

smooth 1H-MRS time series data to reveal the smooth-

varying residual water signal that underlies the data.

Recent works and implementations of this technique

rekindled interest in this smoother and enabled many of

its recent applications in many fields, including NMR

(Eilers 2003). A brief introduction to this method is pre-

sented here for completeness.

Smoothing alters the value of each data point by taking

its neighboring points into account and reduces variations

between neighbors. Whittaker smoothing employs a

penalized least-squares approach to provide a smooth fit

to data, by simultaneously minimizing variations between

neighbors (via a measure of roughness, R) and faithful-

ness of the smooth fit to the original data (via the fidelity

or least-squares fit F); indeed, what is minimized is their

linear sum, F + hR, where h is a positive number, called

smoothing parameter, that determines the balance between

fidelity and roughness (Weinert 2007). This single param-

eter provides continuous control of smoothing over the

data and determines the degree of smoothing: larger h

results in improved smoothing and reduced fit and, con-

versely, smaller h reduces smoothing, but improves fit.

The formulation presented can be applied to discrete

data sampled at equal intervals, whereas an extension of

the approach allows handling of data with nonuniform

intervals or missing data. More details on the smoothing

technique, its extensions and algorithms can be seen else-

where (Eilers 2003). One concern with this technique is

the subjectivity in the choice of smoothing parameter, but

some studies have suggested statistical methods to set this

parameter (Vilela et al. 2007; Lee and Cox 2010). Whit-

taker smoothing has been applied to NMR data, especially

in spectral domain, earlier (Cobas et al. 2006). In such

applications, typically signal-free regions are first identi-

fied by thresholding and noncontiguous signal-free

regions are smoothed to obtain a smooth baseline.

Materials and Methods

In this section, we describe the experimental conditions

in which our in vivo data were acquired. We examine

in vivo data to identify salient data features, and explore

options to incorporate such features in simulations. We

introduce our simulation basis-sets, ground-truth mea-

sures, and describe how we estimate parameters used in

our simulations. We present how datasets of varying

complexities are generated and provide details of the

analysis techniques employed.

In vivo experiment

Our in vivo 1H-MRS data come from a single, 12 cubic

centimeters (cc) spectroscopic voxel in the anterior cingu-

late region of the human brain localized by point-resolved

spectroscopy (PRESS), acquired with a TIM Trio 3-Tesla

whole-body scanner (Siemens Medical Solutions, Erlan-

gen, Germany; Syngo MR B15), using a 12-channel head

coil receiver in conjunction with body coil excitation

(TR/TE = 2 sec/40 msec, dwell time = 0.625 msec). The

voxel is prescribed using a T1 scout image, and two sets

of data, a water-suppressed data averaged from 192 fid

signals and an unsuppressed water data averaged from 16

fid signals were obtained from the voxel. The acquired

time series 1H-MRS data are stored in our data archive,

for postacquisition analysis (Bockholt et al. 2010).

Data used in our analysis comes from 206 subjects

(129 male, 76 female; ages 18–54), all patients, enrolled in

three of our substance-abuse studies. All subjects provided

informed consent to participate in these studies con-

ducted at The Mind Research Network, Albuquerque,

NM in accordance with protocols approved by the human

research review committee of the University of New

Mexico.

LCModel analyses

LCModel analyses of in vivo data were carried out with

no eddy-current correction, in the same 1.8–4.2 ppm

analysis window used in our prior reports (Kalyanam

et al. 2013; Yeo et al. 2013) and concentrations of all

metabolites in the basis set estimated. In our in vivo

analyses, we used acquired water signal as an internal ref-

erence to report absolute concentrations of metabolites

(Soher et al. 1996). Suspect bad quality spectra, based on

LCModel reported full-width half-maximum (fwhm), sig-

nal-to-noise ratio (S/N), and other quality considerations

detailed in our earlier report were excluded and concen-

tration estimates from the rest of in vivo data were used

as ground-truth in our simulation experiments (Kalyanam

et al. 2013). Our simulated data of varying complexities
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were also analyzed with the same settings; however, the

metabolites concentrations are estimated relative to total-

creatine. All data were analyzed in a consistent manner

through use of a custom shell script.

