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Abstract: Alcoholism is attributed to regular or excessive drinking of alcohol and leads to the
disturbance of the neuronal system in the human brain. This results in certain malfunctioning of
neurons that can be detected by an electroencephalogram (EEG) using several electrodes on a human
skull at appropriate positions. It is of great interest to be able to classify an EEG activity as that
of a normal person or an alcoholic person using data from the minimum possible electrodes (or
channels). Due to the complex nature of EEG signals, accurate classification of alcoholism using
only a small dataset is a challenging task. Artificial neural networks, specifically convolutional
neural networks (CNNs), provide efficient and accurate results in various pattern-based classification
problems. In this work, we apply CNN on raw EEG data and demonstrate how we achieved 98%
average accuracy by optimizing a baseline CNN model and outperforming its results in a range of
performance evaluation metrics on the University of California at Irvine Machine Learning (UCI-ML)
EEG dataset. This article explains the stepwise improvement of the baseline model using the dropout,
batch normalization, and kernel regularization techniques and provides a comparison of the two
models that can be beneficial for aspiring practitioners who aim to develop similar classification
models in CNN. A performance comparison is also provided with other approaches using the
same dataset.

Keywords: classification; optimization; batch normalization; kernel regularization; convolution;
pooling; dropout layer; learning rate

1. Introduction

One of the most prevalent psychiatric disorders and addiction difficulties is alcohol
consumption disorder. In this situation, a person is unable to control his or her urge
to use alcohol, even though it has negative health consequences such as liver failure,
cardiovascular disease, neurological damage, and some categories of cancer [1]. It has the
potential to cause significant harm and even death. More than 3 million people die each
year because of alcoholism across the world. According to the World Health Organization
(WHO), it accounts for more than 5% of all fatalities globally [2]. As a result, it is one of
the leading causes of mortality and disability [3]. It also leads to family disintegration
and broader societal dysfunction by causing additional damages such as traffic and other
accidents, domestic and public violence, and criminality [4].

An early diagnosis of alcoholism will aid individual subjects in becoming aware of
their situation and preventing permanent damage. Traditional techniques of measuring the
effect of alcohol on a specific person, such as questionnaires, blood tests, and physiological
tests, are used in various ways to identify alcoholism. Each approach has advantages
and disadvantages. Because of personal and social reasons [5], the questionnaire-based
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analysis is less accurate. The blood test is not only invasive and unpleasant, but also
often unreliable [4]. In this scenario, the electroencephalogram (EEG)-based noninvasive
approaches have been presented for alcoholism identification [6–8].

The EEG is a noninvasive diagnostic technique that can be used to examine the
brain’s neuronal activities. It measures the potentials that replicate the electrical activity
of the human brain. EEG signals are a good source of obtaining information about the
neurological conditions of a person [9]. Thanks to its low cost and noninvasiveness,
automatic EEG signal classification is an important step towards their use in practical
applications and less reliance on trained professionals [10]. This approach is based on the
hypothesis that brain signals fluctuate as a function of the brain’s functioning condition.
Multiple electrodes are placed in various locations on the subject’s scalp during the EEG test
to capture the electrical activity of the brain [11]. The electrodes are positioned following
norms [12]. The EEG pulses are converted into signals by each electrode, which are then
amplified and conditioned via a bandlimited filter [13]. A similar analog processing chain
is implemented for each EEG channel. It prepares the EEG signal for proper digitization.
Next, the processed signal from each channel is digitized by using appropriate analog-
to-digital converters (ADCs). The digitized signals are conveyed to an electronic EEG
recording machine, where they are converted into waves and analyzed on a computer
screen. EEG is widely used in cognitive psychology, neuroscience, and neurophysiological
research for a variety of reasons.

1.1. Approaches in EEG Signal Analysis

Existing work in EEG classification can be broken down into several streams. One
stream of approaches is focused on the removal of various kinds of noises and other
artifacts added to the main signals from physiological, environmental, and technical
sources as part of acquisition and processing [14]. These include the works [15–18]. The
second stream of efforts is aimed at the pertinent feature extraction from the preprocessed
EEG signals. More recent efforts have combined the mined features with the machine
learning classifiers for the classification of signals. In this context, robust machine learning
algorithms, namely K-nearest neighbor (KNN), support vector machine (SVM), decision
trees, logistic regression, least-squares support vector machine (LS-SVM), random forest
(RF), rotation forest (ROF), and bagging have been used [6–8,11,13]. Considering the stages
involved from preprocessing to feature extraction and classification, some approaches use
domain-specific processing pipelines to streamline the development process [19]. However,
these methods further reduce the flexibility and generalization of the approaches.

In the last few years, deep neural networks (DNNs) have evolved to gain influence in
various classification tasks. DNNs are known for automatic feature extraction [20], and
due to their ability to classify nonlinear relations between the input and output, they have
been a powerful tool for EEG classification in recent years. It has been shown that features
extracted through convolutional neural networks (CNNs) have more representative po-
tential than the traditional feature extraction methods [21]. Another popular concept in
DNNs is transfer learning. In transfer learning, a machine learning model learned for one
task is reused in another similar task. Thanks to the availability of several successful deep
learning models in the domain of image analysis and computer vision, transfer learning in
EEG signals involves converting a one-dimensional EEG signal into a two-dimensional
image and applying an existing portion from a learned model from the image domain
for classification of the two-dimensional EEG images [22,23]. Gong et al. [24] provide a
detailed description of the evolution of EEG signal classification from simple statistical
methods to deep learning in the last decade.

