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Integration of relative 
metabolomics and transcriptomics 
time‑course data in a metabolic 
model pinpoints effects 
of ribosome biogenesis defects 
on Arabidopsis thaliana 
metabolism
Christopher Pries1,4, Zahra Razaghi‑Moghadam2,3,4, Joachim Kopka1 & Zoran Nikoloski2,3*

Ribosome biogenesis is tightly associated to plant metabolism due to the usage of ribosomes in 
the synthesis of proteins necessary to drive metabolic pathways. Given the central role of ribosome 
biogenesis in cell physiology, it is important to characterize the impact of different components 
involved in this process on plant metabolism. Double mutants of the Arabidopsis thaliana cytosolic 
60S maturation factors REIL1 and REIL2 do not resume growth after shift to moderate 10 ◦C chilling 
conditions. To gain mechanistic insights into the metabolic effects of this ribosome biogenesis defect 
on metabolism, we developed TC-iReMet2, a constraint-based modelling approach that integrates 
relative metabolomics and transcriptomics time-course data to predict differential fluxes on a 
genome-scale level. We employed TC-iReMet2 with metabolomics and transcriptomics data from the 
Arabidopsis Columbia 0 wild type and the reil1-1 reil2-1 double mutant before and after cold shift. 
We identified reactions and pathways that are highly altered in a mutant relative to the wild type. 
These pathways include the Calvin–Benson cycle, photorespiration, gluconeogenesis, and glycolysis. 
Our findings also indicated differential NAD(P)/NAD(P)H ratios after cold shift. TC-iReMet2 allows 
for mechanistic hypothesis generation and interpretation of system biology experiments related to 
metabolic fluxes on a genome-scale level.

Ribosomes are the workplaces of protein biosynthesis, and defects in the pathway of ribosome biogenesis have 
an effect on many cellular processes, like metabolism, which critically depend on enzymatic proteins. While 
metabolism is known to affect ribosome function via the target of rapamycin (TOR) signalling pathway, little 
is known about how defects in ribosome biogenesis feed back on metabolism1. The Arabidopsis thaliana REIL 
proteins are involved in the late cytosolic steps of 60S ribosome subunit maturation and are required for growth 
under low temperature2. The reil1-1 reil2-1 double mutant is deficient for both REIL paralogs and, unlike Arabi-
dopsis Col-0 wild type, does not resume growth after cold shift, even to moderate 10 ◦ C chilling conditions. This 
experimental system is ideally suited to investigate the cytosolic ribosome biogenesis defect at the metabolic 
level, since both wild type and mutant show growth arrest during the early hibernation phase (less than seven 
days after cold shift) followed by differential growth in the later stages. Therefore, mechanistic insights in the 
impact of defects of the mutant’s ribosome biogenesis on metabolism may become apparent early after cold shift, 
during hibernation phase.
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One possibility to investigate the feedback of ribosome biogenesis defects on metabolism is the characteri-
zation of reaction fluxes. Metabolic fluxes depend, in part, on the metabolite pools3. They also depend on the 
enzymatic setup of a cell, which is in turn governed by gene regulatory and signalling networks that affect protein 
activity4. However, determination of metabolic fluxes is a tedious and labour-intensive task5–7. A targeted analysis 
that predicts relevant fluxes for hypothesis generation based on integration of available high-throughput data sets 
from systems biology studies may streamline the planning of such time-consuming experimental flux studies.

In this regard, constraint-based approaches have proved as a valuable tool for hypotheses generation regarding 
flux distributions and their differential behaviour. For instance, the simplest of these approaches, flux balance 
analysis (FBA), can predict steady-state fluxes in bacteria at exponential growth8. In general, metabolic fluxes of 
a system are predicted under the assumption that this system operates in steady-state and optimizes an objective 
(e.g. biomass yield). If feasible, the resulting mathematical approach often results in a non-unique flux distribu-
tion. To this end, constraints defined through integration of high-throughput data can reduce the solution space 
of feasible flux distributions9–11. Such approaches have been shown to result in a more accurate prediction which 
is closer to the actual physiological state12. Despite the availability of methods that integrate high-throughput 
data, their full potential has yet to be realized13.