Simulation experiments

In our simulations we use a basis set of 12 neurochemicals

found in human brain and typically reported in LCModel

quantification of an in vivo spectrum: aspartate (Asp),

creatine (Cr), c-amino butyric acid (GABA), glucose

(Glc), glutamine (Gln), glutamate (Glu), myo-inositol

(m-Ins), N-acetyl aspartate (NAA), N-acetylaspartylgluta-

mate (NAAG), phosphocholine (PCh), scyllo-inositol

(s-Ins), and taurine (Tau). Composition of basis set was

chosen so that the model resonances of the neurochemi-

cals comprise some singlet peaks, some multiplet peaks

and some resonances which partially overlap with other

resonances. We use two sets of models for each metabolite,

one obtained from LCModel and another simulated using

GAVA (Soher et al. 2007) and, just as in vivo data, model

data were also saved as time series signals. A diverse set

(see LCModel spectra of basis metabolites in Fig. 1) allows

us to establish the limitations and/or advantages of the

analysis techniques based on the statistical properties of

the model resonances.

Metabolite concentrations reported by LCModel analy-

ses of a 206 subject in vivo dataset served as ground-truth

mixing coefficients used to mix model resonances and

obtain simulated datasets. Notice the considerable vari-

ability in the estimates of the metabolites (see Fig. 2).

While some metabolites (NAA, Cr, m-Ins Glu, Gln) are

strongly present in all of the in vivo spectral data, metab-

olites like GABA and s-Ins are sparsely present, existing

in far fewer spectral data. To generate the model data, we

used in vivo estimates of total-creatine for Cr, total cho-

line for PCh in addition to using Glc estimates for Gly.

Noise- and artifact-free-simulated data are readily con-

structed by mixing basis model data using the 206 sets of

mixing coefficients. Two sets of simulated data were gen-

erated, one using LCModel bases and other using GAVA

bases.

Data characterization

It is the intent of this study to significantly extend the

noise- and artifact-free simulations described above, and

also reported in our previous work, to obtain realistic

simulated data (Kalyanam et al. 2013). To accomplish

that, we closely examine the in vivo data, which is an

average fid signal from multiple acquisitions. Our interest

is in water-suppressed data, as suppressing the dominant

signal from the water protons allows detection of weaker

signals from the metabolite protons. In addition to con-

tributions from metabolite protons of interest, such a sig-

nal also includes contributions from unsuppressed

(residual) water protons, subject motion during scan,

receiver noise, etc. Other confounding aspects are altera-

tions of metabolite signal intensities due to magnetization

transfer effects (Dreher et al. 1994) and nuclear Overha-

user effects associated with selective (water) signal sup-

pression. We present some salient characteristics of

in vivo data and how they are incorporated into our sim-

ulations.

Residual water

It is common in some in vivo experiments to have lim-

ited water suppression and leave in some residual water

signal, to allow for coherent averaging of data (Ernst and

Li 2011). Subject motion during the long 1H-MRS scan

acquisitions also can cause poor water suppression (Keat-

ing et al. 2010). The residual water signal, which can vary

considerably from one scan to other, is a hard to model
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Figure 1. Model resonances of neurochem-

icals in the basis set: Real parts of LCModel

basis spectra, intensity normalized, are

shown in 1.8–4.2 ppm analysis window.

Notice the varied spectral profiles of the

model resonances.
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nonanalytic signal that typically appears as a slow-varying

baseline in the time series data. Figure 3A shows the

dominating presence of residual water signal in our

in vivo data. Smooth, slow-varying baselines appear as

sharp, low-frequency peaks in the spectral domain, result-

ing in distortions that considerably affect estimations of

resonances near water peak, and influence estimations of

all other resonances through its influence on spectral

baseline.