In a review of the studies for classification of EEG signals for a wide range of tasks, by
Craik et al. [10], it was found that the average accuracy of deep learning methods that used
signal values as input performed better than the methods that used images or calculated
features as input. This was a motivating factor for us to start our approach with the raw
EEG signals as input. The review also mentioned that no previous study had analyzed if
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“deep learning can achieve comparable results without any artifact cleaning or removal
process”. Comparatively, as a novel contribution, the current approach does not perform
any artifact cleaning and achieves high performance on various evaluation metrics.

While there have been a variety of tasks related to EEG signal analysis, the identifica-
tion, analysis, and treatment of alcoholism have been given less attention by researchers.
Several recent reviews in the last couple of years [10,19,24,25] covering the state of the
art in EEG classification of brain-related activities have identified about a dozen domains
of application. However, it seems that more efforts have been spent in EEG analyses in
the other domains of neuroscience and neuronal activity classification as compared to
alcoholism. Only one [25] of these studies has reported alcoholism classification using EEG,
and none of the cited studies have applied any form of deep learning for classification. In
this work, we are particularly interested in the analysis and classification of EEG signals
for alcoholism detection. From a set of EEG signals, we should be able to identify for each
signal if it belongs to a normal person or a person with alcoholic predisposition.

1.2. Objectives and Research Contribution

The objective of this study was to investigate a simple, but effective, deep learning
model—comprising CNN architecture—for the analysis of brain EEG signals for binary
classification of alcoholic and nonalcoholic persons. The novelty of our approach is that
we perform our analysis on only 2 of the 61 available channels in the EEG dataset. We do
not carry out any preprocessing of the signals. Unlike existing studies, which focus on
the manual tasks of noise removal and feature extraction from EEG signals, in the current
work we give raw, normalized EEG signals to a CNN for automatic feature selection in
the temporal domain of the signals. To deal with the scarcity of data, data segmentation
is performed without adding any artificially generated data. Furthermore, the neural
network architecture utilized is very compact and consists of only four convolutional layers
with associated pooling and normalization operations. The number of parameters used
by our classification model is also very small, ensuring efficient data processing. The
article not only compares the optimal model with a baseline model but also compares
with existing approaches that employ neural networks for EEG classification. Because the
majority of the papers are hard or impossible to reproduce [19], we make available our
code and explain in detail the stages in the development of the complete neural network
architecture so that our work can be reproduced by other interested researchers. We also
explain various optimization tasks to improve the accuracy of our model in the hope that the
research community can benefit from applying similar techniques with better knowledge in
their experiments.

The remainder of the article is organized as follows: Section 2 details the background
on EEG signal-based classification and identifies some relevant work as well as a compar-
ison of some approaches with ours. Section 3 is about the materials and methods used
in this study. Section 4 describes a baseline CNN architecture for classification followed
by the description of methods and their results for improving the baseline architecture.
In Section 5 we present, and in Section 6 we discuss and evaluate the results. Section 7
concludes the article with future work directions.

2. Background and Related Work

Alcoholism is an important societal issue, and there have been only a few studies
dealing with the analysis of EEG for alcoholism detection. The absence of alcoholism-
related studies in these reviews may indicate a lack of coordinated efforts, but we think
it is mainly because of the availability of limited data for this task. When compared to
tasks of EEG analysis such as a brain–computer interface or sleep analysis, the researchers
have a significant choice in terms of the number of subjects, age and gender of the subjects,
duration of the recordings, etc. [19]. In the case of alcoholism, however, the UCI-ML
(formerly UCI-KDD) dataset (explained later) is the only mainstream publicly available
dataset that has been used in dozens of studies. A possible reason for the lack of an
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alcoholism dataset may be the stricter conditions in the preparation and curation of the
dataset. For example, the UCI-ML alcoholism EEG dataset required both the alcoholic
and nonalcoholic participants to have abstained from drinking alcohol in the past 30 days.
Finding subjects that meet such a criterion is a difficult task. Moreover, people may not
feel comfortable when they are being analyzed for alcoholism due to certain barriers and
social stigmas such as embarrassment, fear of losing the job, or concerns about what others
might think about them [5]. Despite these issues, analysis and treatment of alcoholism is
an important issue for an individual as well as for society and any effort in this regard will
bring us one step closer to better analysis and treatment of this disorder. The use of EEG is
one important tool in advancing the research in this direction rapidly.

We can divide the existing approaches for EEG-based classification into those that
use feature extraction with traditional machine learning classifiers and those that use deep
learning methods.

2.1. Feature Extraction and Machine Learning

Researchers have proposed several traditional techniques for feature extraction from
EEG signals, such as time domain, frequency domain, time–frequency analyses, wavelet
analyses, entropy analyses, and energy distribution [9], or the combination of two or more
of such methods [26]. A problem with feature extraction is that it is not only computation-
costly, but also laborious and time-consuming. Furthermore, as manual data processing is
highly subjective, it is unlikely that other researchers may reproduce the results. Despite
these limitations, more than a quarter of the studies reviewed by [10] performed manual
removal of artifacts.

More recently, the traditional techniques have been augmented by the application
of machine learning for signal classification. These methods depend on engineering
techniques such as EEG rhythm feature, analytic wavelet transform, functional connec-
tivity, graph and spectral entropies, and empirical mode decomposition (EMD) [6,27,28].
Jiajie et al. [29] used approximate entropy (AE) and sample entropy (SE) as feature ex-
tractors and SVM, KNN, and ensembled bagged tree as classification methods in the
development of a clinical decision support system for alcoholism classification. With
this approach, they could achieve sensitivity and accuracy of up to 95% on the UCI-ML
dataset with quadratic SVM. The authors of [8] provide a summary of some methods of
feature extraction with different classifiers and a comparison of their performance on the
UCI-ML dataset.

