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Autoimmunity elicited by the chemokine response to
adenovirus vector vaccines may underlie vaccine-induced
immune thrombotic thrombocytopaenia: a hypothesis
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COVID-19 (coronavirus 19) is a global pandemic
causing significant morbidity and mortality across
the world. As utilised for many other infectious
diseases, vaccination has formed the critical
component of the public health response for the
prevention of severe illness and death with
multiple different vaccines now approved
internationally. Two vaccinations utilising
modified non-replicating adenoviral vectors
(Chimpanzee ChAdOx1 in the AstraZeneca Oxford
vaccine and Human Ad26.Cov2.S in the Johnson
and Johnson vaccine) have been developed and
licensed for clinical use. In March 2021, concerns
were raised because of vaccine safety signals,
suggesting an increase in unusual thrombotic
events temporally associated with the AstraZeneca
vaccine. Multiple groups simultaneously identified
previously well patients presenting within 21 days
of an AstraZeneca vaccination with an atypical
combination of thrombotic events (including
cerebral sinus venous sinus and splanchnic venous
thromboses) and thrombocytopaenia.1–3 At
presentation, patients demonstrated elevated D-
dimer levels, variable degrees of usually severe
thrombocytopaenia and low fibrinogen levels.
Antibodies against platelet factor 4 (PF4)-heparin
complexes, previously associated with heparin-
induced thrombocytopaenia (HIT), were identified
in patient serum, although none of the patients
had received heparin in the days prior to
development of the syndrome. Given the clinical

and serological resemblance to HIT, the condition
was named vaccine-induced immune thrombotic
thrombocytopaenia (VITT).2 Subsequently, cases of
thrombosis and thrombocytopaenia related to
administration of the Johnson and Johnson
vaccine were identified bearing a striking
similarity to the VITT cases associated with
AstraZeneca vaccination.4

The exact incidence of VITT remains unknown
but is reported to be between 1 case per 26 500
and 1 case per 127 300 first doses of AstraZeneca
vaccine.5 As of 18 August 2021, the Medicine and
Healthcare Products Regulatory Agency (MHRA) in
the United Kingdom had received reports of 417
thrombotic events with thrombocytopaenia (149
cases of central venous sinus thrombosis and 268
cases of other thromboembolic events) related to
the AstraZeneca vaccine.6 The majority of cases
(89%) occurred after the first vaccine dose with
an incidence of 15.0 per million after the first
dose, dropping to 1.8 per million after the second
dose. These data also show different rates with
age, with a higher incidence in younger patients
with rates of 20.8 per million in vaccines aged 18–
49 years versus 10.9 in vaccines aged > 50 years.
Overall mortality is high at 17%. As of 19 August
2021, the Australian Technical Advisory Group on
Immunisation (ATAGI) had identified 112 cases of
confirmed (62 cases) or probable (50 cases) VITT
after 8.1 million doses with a rate estimate for
VITT after first-dose Astra Zeneca of 29 per million
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doses in those < 60 years and 18 per million doses
in those ≥ 60 years.7

Understanding the pathogenesis of VITT is
critical if prevention and treatment strategies are
to be improved, but there is currently not a clear
consensus on the pathogenesis, with several
mechanisms proposed (Table 1). Here, we propose
a mechanism based on the role that PF4 plays in
immune responses against viruses.

Chemokine (C-X-C motif) ligand 4 (CXCL4), also
known as PF4, is a component of the innate
immune response of multiple cell types, including
platelets and monocytes/macrophages, to infection
by various pathogens. CXCL4(PF4) released from
platelets and other cells binds with high affinity to
polyanions, which include polyanionic lipids in the
cell walls of both Gram-positive and Gram-
negative bacteria, thereby enhancing phagocytosis
of the bacteria, possibly through the generation
of low-affinity ‘natural’ autoantibodies against
CXCL4(PF4).8 In addition, CXCL4(PF4) may bind to
polyanionic nucleic acids and endogenous cellular
proteoglycans, such as heparan sulphate.9 As
exemplified by respiratory syncytial virus (RSV)
infection,10 a major anti-viral effect of CXCL4(PF4)
is exerted by restricting binding of viruses to
heparan sulphate, which was recognised as a
major receptor for RSV attachment to cells almost
25 years ago and has subsequently been shown to
be a co-receptor for the cell surface attachment of
many other types of virus, including human

adenovirus type 2, 3, 5 and 35, enteric
adenoviruses11 and, interestingly, SARS-CoV-2.12

Binding of CXCL4(PF4) to polyanions may lead
to changes in the CXCL4(PF4) molecule that
increase immunogenicity. After binding with
heparin, these changes include conformational
changes,13,14 formation of neoepitopes15 and
increased propensity to form aggregates that
stimulate B cells.16 Binding of CXCL4(PF4) to
heparin is well established as a mechanism for
inducing autoantibodies to CXCL4(PF4)/heparin in
HIT2 and has been proposed as a mechanism by
which SARS-CoV-2 infection might induce
thrombocytopaenia.17 As autoantibodies to
heparin are cross-reactive with heparan sulphate
in patients with HIT,18 it is possible that
adenovirus vectors binding to cellular heparan
sulphate on infected cells induce binding of
CXCL4(PF4) to the heparan sulphate leading to
changes in immunogenicity of the CXCL4(PF4)
molecule and production of an autoantibody
response against complexes of CXCL4(PF4) with
heparan sulphate and/or heparin.