In 1H-MRS analyses it is necessary to reliably remove

the residual water signal; not surprisingly, removal of

residual water is a common step in most quantitation

methods (Poullet et al. 2008). Some common techniques

to remove residual water include use of Hankel singular

value decomposition (SVD) or its many optimized avatars

(Pijnappel et al. 1992), convolution with sine-bell filter

(Drost et al. 2002), or maximum-phase finite impulse

response filters (Sundin et al. 1999). While some use

parametric modeling to account for the residual water

signal, LCModel handles residual water by restricting the

analysis window, simulating a negative creatine CH2 sin-

glet (-CrCH2, 3.94 ppm) and treating the tail of residual

water signal as part of its model-free baseline (Provencher

2001).

In our analysis, we smooth the time series data to elim-

inate signals from metabolites and random data variations

to uncover the underlying smooth residual water signal.

Though we used one common smoothing parameter to

work on all in vivo data, it is seen effective in extracting

baseline in most cases; in cases when residual water signal

is very large, some baseline is still seen, but is vastly

diminished (see Fig. 3C). The extracted residual water sig-

nals serve us well to provide necessary complexity in our

realistic simulations experiment. Another observation to

be noted here is that, unlike Whittaker’s original work

which used three nearest neighbors in smoothing, we

considered only one nearest neighbor, because such a

choice results in a straight line at maximum smoothing,

which preserves the spectral characteristics of the data.

Spectral broadening

Once the smooth baselines of time series data are

removed, other signal features are more clearly revealed.

Figure 3C shows that the fid signals decay quickly and

descend to noise level, within one-half of data points. As

the spectral characteristics of a decaying, oscillatory signal,

in time domain, is the convolution of the spectral charac-
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Figure 2. LCModel estimated in vivometabo-

lites concentrations: Box plots show

distributions ofmetabolites concentrations

from206 subjects’ in vivo data.We use these

as ground-truthmixing coefficients in our

simulation experiments. Notice the two-orders

ofmagnitude difference between themedian

values of NAA andGABA.

50 100 150 200 250 300
−500

0

500
(A) (B) (C)

50
Time (ms)

100 150 200 250 300 30050 100 150 200 250

A
m

pl
itu

de

Time (ms) Time (ms)

Figure 3. Residual water signal underlying time series signal: (A) shows real parts of in vivo fid signal from 206 subjects and (B) shows the

residual water signal extracted by smoothing the time series signal. Notice how well fid signals show up after the removal of residual water (C).
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teristics of the oscillatory signal with that of the decay sig-

nal, the decay in time domain leads to spectral broaden-

ing. The nature of decay determines spectral line-shape

and fwhm of the resonance peak; a natural (or exponen-

tial) decay results in Lagrangian line-shape, whereas

Gaussian decay leads to a Gaussian line-shape. 1H-MRS

fid signal is often modeled as natural or Gaussian decay

function weighing sum of oscillatory signals. Some studies

have modeled decay as a Voigt function, which is a com-

bination of natural and Gaussian decay functions (Mar-

shall et al. 1997; Gillies et al. 2006).

In order to incorporate spectral broadening for use in

simulations, we explored the decay model supported by

our in vivo data. We applied a Voigt fit to the absolute

values of the time series data and examined decay-rate-

constants of the Gaussian and Lagrangian components.

We observed that, whereas Voigt function fitted raw time

series data, as acquired, better than individual Lagrangian

or Gaussian components, upon de-trending the data by

removing the smooth baselines, the Lagrangian compo-

nent alone fitted the data sufficiently well and the Gauss-

ian component did not add much value. We therefore

decided to use exponential weighting functions to

broaden data in our simulations.

Noise

The fid signal in Fig. 3C also clearly shows that, when the

fid is fully decayed, its intensity varies randomly around

some baseline. The random, zero mean fluctuations are

attributed to receiver thermal noise and usually modeled

as zero mean, unit-norm, white Gaussian noise. Though

such noise exists even when the fid is strong, it is less visi-

ble when the signal is strong in the initial phases of the

fid signal. The white noise model also sufficiently

accounts for other uncorrelated sources of noise, such as,

limited subject movement during scan, scan-to-scan vari-

ations in voxel positioning, field inhomogeneity, water

suppression, etc. In our simulations we add white Gauss-

ian noise to data at signal-to-noise ratio (S/N) levels esti-

mated from our in vivo data.