Automated techniques such as independent component analysis (ICA) for artifact
removal, principal component analysis (PCA), and local Fisher’s discriminant analysis
(LFDA) are some of the methods that are applied as preprocessing before any classification
methods are applied to the EEG signals [30]. Ren and Han [31] combined linear methods
(autoregression, wavelet transform, and wavelet packet decomposition) with a nonlinear
feature extraction method (sample entropy) on the EEG signal and then removed the re-
dundant features using class separability methods. The classification was then performed
using ensemble extreme learning machines based on linear discriminant analysis (LDA).
Rahman et al. [32] have shown that ICA performed better in the instance-based learning
method, KNN, while PCA had better results when used with a deep learning (bidirectional
long short-term memory) model. Thus, one must carefully choose a feature selection
method with the type of classification method adapted. Finally, image features of the
signals, such as Fourier feature maps [33] or 3D grids [34], are some feature-based meth-
ods. Saminu et al. [9] provide a summary of techniques that combine traditional feature
extraction methods with machine learning classifiers for EEG signal classification.

Bavkar et al. [35] used the gamma-band power as a feature in EEG signal on the
entire dataset. They compared a total of 13 machine learning classifiers such as linear
discriminant, linear SVM, and quadratic SVM. With 61 channels, and using the ensemble
subspace KNN classifier, they obtained the maximum accuracy of 95.1%. To carry out
a classification using a reduced number of channels, they applied various optimization
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algorithms such as genetic algorithm and binary gravitational search algorithm (BGSA),
but none of the optimization methods could give an accuracy of more than 94%.

Feature extraction is a time-consuming task and requires specific knowledge of the
domain and expertise [24]. Moreover, when using traditional machine learning methods,
one must experiment with a significant subset of machine learning classifiers before being
able to identify the important features and the best-performing classifier. To counter these
limitations, deep learning-based approaches have emerged as a way out. Deep learning
does not require manual feature selection or extraction, but important features are learned
by the deep learning model automatically.

2.2. Deep Learning-Based Approaches

DNNs are a powerful tool for the classification of complex nonlinear systems. Of
the various deep learning architectures, CNNs have been found to be the most suitable
ones in situations such as the analysis of EEG signals; 40% of the deep neural architec-
tures are CNNs, which have been the architecture type of choice since 2015 [19]. We
identify some approaches that have used CNNs for the classification of EEG signals.
Chaabene et al. applied CNN for drowsiness detection [36]. For EEG signals, they chose
14 channels followed by preprocessing for noise removal and band annotations in the re-
fined signals. They also used data augmentation to artificially create new training instances
from the previous ones. By utilizing four convolution layers, one max-pooling layer, and
two fully connected layers, they had more than 14 million parameters in the network to
classify a person either in the drowsy or awake state. Without network optimization, they
achieved the best test accuracy of 79%. After doing some optimization in their network
architecture, by adding various normalization and dropout layers, their test accuracy
improved to a maximum of 90% with 7 channels.

Qazi et al. [37] applied a multichannel pyramidal convolutional neural network (MP-
CNN) for EEG signal classification of alcoholism. They started with a total of 61 channels
from five different brain regions and by assessing the performance of each channel one by
one. Of the five developed models tested with varying architectures and several parameters,
the best model uses 19 best-performing channels as input and gives an accuracy of 100%
with 14,066 parameters. A major limitation of their work is the lengthy job of preprocessing
the process of trial-and-error involved in the selection of the best channels and evaluation
and comparison of five different CNN models.

A slightly different approach was taken by [38], as they developed two new activation
functions to speed up and improve the performance of CNN in EEG classification. With
one of the activation functions, they could achieve an accuracy of 92.3% on the alcohol
EEG dataset, which is an improvement over the usage of the default activation functions of
softmax or sigmoid.

In the case of transfer learning, Xu et al. [23] used the VGG-16 CNN model, originally
developed for the general image classification task, for the classification of motor imagery
(MI) EEG signals. The newer model consists of the same initial layers as used in VGG-
16, except for the final output layer, which is fine-tuned in the target model using the
EEG dataset. The EEG signals are converted in time–frequency spectral images using
short-time Fourier transform (STFT) before applying them as input into the target model.
The classification is done by applying 2D CNN on these images. In total, their CNN
model contains 13 convolutional layers, 5 max-pooling layers, and 2 fully connected layers.
The average reported accuracy for all subjects was 74.2%. This is 2.8% better than their
designed CNN. Srabonee et al. [22] also achieved 98.13% classification accuracy with the
transformation of EEG signals into 2D images. In addition to the transformation of images,
they also performed Pearson’s correlation analysis on the images before using them as
input into the CNN model.

Transfer learning was also performed by Zhang et al. [21], combining the low- and
high-frequency signals from 11 high-variance channels from the UCI-ML dataset. This
translates into a visual heatmap of brain activity in different parts of the brain. The
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authors used a combination of 3 traditional feature extraction techniques (gray-level co-
occurrence matrix (GLCM), Hu moments, and local binary patterns (LBP)) and 12 deep
learning feature extraction models with seven machine learning classifiers (KNN, SVM
linear/polynomial/RBF, RF, MLP, and NB). After experimenting with a total of 105 possible
combinations, the model with MobileNet CNN architecture as feature extractor and SVM-
RBF as classifier achieved about 95% score in accuracy, precision, and recall metrics on the
UCI-ML EEG dataset.