Of particular interest are approaches which allow integration of relative metabolite levels, since these data-
sets are easier to obtain in contrast to absolute metabolite concentrations used in thermodynamic flux balance 
analysis14 as well as approaches that use time-series data (e.g. TREM-Flux15, uFBA16, and dFBA17). iReMet-flux18 
is the only constraint-based approach to date that can integrate relative metabolite levels to investigate differential 
flux behaviour between two scenarios. It relies on a mass-action-like description of reaction rates (i.e. flux). In 
contrast to uFBA, iReMet-Flux does not require data on absolute quantification of metabolite levels and therefore 
allows for a broader application due to the availability of relative metabolomics data. In contrast to TREM-Flux, 
it does not assume a linear scaling with the change of metabolite levels between two time points. In addition, 
iReMet-Flux differs from a recent approach in which the relative metabolomics data are integrated on a qualitative 
level (i.e. increases or decreases)14. Similar to the objective on which MOMA is based19, iReMet-flux minimizes 
the flux differences between two scenarios, but does not rely on pre-calculated flux distributions for a reference 
scenario. Additionally, iReMet-flux allows for the integration of relative enzyme levels either by direct usage of 
quantitative or qualitative proteomics data, or via gene expression ratio that can serve as a proxy10,20,21. However, 
if employed to time-series data, it does not account for the magnitude of possible flux changes between time 
steps. To address this problem, we extended iReMet-flux to account for temporal changes, while keeping the 
possibility of multi-level high-throughput data integration.

Here, we aimed to develop a novel constraint-based approach, termed TC-iReMet2, that facilitates the integra-
tion of relative metabolite and transcript levels while accounting for temporal change of physiological parameters. 
We used TC-iReMet2 to investigate differential flux behaviour of A. thaliana Col-0 wild type and reil1-1 reil2-1 
double mutant plants before and after cold shift. Finally, we provided directly testable hypotheses about the 
impact of REIL-mediated deficiency in ribosome biogenesis on metabolism.

Results
Formulation of TC‑iReMet2.  We propose Time Course Integration of Relative Metabolite and Transcript 
levels (TC-iReMet2) that estimates fluxes based on the integration of time-course data on relative metabolite and 
transcript levels. The key feature of TC-iReMet2 is that it accounts for the possible magnitude of flux changes 
between time points and thus could provide a more accurate explanation of flux rerouting over time. We show 
that TC-iReMet2 can be applied to study flux redistributions in pathways in a large-scale metabolic network of 
A. thaliana. Unlike genome-scale metabolic networks22, we refer to large-scale models as those reconstructed 
following a bottom-up approach23.

Similar to other constraint-based approaches, TC-iReMet2 uses a stoichiometric matrix S of the considered 
metabolic model. The rows of the stoichiometric matrix correspond to metabolites, and columns stand for reac-
tions. The integer entries denote the molarity of a product (positive entry) or a substrate (negative entry) in a 
reaction, ensuring mass and charge conservation. In the following, we assume that the investigated metabolic 
network contains P reactions and n metabolites, and that its functioning is compared between two experimental 
scenarios, denoted by A and B (e.g. mutant and wild type) over to time points t + 1 and t. Furthermore, we denote 
by p1 the number of irreversible reactions and by p− p1 the number of reversible reactions.

Under mass action kinetics, a flux through an irreversible reaction i, 1 ≤ p1 ≤ p1 , can be formally described 
by vi = kiEi

∏n
j=1(xj)

|Sji | , where xj denotes the concentration of metabolite j, Sji denotes the stoichiometric coef-
ficient with which a metabolite j enters a reaction i as a substrate, Ei denotes the enzyme concentration and 
ki denotes the reaction specific rate constant. Note that this expression can be written equally for scenario A: 
vAi = kAi E

A
i

∏n
j=1(x

A
j )

|Sji |and scenario B: vBi = kBi E
B
i

∏n
j=1(x

B
j )

|Sji | , where the rate constant ki is the only unchanged 
parameter ( kAi = kBi  ) - as it summarizes the key property of the same enzyme. Therefore, the relationship of a 
single flux between two scenarios can be written as:
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n∏

j=1

(xAj )
|Sji |

(xBj )
|Sji |



3

Vol.:(0123456789)