Realistic simulations

Spectral broadening is incorporated by multiplying each

noise- and artifact-free-simulated time series signal with

an exponentially decaying weighting function. The decay

time constant, obtained from fwhm estimates from corre-

sponding in vivo data, varies from one signal to other. A-

fairly accurate estimate of fwhm for each spectrum was

obtained from the resonance of its NAA’s acetyl moiety

by-estimating fwhm from the frequencies corresponding

to its two half-maxima points. Our ability to obtain well-

resolved fwhm estimations allows us to exercise fine con-

trol over spectral broadening.

White Gaussian noise is added to simulated data at

S/N levels estimated from in vivo data. As a decaying fid

signal acquired long after signal decayed to noise readily

lends itself to S/N estimations, we used time series data

to estimate the level of noise. As the initial data points of

a fid are largely ‘signal’ and its final data points are largely

noise, S/N is estimated as the ratio of variances of initial

and final data points. In case of in vivo data, the presence

of residual water can affect estimation accuracy, so it

becomes necessary to remove fid’s baseline beforehand.

Residual water signals are obtained by smoothing of

in vivo data; the addition of residual water signal that

varies from one in vivo data to other brings a touch of

reality to the simulations experiment. Simulated datasets

of varying complexities are generated by incorporating

one or more of the artifacts/noise as described. Other

in vivo data features, such as, phasing, or effects of sub-

ject movement during scan were not included in simula-

tions, but will be important topics in our future work. All

simulated datasets are analytical time series data; for use

with LCModel, each individual data are saved in separate

files, in a format consistent with in vivo data.

ICA analyses

We applied ICA to analyze data in the spectral domain

and simulated datasets of varying complexities were indi-

vidually analyzed. As simulated data are in time domain,

these data need to be converted into frequency domain

using discrete Fourier transform (FFT) first, and depend-

ing on the complexity, may also require some degree of

preprocessing, to prepare the data for ICA analysis. To

avoid the paucity of data points which may obscure visi-

bility of some fine spectral patterns and improve apparent

resolution of the spectra, the time series data were zero-

filled to double vector lengths of data. The data were then

transformed to frequency domain, and real parts of the

data, in the analysis window (1.8–4.2 ppm), were used in

subsequent analysis. As the dispersive nature of imaginary

part of the spectra degraded the resolution performance,

we utilized the absorptive, real parts of data which con-

tain most spectral energy in our analyses.

Input data were centered, whitened, decomposed using

SVD, and dimension reduced prior to ICA analysis. The

number of significant components retained varied based

on simulation complexity, but, in general, are determined

by the rank of the matrix or minimum descriptor length

(Ojanen et al. 2004). Multiple runs of ICA analysis were

performed on the dimension reduced data to ensure con-

sistent set of components are resolved. Components

across multiple runs were matched to one another and
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averaged, to yield ICs, which were then compared to gen-

erative basis spectra to identify and/or associate ICs with

model resonances. The extracted ICs are inherently nar-

row and can resemble the narrow, generative model reso-

nances. We call the Pearson correlation coefficient of a

model resonance and its matching component as the spec-

tral correlation score, a measure of how well ICA resolves

that resonance.

Estimates of mixing coefficients, interchangeably called

ICA estimates or weights, are obtained by regression

analysis of each spectrum with the extracted ICs. If the

analyzed data are not broadened, this approach works

well. However, if the data are generated by mixing broad-

ened bases or in vivo, the extracted ICs also need broad-

ening, before applying the regression. We estimate fwhm

of the spectrum as described before, then exponentially

broaden ICs based on the spectral fwhm, and apply

regression to estimate ICA weights. Just as LCModel pro-

vides estimate for each model resonance in its basis set,

ICA provides an estimate for each IC. When an IC is

identified with a model resonance based on spectral cor-

relation, its corresponding ICA estimates are considered

comparable to LCModel estimates for that resonance. In

simulation analyses, LCModel and ICA estimates from

spectral dataset, can be compared to the ground-truth;

The Pearson correlation coefficient of the estimates to the

ground-truth, called, estimates correlation score is a mea-

sure of how well an estimate tracks ground-truth.