The potency of deep networks is due to their depth and the activation properties
of the hidden layers. As an example [39], carried out the classification of alcoholism
using EEG signals by five machine learning algorithms and a multilayer perceptron (MLP,
a shallow neural network with one hidden layer only). With several feature selection
approaches experimented on, the MLP did not perform as well as the rest of the algorithms.
It performed worst in most of the cases.

From the above analysis, we can conclude that there is a diversity of methods for the
classification of EEG signals, and the competition to find the best method is still ongoing. In
our opinion, the best method should be selected based on flexibility, efficiency, and overall
performance on various metrics. Unfortunately, many of the mentioned approaches report
only a few evaluation criteria such as accuracy, while ignoring other metrics like precision
and recall, which can be possibly lower, hence diluting the overall performance. Thus, we
intend to report our performance in terms of several metrics in this article.

3. Materials and Methods
3.1. Experimental Setup

We implemented our model in the Python language using Keras API (https://keras.io/
(accessed on 25 July 2021)) for deep learning with Tensorflow (https://www.tensorflow.
org/ (accessed on 25 July 2021)) as the backend. For program development, we used the
GPU environment in the Kaggle platform (www.kaggle.com (accessed on 4 August 2021)),
which can execute the model several factors faster than a CPU.

3.2. EEG Dataset

The dataset for EEG signals was obtained from the University of California at Irvine
Machine Learning repository [40] and was produced for research by H. Begleiter [41]. The
complete dataset consists of 122 subjects, each with 120 trials with two different stimuli.
The subjects were divided into alcoholic and control groups. Each subject was exposed to
either a single stimulus or two stimuli in either a matched condition where S1 was identical
to S2 or in a nonmatched condition where S1 differed from S2 [42]. After removing
trials containing unwanted eye and body movements, the EEG recordings of each class
were retrieved.

The EEG signals were recorded using the placement of 64 electrodes on the head
according to the International 10/20 system [12]. Frontal polar (FP), frontal (F), temporal
(T), central (C), parietal (P), ground (G), and occipital (O) areas are represented by the
10/20 system elements. The outcomes of electrodes are very sensitive to noise. Therefore,
each electrode outcome was amplified and then passed through a filter with a pass-band
of [0.02 Hz, 50 Hz]. This band-pass filter not only limits the signal bandwidth but also
avoids the low-frequency baseline wander noise. In the next step, the data were sampled
at a frequency of 256 Hz with an analog-to-digital converter (ADC) of 12-bit resolution.

Experiments were conducted by using a partial dataset in this study since the publicly
accessible entire dataset is incomplete, with certain trials containing empty files or tagged
as “err.”. For both classes, normal and alcoholic, 60 EEG recordings were kept. For
balanced representation, 30 recordings were considered from each category. Following
the work presented in [6,43], 61 electrodes were used to acquire the EEG signals and the
remaining 3 electrodes were used as reference. The Cz electrode was utilized as a reference,
while the X and Y electrodes were used to capture horizontal and vertical bipolar signals,
respectively. The baseline filter removed artifacts such as eyes and muscle movements

https://keras.io/
https://www.tensorflow.org/
https://www.tensorflow.org/
www.kaggle.com
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from intended records [19]. Each conditioned recording has 8192 samples and is 32 s
long. Each preprocessed record was further divided into four portions. Each portion
comprises 2048 samples and is 8 s long. Figure 1a,b shows sample plots from normal and
alcoholic persons.
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Figure 1. Examples of EEG signals: (a) normal person; (b) alcoholic person.

3.3. Data Segmentation

To increase the data size, each 8 s length EEG portion was divided into four 2 s length
segments, each containing 512 samples. The process of segmentation was carried out
by using the rectangular window function, with the windowing operation [17] given by
Equations (1) and (2):

zwn = zn × wn (1)

zwn =

τ
2

∑
−τ
2

zn (2)

Here, zn is the digitized version of EEG band-limited signal, obtained from the con-
sidered dataset [16]. zwn is its segmented version. wn is the window function coefficient
vector. Its length is equal to τ =2.0 s, and it contains 512 coefficients, each of magnitude
1. This operation of windowing breaks the longer EEG signal in smaller segments. Each
segment is considered as an instance. In total, 960 instances were studied, out of which 480
belong to the normal class and the other 480 belong to the alcoholic class.

3.4. Data Normalization

An important aspect of the current work is that we did not perform any special pre-
processing tasks on the raw input data, with the only exception of standard normalization.
In general, the signals in the data can have arbitrary positive or negative values (as shown
in Figure 1). To reduce any wide dynamic ranges in the signals, it is suggested that data
normalization be performed before the training process [44]. The standard normalization
process scales the data so that it has a mean (µ) of 0 and a standard deviation (σ) of 1.

3.5. CNN for Feature Selection

CNNs are a special kind of artificial neural network for processing data that are usually
in a series in 1 dimension, e.g., speech or EEG/ECG signals, or in 2 dimensions, such as
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images. The principal operation in CNN is that of a convolution, which is a specialized kind
of linear operation on two functions of a real-valued argument [45]. The first function of the
convolution operation is the input, and the second is known as the kernel, while the output
is known as the feature map. Because of the smaller size of the kernel compared to the input,
convolution requires fewer parameters due to sparse connectivity, which not only reduces
the memory requirements of the model but also improves its statistical efficiency [45].
A kernel of the convolution function can extract only one kind of feature at different
input locations. To extract various kinds of features, we apply more than one convolution
function in a single CNN model. The convolution function is usually followed by a pooling
function, which modifies the output of the convolution layer by downsampling. It does
so by replacing the output at a certain location with the summary statistics of the nearby
outputs using functions such as maximum or averaging functions [45]. The convolution
and pooling operations are usually represented by a single convolution block.