It has been estimated that 0.01–0.1% of
circulating B cells are CXCL4(PF4)/heparin-specific
in healthy human adults,19 presumably reflecting
the involvement of CXCL4(PF4) in previous immune
responses against bacteria and viruses. These B cells
can be activated by polyclonal B-cell stimulators to
produce IgM antibodies, and complexes of CXCL4
(PF4) and heparin activate B cells in a complement-

Table 1. Proposed mechanisms of vaccine-induced immune thrombocytopaenia and thrombosis (VITT) induced by adenoviral vector COVID-19

vaccines

Proposed mechanisms Counterarguments

Platelet activation is directly mediated by AVVs and/or their constituents23 CXCL4(PF4) autoantibodies should not be required for platelet

activation.Unlikely AVVs are present in high enough quantity

to cause massive platelet activation

CXCL4(PF4) autoantibodies result from antigen molecular mimicry between

SARS-CoV-2 SP and CXCL4(PF4)

Other SARS-CoV-2 SP vaccines do not induce CXCL4(PF4)

autoantibodies.Antigenic cross-reactivity between SARS-CoV-2

SP and CXCL4(PF4) has not been demonstrated24

Binding of DNA from AVVs to CXCL4(PF4) results in neoepitope formation in

CXCL4(PF4) that induces autoantibody production25
DNA vaccines not previously associated with autoimmunity25

AVV constituents form antigenic complexes with CXCL4(PF4), which induces

an autoantibody response against CXCL4(PF4) promoted by pro-

inflammatory vaccine constituents and increased vascular permeability

caused by vaccine-derived EDTA26

Proposed mechanism does not involve heparin or heparan,

which appear to be important because autoantibody binding

is restricted to amino acids located within the heparin binding

site on CXCL4(PF4)27

Transduction of vascular endothelial cells with AAV-derived DNA leads to

luminal expression of SARS-CoV-2 SP, resulting in recruitment and activation

of platelets that secrete CXCL4(PF4), which becomes immunogenic after

binding to HSPG derived from vascular endothelial cells17

Unclear whether vascular endothelial cells at vaccination sites

express SARS-CoV-2 SP in vivo

AVV, adenoviral vector vaccine; CXCL4, chemokine (C-X-C motif) ligand 4; HSPG, heparan sulphate proteoglycans; PF4, platelet factor 4; SP,

spike protein.
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dependent manner via complement receptor 2
(CD21) in a process that is highly dependent on
‘natural’ IgM antibodies and the plasma IgM
level.20 Furthermore, Krauel et al.8 reported that
serum from healthy individuals not recently
exposed to heparin contained IgM or IgG CXCL4
(PF4)/heparin autoantibodies in approximately
19% and 6% of samples, respectively. Many
individuals therefore appear to be primed to
produce antibody responses against complexes of
CXCL4(PF4) and heparan sulphate and/or heparin
but only a small proportion progress to production
of an IgG antibody response that induces platelet
activation through immune complex formation and
signalling via FccRIIa possibly contributes directly to
thrombosis by inducing vascular endothelial
injury.18

If, as we propose, VITT is a complication using
adenovirus vectors, examination of published data
on adverse effects of other adenovirus-vectored
vaccines might be informative. HIV vaccines that
used Ad5 as a vector have been evaluated in
approximately 5000 subjects and, although their
use increased the risk of acquiring HIV-1
infection in Ad5-seropositive uncircumcised males,
thrombocytopaenia or thrombosis was not
reported as adverse effects.21 Similarly, ongoing
evaluation of Ad26 as a vector for several different
vaccines in completed or ongoing clinical trials
involving more than 114 000 people has so far not
identified this adverse effect.22 However, because
of the fact these are relatively small numbers
administered compared with COVID-19 adenoviral
vaccines and across multiple different studies, this
rare adverse event may not have been observed or
recognised.

In summary, we propose that attachment of
adenoviral vectors to heparan sulphate during
infection of cells induces binding of CXCL4(PF4) to
the heparan sulphate, in an attempt to neutralise
virus attachment, which leads to changes in the
CXCL4(PF4) molecule that increases immunogenicity
for B-cell responses. Furthermore, by analogy
with HIT, we propose that ‘altered’ CXCL4(PF4)
complexed with heparan sulphate binds to ‘natural’
IgM antibodies to activate complement, which leads
to activation of B cells and production of an IgG
antibody response against complexes of CXCL(PF4)
and heparan sulphate and/or heparin that results in
platelet activation and thrombosis (Figure 1).
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