Results

In this section, we first show the set of basis spectra and

ground-truth mixing coefficients used in our simulations.

Then we illustrate salient in vivo data features incorpo-

rated in our simulations and how corresponding parame-

ters are estimated; typical realistic simulated data

presented and compared with in vivo. Next, we present

the results from ICA and LCModel analyses of different

simulated datasets to see how the two methods compare

in analyzing imperfect data with realistic variations and

features.

Realistic simulations

Figure 1 shows real parts of LCModel basis spectra of the

low molecular weight metabolites in our basis set; only

resonances within the 1.8–4.2 ppm analysis window are

shown. Model spectra are based on prior information

from quality in vitro experiments performed at high fields

and/or derived from information on molecular structures

and physical understanding. Notice the diverse spectral

profiles of the basis set metabolites. The box plots in

Fig. 2 show the distributions of metabolites concentra-

tions obtained from the LCModel analysis of our 206-

subjects’ single voxel in vivo data. These concentration

estimates were used to mix model spectra in obtaining

simulated data.

Figure 3A shows the acquired fid signals from our 206-

subjects’ single voxel in vivo data. The dominant residual

water signal present in the time series signal is extracted

using Whittaker smoothing and shown in Fig. 3B.

Figure 3C shows the residuary signal after the removal of

smooth water signal from the time series data. This flat

residuary signal clearly shows that the signal decays into

noise as time progresses. As in vivo 1H-MRS fid signals decay

quickly, we show the first third of the data points as the

remainder of the data points are noisy and uninteresting.

Figure 4A illustrates how we estimate fwhm from

in vivo spectra. NAA’s acetyl moiety peak is shown and

the two pairs of data points nearby the half-maxima

points are highlighted. The frequencies corresponding to

half-maxima points are obtained by interpolation of the

frequencies of highlighted data points and the difference

between the frequencies gives the fwhm of the peak. The

scatter plots in Fig. 4B shows how our estimates of fwhm

compares to the estimates from LCModel. Notice our

estimates of fwhm are continuous compared to LCModel

estimates which are quantized and discrete. Figure 4C

shows the scatter plot of our S/N estimates against those

of LCModel. As mentioned previously, we estimate S/N

from time domain data where as LCModel estimates it

from data in spectral domain. The tight scatter between

the estimates from two different approaches validates

both the methods.

Figure 5 shows simulated data that incorporates line

broadening, noise, and residual water signal; notice how

well the simulated fid signals in Fig. 5A resemble the

in vivo signals in Fig. 3A. Figure 5B shows a typical

in vivo spectrum and the simulated spectrum generated

with signals/parameters estimated from that spectrum.

The spectra are presented in a wider window to illustrate

that the simulated spectrum is fairly realistic and com-

plex, and differs from the in vivo primarily on resonances

and features that are not included in the simulation

model (lactates, lipids and macromolecules).

Simulation analyses

Table 1 illustrates the effect of zero mean, unit-norm

Gaussian noise on ICA and LCModel analysis perfor-

mances in the absence of spectral broadening or residual

water signal. Table 1A presents estimates correlation

scores from the analyses of data generated using LCModel

bases, whereas Table 1B shows results from the analyses

of data generated using GAVA bases. Each table presents

estimates correlation scores from the analyses of noisy
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data as well as from ideal, noise-free data so that the

effects of noise are readily seen.

Table 2 presents the estimates correlation scores from

ICA and LCModel analyses of simulated data that incor-

porates spectral broadening, in addition to noise; the

results from the analyses of datasets generated with

LCModel and GAVA bases are presented. To ease compar-

ing the two methods, some ICA estimates are marked up:

those bold, in green show resonances which ICA resolves

better, and those bold, italicized in red are resolved better

by LCModel. Table 3 shows similar results from the analy-

ses of simulated data that incorporates residual water, line

broadening and noise; again, the results from LCModel

and GAVA simulated data are shown.