CNNs have been used in problems such as speech recognition, image classification, rec-
ommender systems, and text classification. More recently, CNNs have been shown to clas-
sify EEG brain signals for autism [46], epilepsy [46–49], seizure detection in children [50],
schizophrenia [51], brain–computer interface (BCI) [52], alcoholism predisposition [21,37],
drowsiness detection [36,53], and neurodegeneration and physiological aging [54] into
normal and pathological groups of young and old people.

3.5.1. Fully Connected Layer for Classification

The convolution block is followed by fully connected or dense classification layers. In
general, several such layers may be needed for improved discrimination. Depending on
the problem, each layer may have a specific activation function. For binary classification,
the sigmoid or the logistic regression activation function is used.

3.5.2. Hyperparameter Tuning

In addition to the parameters for model definition, e.g., the number of layers, their
types, and their activation functions in a neural network, a set of hyperparameters also
governs the performance of a model by controlling various aspects of the algorithm’s
behavior [45]. The hyperparameters can be tuned manually or automatically, and the
range of their values can affect the time and running cost of the algorithm. Examples
of hyperparameters include the type of optimizer, the learning rate, the input batch size,
dropout rate, and the convolution kernel width. These are the hyperparameters as they are
usually not learned by the algorithm on the training set, but their values can control the
model capacity [45]. The hyperparameter values are adjusted based on the validation set
once a model is learned from the training set. The final set of hyperparameters is fixed on
the test set after seeing the generalization error. Section 4.3 explains the various forms of
hyperparameter tuning in this work, e.g., learning rate, dropout rate, and kernel width.

3.5.3. Performance Metrics and Evaluation

For binary classification, accuracy is the best measure. We mainly performed all the
optimizations using accuracy as the main metric. For the final model, we also report the
cross-validation results. In addition, the widely used metrics of precision, recall, F1-score,
Cohen’s kappa, and area under curve (AUC) were also determined.

4. CNN Architecture for EEG Classification

The proposed work applies CNN for the classification of an EEG signal as belonging to
an alcoholic or a normal person. The main components of the model are one-dimensional
convolutional layers and a dense (fully connected) layer.

4.1. 1D-Convolution and Pooling

We started with a relatively small number of layers where each layer had a small
kernel of size 3 and the number of filters was 8 to obtain a modest accuracy of about 72%.
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The capacity of the model was increased by adding more layers and increasing the size
of the kernels and the number of filters progressively in various layers. This was done
by constructing a different grouping of the same number of filters ranging from 8 and
increasing by a multiple of 2 until there were 128 filters in each layer. Similarly, by mixing
various other sizes of filters, we kept measuring the change in the error loss and accuracy.
The finally selected model had four convolution layers with 16 filters in the first, 32 in
the second, and 64 in the last layer. The kernel size was fixed at 15 in all layers. The
convolution stride was also fixed to two steps in every layer. Rectified linear unit (ReLU)
activation function was used at each convolution layer for bringing nonlinearity in the
process. Reducing the value of any of these parameters resulted in decreased performance,
while increasing the value did not achieve any performance gains.

This is the general design pattern for CNN—the number of filters is increased in the
latter layers, starting with a relatively small number at the start. Moreover, a convolution
operation is mostly followed by a spatial pooling operation. Max-pooling is generally a
preferred approach over other forms of pooling such as averaging, giving better results. The
final convolution operation is also generally followed by a global max-pooling operation.

The convolutional/pooling layers are responsible for feature selection. To classify the
EEG signals, a single fully connected layer was applied that uses the sigmoid activation
function for binary classification and the binary cross-entropy method for loss minimization.
The architecture of the model is shown in Figure 2.
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4.2. Training and Testing of the Model

After the data segmentation (Section 3.2), we had 960 instances where each instance
had 512 dimensions. The training was carried out using mini-batch gradient descent with
a batch size of 64. Going through the successive convolution and pooling layers, the
dimensions are reduced because of feature selection at each layer as shown in Figure 2.

As the model starts learning, a small validation set is used after each epoch to adjust
the weights. We fixed the validation set to be 20% of the size of the dataset; the model
automatically chooses validation examples in each iteration. At test time, the model accepts
input examples in the same dimension as the training data.

Figure 3a,b shows the loss and accuracy for the developed model. As can be observed,
the training loss and accuracy continued to improve (low training error vs. high accuracy),
but the validation loss and accuracy stalled after a few iterations. If the number of iterations
was increased further, the training data would achieve an accuracy of 100% without any
improvement in the validation accuracy, which remained at 92% in the best case. This is
a case when the model overfits the training data. Increasing the capacity of the layers in
terms of bigger kernels or adding more filters cannot improve the validation accuracy, as
that will only help in memorizing the training data.
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Thus, we needed to fine-tune the CNN model to maximize the results on the validation
set. Once a desirable validation accuracy is achieved, we can then use the model on the
test data to assess its final performance.