Discussion

Results from our simulation experiments show that ICA,

just as LCModel, resolves multivariate data and identifies

underlying structures, traceable to generative model, and

that ICA estimates correlate well with simulation ground-

truth. Both LCModel and ICA offer comparable perfor-

mances for many model resonances; ICA outperforms

LCModel in resolving few resonances, but its performance
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in resolving some weak resonances needs improvement

(e.g., ‘Asp’ and ‘Tau’).

Table 1 shows that both LCModel and ICA improved

their ideal data performance compared to our prior results

(Kalyanam et al. 2013). This is a direct consequence of the

recent improvements made in our simulated data genera-

tion. Though we still use the same set of models, GAVA

model resonances were slightly broadened so that their

line-widths are comparable to LCModel resonances; addi-

tionally, data mixing is carried out in time domain, unlike

in spectral domain as before. These changes reduced dif-

ferences between the two generative models and improved

LCModel performance in resolving GAVA resonances.

Nonetheless, LCModel’s inability to resolve ‘Asp’ contin-

ues to remind us about the effect of modeling inaccuracy,

when actual ground truth deviates from the assumed

model. Meanwhile, ICA, which does not assume underly-

ing data structures, offers comparable performance in ana-

lyzing LCModel simulated data and also resolves ‘Asp’ and

‘Gly’ resonances from GAVA simulated data. The results

also reveal that ICA and LCModel performances are barely

affected by the addition of Gaussian noise.

Table 2 reveals the sensitivity of LCModel and ICA to

cope with some realistic data features; not surprisingly,

their performances have degraded when analyzing data

that incorporates both spectral broadening and noise. We

Table 1. Effects of Gaussian noise on Analysis performances: Results from LCModel & ICA analyses of data generated with narrow LCModel/

GAVA bases, with and without noise, shown. Ground-truth correlations of both LCModel and ICA estimates are high, and show little perfor-

mance degradation due to noise. LCModel does not find Asp resonance in GAVA generated data, due to modeling differences, though ICA had

no issue in resolving the metabolite’s model resonance. (A) Results from analyses of data generated with LCModel bases; (B) Results from analyses

of data generated with GAVA bases.

Asp Cr GABA Glc Gln Glu m-Ins NAA NAAG PCh s-Ins Tau

(A)

Ideal data, LCM analysis 1.000 1.000 0.998 0.999 1.000 0.999 1.000 1.000 1.000 1.000 1.000 0.999

Noisy data, LCM analysis 0.983 0.997 0.969 0.986 0.993 0.985 0.994 0.998 0.995 0.997 0.995 0.979

Ideal data, ICA analysis 0.997 1.000 0.995 0.991 0.996 0.985 0.999 1.000 0.998 0.998 0.990 0.917

Noisy data, ICA analysis 0.986 0.999 0.968 0.981 0.991 0.981 0.997 0.999 0.997 0.997 0.984 0.960

Asp Cr GABA Gly Gln Glu m-Ins NAA NAAG PCh s-Ins Tau

(B)

Ideal data, LCM analysis 0 0.988 0.932 – 0.990 0.975 0.806 0.990 0.790 0.978 0.935 0.982

Noisy data, LCM analysis 0 0.987 0.906 – 0.986 0.970 0.811 0.988 0.783 0.975 0.929 0.978

Ideal data, ICA analysis 0.996 1.000 0.976 0.867 1.000 0.982 1.000 1.000 0.977 0.999 0.969 0.999

Noisy data, ICA analysis 0.985 0.999 0.754 0.869 0.992 0.989 0.996 0.999 0.969 0.998 0.968 0.995

Table 2. Effects of line broadening and noise on performance: Results from ICA and LCModel analyses of data generated with exponentially

broadened bases, with additive white Gaussian noise shown. Clearly, broadening causes degradation in the performances of both methods, and

some metabolites are better estimated than others.