4.3. Optimizing the Neural Network Model

We considered the previously developed model as a baseline model and brought im-
provement to it to achieve high accuracy on the validation set. To avoid overfitting of
the network on training data, a technique called regularization was applied to the model.
Regularization adds a penalty to the model so that the model does not overfit the training
data. Three regularization techniques were used: dropout, batch normalization, and L1/L2
regularization. Although regularization is an important technique for obtaining better
generalization in DNNs [45], more than half of the papers in EEG classification did not
mention using any regularization techniques [19]. Since regularization methods helped us
in achieving good results, it would be essential to give details of the different regularization
techniques we have applied in our approach.

4.3.1. Batch Normalization

The purpose of normalization is “to make different samples seen by a machine-
learning model more similar to each other” [55]. Normalization of the input was performed
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in the preprocessing step. However, during input processing, data are processed by the
layers and transformed into a wide range of values that need to be normalized. Batch
normalization [56] tries to achieve the same effect in the DNN. In our case, we applied
batch normalization to the output of all max-pooling layers. The normalization of layers
improved the accuracy by a few percent.

4.3.2. Dropout Layers

Dropout layers were proposed by Srivastana et al. as a simple way to prevent the
neural network from overfitting [57]. Dropout consists of dropping out some units along
with their connections from the neural network, significantly reducing overfitting. Dropout
regularization was used in all the layers with a dropout ratio set to 0.1. An increase in
dropout ratio to various other values resulted in a decreased performance.

4.3.3. L1/L2 Regularization

One way to reduce the complexity of the model is to put constraints on the model
weights. This is done by adding a cost with the large weight in the loss function. This cost
can come in two ways: L1 and L2 regularization. In our case, the training was regularized
by applying both L1 and L2 regularizers simultaneously in the fully connected layer. For
both, the penalty weight was set to 0.01. Using these regularizers helped in the early
convergence of the network and improving the accuracy as well.

4.3.4. Optimizer, Learning Rate, and Early Stopping

After evaluation of various commonly used optimizers, e.g., Adam, Adagrad, and
Nadam, the best overall results were provided by the RMSprop optimizer, which we
opted to choose for all our experiments. The learning rate is one of the most important
hyperparameters [45]. The Keras deep learning library helped decide on the optimal
learning rate. Using the built-in learning rate scheduler callback function and starting with a
learning rate of 1 × 10−8, we measured the performance improvement in various training
epochs while increasing the learning rate by a small factor to finally reach the value of 0.1.
The best performance (in this case the minimum training loss) was achieved with a learning
rate of 6 × 10−2. Early stopping is a hyperparameter that allows the learning process to
stop when there is no improvement in the performance beyond a certain threshold. We
configured the training process to be stopped when there was no decrease in the training
loss in the last 15 iterations.

5. Results

The training was carried out for a total of only 100 epochs (or 1000 iterations consider-
ing that each epoch comprised 10 iterations as the input data of size 614 training examples
was divided into batches of 64). It should be pointed out our network converged very
quickly as compared to many deep learning models where the number of iterations can
reach up to several million [58].

Table 1 shows the comparative results of the two models on the test set: the baseline,
unregularized model versus the optimized, regularized model for a single run. The
regularized model outperforms the baseline model in every aspect, but its value is starkly
high for Cohen’s kappa. The kappa value shows the inter-rater agreement. In the case of
the baseline, we can see that lower precision resulted in lower kappa, and lower precision
was the result of misclassifying a normal person as alcoholic (false positive). In contrast,
the regularized CNN model had much better kappa due to high precision and recall.

Table 1. Comparing performance of the baseline and regularized CNN model using various metrics.

CNN Model Accuracy Precision Recall F1-Score AUC Kappa

Baseline 91.15% 92.22% 89.24% 90.71% 91.08% 82.25%
Regularized 98.43% 100% 96.77% 98.36% 98.38% 96.87%
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To evaluate the performance of the final, regularized model more objectively, we
carried out K-fold cross-validation [45] using K = {3, 5, 10}. K-fold cross-validation is
the preferred approach for model evaluation when the available dataset is not very big.
Moreover, we also experimented on varying batch sizes ranging from 22 to 28.

The total data (n = 960) were divided into a 20% test set (ntest = 192), while the
remaining data were split into training and validation according to the value of K. For
K = 3, two-thirds of the data were used for training (ntr = 512), while one-third of the data
were used for validation (nval = 256). As the number of folds increased to 5 and 10, the
training data were increased (4/5 and 9/10), while the validation data were reduced (1/5
and 1/10).

Table 2 shows the results of K-fold cross-validation and variation in the batch size.
The validation columns show the average accuracy of K-runs and their standard deviation
for each value of K. The test columns show the accuracy of the test set. As can be seen, the
average performance across the folds kept increasing, and the best results on test data were
obtained for 10-fold cross-validation. The final column shows the best run of all the folds
in the case of 10-fold cross-validation, which achieves an accuracy of as high as 100%. On
the dimension of batch size, we see varying results for different folds, without any specific
trend, except that larger batch sizes had worsening performance both for validation and
test datasets.

Table 2. Result of K-fold cross-validation (K = {3, 5, 10}) accuracy with varying batch size (22 to 28).

3-Fold 5-Fold 10-Fold

Validation Test Validation Test Validation Test Best Run

Samples 256 192 153 192 76 192

Batch size µ (σ) µ (σ) µ (σ)

4 0.92
(0.01) 0.96 0.92

(0.01) 0.93 0.95
(0.01) 0.97 0.97

8 0.93
(0.01) 0.94 0.94

(0.02) 0.95 0.94
(0.02) 0.96 0.97

16 0.92
(0.01) 0.94 0.94

(0.01) 0.96 0.94
(0.01) 0.98 0.96

32 0.93
(0.02) 0.95 0.93

(0.03) 0.95 0.94
(0.03) 0.96 0.97

64 0.92
(0.01) 0.95 0.94

(0.01) 0.95 0.94
(0.03) 0.95 1.0

128 0.92
(0.01) 0.90 0.92

(0.02) 0.95 0.95
(0.03) 0.95 0.99

256 0.88
(0.02) 0.89 0.90

(0.03) 0.90 0.90
(0.04) 0.89 0.97

We can draw the following conclusion from Table 2: as the number of training samples
increases from K = 3 (ntr = 512) to K = 10 (ntr = 692), the accuracy also increases. This is
in agreement with the general principle of machine learning: increasing the number of
samples increases the accuracy of the model [45].

6. Discussion

As identified in Section 2, due to the availability of only the UCI-ML EEG dataset for
classification of alcoholism in the public domain, almost all the approaches for alcoholism
classification [21,29,31,37,39] use this dataset. The dataset can, thus, be used as a bench-
mark for performance evaluation of various classification approaches. Table 3 provides a
comparison of these approaches with ours.
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Table 3. Comparison of approaches for UCI-ML EEG classification dataset.

Approach Feature Extractor Classifiers Performance

Transfer learning [21] GLM, Hu moment, LBP + 12
CNN models

KNN, SVM linear/poly/RBF,
RF, MLP, and NB
Best: SVM RBF

Accuracy: 95.33
Precision: 95.68

Recall: 95.00
F1-score: 95.24

Machine learning [29] AE, SE, mean, std
SVM cubic/quadratic, KNN,

ensemble tree
Best: quadratic SVM

Accuracy: 95
Sensitivity: 95

AUC: 98

Hybrid Features + EELM [31] AR, WT, WPD, SE, and
class separability

ELM, bagging, boosting
Best: LDA + EELM Accuracy: 91.17

ML + MLP [36]

Min/max, mean, std, power
value, Daubechies, coiflets,

symlets, and
biorthogonal wavelets

SVM, OPF, KNN, NB, MLP
Best: NB

Accuracy: 99.6
Specificity: 99.6
Sensitivity: 99.6

PPV: 99.6

MP-CNN [37] 5 MP-CNN models
Best: 19 best channels in CNN
with 3 convolution layers and

softmax classifier

Accuracy: 100
Specificity: 100
Sensitivity: 100
F1-score: 100

2D-CNN [22]
PCC and 2D spectrograms

followed by CNN
CNN with four convolution

and pooling layers

Accuracy: 98.13
Specificity: 97
Sensitivity: 98
F1-score: 98

Our approach, CNN CNN

CNN with 3 convolution
layers, dropout, batch

normalization, and kernel
regularization and softmax
classifier on two channels

Accuracy: 98
Precision: 100

Recall: 96.8
F1-score: 98.4

AUC: 98.4

Most of the mentioned approaches achieve an accuracy of more than 95%. However,
due to the complexity and generality of the approaches, some may be more promising
than others. For example, transfer learning is one successful approach for classification in
image processing and computer vision. Zhang et al. achieved above 95% accuracy using
transfer learning [21]. However, the application of this approach is not straightforward.
The selection of layers to be learned versus those to be reused and the initialization of
weights are some fundamental things to be learned from experimenting with the target
dataset. Approaches such as [31,36] use deep learning features but are preceded by a
pipeline of preprocessing tasks. Similarly, in [37], the authors went through a laborious
job of testing various combinations of channels on different architectures of CNN models
before finding the one with the best performance. In all these approaches, the dataset-
specific model learning implies that the tasks cannot be generalized to other, newer EEG
models for alcoholism classification.

Compared to these approaches, generic approaches that use standard CNN models
can work well on a variety of tasks, and their generalization capabilities are not affected
much on different datasets [45]. The approach used by [22] applies a simple CNN model
for EEG signal classification. Their architecture and their performance evaluation results
are much like ours except that they performed the preprocessing in the form of Pearson’s
correlation and conversion of 1D signals into 2D spectral images. Compared to their
preprocessing tasks, we improved our architecture using various regularization methods.
We believe that our work is more advantageous because regularization techniques achieve
better generalization on previously unseen data and are preferred methods for improving
the performance of DNNs [45]. Thus, the current work can be considered as a step towards
the advancement of EEG signal classification using generalized DNN models.
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Our work also demonstrates that data segmentation can improve the classification
task accuracy. As EEG signals are nonstationary, and their statistics vary over time, it is
said that a classifier trained on one part of user data might not generalize to some other
part of the same person [19]. However, we have seen that segmenting a signal into four
parts, in our case, yields impressive results. Thus, classification using different parts of
the signal may be feasible in some situations. Some approaches work on outlier detection
to improve their performance, e.g., [21]. However, this results in a model that loses the
quality of being robust and tolerant in the view of generalization. Thus, we do not apply
any outlier detection in our methodology.