Asp Cr GABA Glc/Gly Gln Glu m-Ins NAA NAAG PCh s-Ins Tau

LCM basis, LCM analysis 0.801 0.506 0.451 0.938 0.883 0.865 0.781 0.736 0.759 0.559 0.884 0.801

GAVA basis, LCM analysis 0.019 0.532 0.006 – 0.781 0.603 0.648 0.649 0.317 0.608 0.716 0.000

LCM basis, ICA analysis �0.119 0.883 0.745 0.865 0.852 0.877 0.937 0.863 0.828 0.865 0.842 �0.061

GAVA basis, ICA analysis 0.612 0.742 �0.057 0.805 0.585 0.930 0.929 0.842 0.488 0.839 0.740 0.674

Table 3. Effects of line broadening, noise, and residual water signal on performance: Results from ICA and LCModel analyses of data generated

with exponentially broadened bases, with additive white Gaussian noise and confounding residual water signal shown. Both methods are robust

to residual water signal; little performance impact seen.

Asp Cr GABA Glc/Gly Gln Glu m-Ins NAA NAAG PCh s-Ins Tau

LCM basis, LCM analysis 0.802 0.513 0.566 0.929 0.876 0.870 0.795 0.734 0.792 0.559 0.907 0.819

GAVA basis, LCM analysis 0.133 0.572 �0.036 �0.066 0.782 0.606 0.684 0.627 0.366 0.647 0.708 0.000

LCM basis, ICA analysis �0.299 0.832 0.606 0.843 0.648 0.840 0.904 0.829 0.788 0.835 0.832 0.000

GAVA basis, ICA analysis �0.505 0.734 0.191 0.806 0.770 0.841 0.872 0.799 0.488 0.764 0.720 0.634
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see that, in this case, LCModel could not resolve ‘GABA’

and ‘Tau’, in addition to ‘Asp’, from GAVA simulated

data, whereas it resolved other resonances as well or only

slightly poorly compared to LCModel simulated data.

Though ICA does not resolve ‘Asp’ and ‘Tau’ resonances

from LCModel data, it clearly outperforms LCModel in

resolving singlet resonances. Poor performance of

LCModel in resolving ‘Cr’ can be concern, especially if

‘Cr’ is used as the reference metabolite in relative concen-

tration estimates. Table 2 results show that though the

presence of residual water signal lowers performance mea-

sures, the degradation is not as dramatic.

It is interesting to see that, except for ‘Asp’ and ‘Tau’,

ICA is as effective as or better than LCModel in resolving

model resonances from realistic simulated data. The reso-

lution performance of ICA, just as LCModel’s, varies

from one resonance to other, based on the statistical

properties of a model resonance and its corresponding

concentration estimates (ground-truth). Though ICA’s

ability to resolve ‘Asp’ or ‘Tau’ is a cause for concern, its

overall performance cannot be dismissed, given LCModel

estimates are also not consistent across metabolites. These

results demonstrate that ICA can play a role in analyzing
1H-MRS data; clearly, it cannot replace single-spectrum

analysis methods such as LCModel, but can be very useful

in comparing multiple spectra. We are working to further

its performance by incorporating prior data for metabo-

lites of concern and by developing preprocessing methods

to account for some realistic data features.

Conclusion

We have discussed our rationale for why realistic simula-

tions are useful in comparing various spectral resolution

methods and described how we generate realistic simula-

tions that mimic many of the known properties of

in vivo 1H-MRS data. Using simulated data generated

with model resonances of a 12-metabolites basis set we

have shown that ICA, without using any prior informa-

tion about underlying metabolites, can identify the key

structures underlying the data and resolve data into a lin-

ear mixture of components resembling the model reso-

nances. The results show that ICA estimates correlate well

with the ground-truth, comparable to the performances

of LCModel in analyzing the same data. We demonstrate

that ICA that collectively analyzes multiple spectra can be

an effective tool in comparing multiple spectra.
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