Convolutional neural networks (CNNs) have been used in many application areas
for classification of audio, video, or text data, while very limited work can be found in
the use of CNN in EEG classification. CNNs are efficient in processing inputs of large
dimensions thanks to their properties of weight-sharing and sparse connections [45]. These
properties not only reduce the number of parameters but also reduce training time and
enhance training effectiveness [24]. Data scarcity is one issue when it comes to using deep
learning models for medical analysis. On the other hand, training on large datasets means
longer times for model fitting and evaluation. The best solutions are those that try to obtain
the best results on smaller datasets. As such, most of the existing approaches that used the
referenced dataset of UCI-ML worked on the smaller dataset containing only 120 trials of
alcoholic and 120 trials of normal subjects’ diagnosis [6–8]. In this work, we also employ a
total of 240 EEG segments, 120 from alcoholic and 120 from nonalcoholic subjects, without
introducing any data through augmentation. Further experiments are needed to see the
results if the data are divided into even smaller segments.

Simonyan and Zisserman [58] have shown that very deep CNN architectures with
small convolution filters in all layers perform very well in areas such as image recognition
and natural language processing. However, in the current work, the use of small convo-
lution filters did not achieve good results. The optimal results were obtained with 1D
convolution filters of size 15 in all the convolution layers. This discrepancy may be due
to the reason that our architecture is not very deep, as mentioned in [58]. Alternatively, it
could be that the convolution filter size is reduced at the expense of increasing the depth
of the current network. We leave the comparative analysis for future work, as it might
involve optimizing other parameters as well.

6.1. Importance of Regularization in DNN

Regularization has played an important role in achieving high performance in the
classification task. Batch normalization, dropout layers, kernel regularization, and learning
rate were the hyperparameters that were tuned in this work. This caused only a very
small change in the number of parameters to be learned by the network. Table 4 shows the
comparison of the architecture of the baseline CNN model with the regularized model.

6.2. Limitations of the Study

One of the limitations of applying deep learning models is that they require a large
amount of data for training the network. In case of limited data, a number of data augmen-
tation techniques are applied to generate synthetic data [59,60]. Deep learning methods are
also known to require high computation and suffer from slow convergence [24]. However,
the availability of advanced processing units such as the graphical processing units (GPU)
and the tensor processing units (TPUs) have solved the computation issues to a large
extent [61]. To solve the convergence issue, various methods have been proposed recently.
This article details the usage of such methods to achieve state-of-the-art performance in
EEG signal classification.
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Table 4. A comparison of the baseline and the regularized CNN model architectures.

Baseline CNN Model Regularized CNN Model

Layer (Type) Output Shape Params Layer (type) Output Shape Params

Conv1D (None, 498, 16) 256 Conv1D (None, 498, 16) 256

Max Pooling 1D (None, 249, 16) 0 Max Pooling 1D None, 249, 16) 0

Conv1D (None, 235, 32) 7712 Batch Normal None, 249, 16) 64

Max Pooling 1D (None, 117, 32) 0 Dropout None, 249, 16) 0

Conv1D (None, 103, 64) 30,784 Conv1D (None, 235, 32) 7712

Conv1D (None, 89, 64) 61,504 Max Pooling 1D (None, 117, 32) 0

Global Max Pooling (None, 64) 0 Batch Normal (None, 117, 32) 128

Dense (None, 1) 65 Dropout (None, 117, 32) 0

Total params 100,321 Conv1D (None, 103, 64) 30,784

Trainable params 100,321 Conv1D (None, 89, 64) 61,504

Nontrainable params 0 Global Max Pooling (None, 64) 0

Batch Normal (None, 64) 256

Dropout (None, 64) 0

Dense (None, 1) 65

Total params 100,769

Trainable params 100,545

Nontrainable params 224

It is well known that initialization of network weights is important and bad initial-
ization can result in instability of gradients, thus affecting the learning process. This is
considered as a regularization technique [62]. However, in the current work, we did not
focus on any weight initialization technique, and random weights were chosen by default
by the network using a small Gaussian value with mean 0, so it is quite possible that the
model performance could be affected if better/worse initial weights are chosen [63]. Other
techniques such as the input perturbation technique can be explored to understand the
causal relationship between the input and the decision of the model [19]. We leave this
aspect of network optimization for future work.

A weakness of the current work is that for achieving the best model, some fine-tuning
of the neural network model was required. However, this tuning of parameters and
hyperparameters was limited to only one specific CNN model. In comparison, other
similar approaches went through a laborious job of tuning several candidate models before
choosing a final one. Zhang et al. [21] experimented on 12 different classifiers, adjusting
various hyperparameters of each one before settling on a final model. In total, there were
105 combinations for feature extraction methods and classifiers.

7. Conclusions

Detection of alcoholism is an important social issue. EEG is an important tool for the
identification of alcoholism. This article explains the use of CNN in the classification of EEG
signals for alcoholism identification. Various regularization techniques were explained so
that other researchers and practitioners can build on the present knowledge to create more
efficient and better-performing CNN architectures. The methods described in the article
do not apply to EEG classification only and can be applied in a wide range of applications
of CNN.

With the current methodology, we achieved an accuracy of up to 98% on the UCI-
ML dataset while also obtaining good results in precision, recall, AUC, etc. Further



Sensors 2021, 21, 5456 16 of 19

investigation may be needed in the form of weight initialization, input perturbation, and
data segmentation choices, which have been identified as the near future work.
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Abbreviations

ADC Analog-to-Digital Converter
AE Approximate Entropy
AUC Area Under Curve
CNN Convolutional Neural Network
DWT Discrete Wavelet Transform
EEG Electroencephalogram
ICA Independent Component Analysis
LDA Linear Discriminant Analysis
LFDA Local Fisher’s Discriminant Analysis
PCA Principal Component Analysis
NB Naïve Bayes
ReLU Rectified Linear Unit
SE Sample Entropy
SVM Support Vector Machine
KNN K-Nearest Neighbor
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