Scientific Reports |         (2021) 11:4787  | https://doi.org/10.1038/s41598-021-84114-y

www.nature.com/scientificreports/

To simplify the notation, we will refer to the ratio of metabolite levels of j as rj =
xAj

xBj
 and the ratio of enzyme 

levels catalyzing reaction i as qi =
EAi
EBi

 . This allows us to rewrite the ratio of flux rates of reaction i as 
vAi
vBi

= qi
∏n

j=1(rj)
|Sji | or equivalently vAi = [qi

∏n
j=1(rj)

|Sji |]vBi .
Determining the entirety of metabolite and enzyme concentrations is not possible with the existing 

technologies24,25. For metabolite ratios, only a small portion of the metabolome, and hence metabolite ratios, 
can be quantified. To account for the case that a metabolite ratio cannot be measured, general upper and lower 
boundaries for metabolite ratios are introduced. If the ratio of metabolite j is experimentally quantified, it is 
indicated by χ(rj) = 1 and otherwise by χ(rj) = 0.

In the absence of enzyme ratios, we use the Gene Protein Reaction (GPR) rules of metabolic models to 
approximate enzyme ratios using transcriptomic data. The GPR roles are defined by a set of Boolean expressions 
that describe which genes encode an enzyme. For example, gene products encoding for isoenzymes or isoforms 
are linked by an OR operator. Conversely, protein subunits that must be present simultaneously to form an active 
enzyme are linked by an AND operator. In case of an enzyme encoded by one gene, the enzyme concentration is 
approximated by its expression value. For each reaction that is catalyzed by a complex requiring multiple genes, 
the enzyme concentration is set to the minimum expression value of gene products connected by the AND 
operator. For the OR operator, the sum of expression values for the respective genes is used. These rules were 
applied to each reaction in both scenarios, fractioned and assigned as the corresponding enzyme ratio. There-
fore, an enzyme ratio is represented by a ratio of gene expression levels following the GPR rules. Equivalently to 
metabolite ratios, if a GPR rule for reaction i is defined, it is indicated by H(qi) = 1 and for reactions without a 
defined GPR rule, by H(qi) = 0.

In this setup, we only consider constraints for irreversible reactions, since more than 80% of reactions that 
are assumed to follow mass–action-like kinetics (this excludes artificial and transport reactions) are irreversible 
in the analyzed model of A. thaliana. This has been verified by performing flux variability analysis at a fixed flux 
through the biomass reaction, to specify that 80% of reactions operate in only one direction18. A ratio constraint 
for reaction i is included if not only the enzyme ratio, but also at least one of the substrate ratios corresponding to 
that reaction is available. For metabolites or enzymes whose ratios could not be determined we use the extremal 
values found at that specific time point. Let F(i) denote the set of substrates of reaction i. Additionally, let the set 
of irreversible reactions with at least one experimentally quantified metabolite ratio and approximated enzyme 
ratio be denoted by I = {i|

∑
j∈F(i) χ(rj) > 0 & H(qi) > 0} . A measured metabolite ratio for j and transcript 

ratio of i are indicated by r̂min
j ≤ r̂j ≤ r̂max

j  and q̂min
i ≤ q̂i ≤ q̂max

i  , respectively. The bounds are defined as multi-
ples of the standard deviation for the ratio. Cofactors were treated as unmeasured metabolites and for them the 
lower and upper bounds are minm: m∈{ℓ|χ(rℓ)=1} r̂

min
m  and maxm: m∈{ℓ|χ(rℓ)=1} r̂

max
m  , respectively. Equivalently we 

can write minm: m∈{η|H(qη)=1} q̂
min
m  and maxm: m∈{η|H(qη)=1} q̂

max
m  for unmeasured transcript ratios. Furthermore, 

to account for enzymes that are substrate saturated and in turn would lead to infeasibilities due to metabolite ratio 
constraints, slack variables εi were introduced to relax the strict ratio constraints. To minimize these relaxations a 
weighting of the summed slack variables of ǫ = 0.01 was used. Hence, a ratio constraint was formulated as follows:

Similarly, a ratio constraint for the biomass reaction can be formulated. To this end, a time-point specific 
biomass fraction, denoted by κt+1 , can be calculated. First, the maximum biomass yield, denoted by opt, is 
calculated for both scenarios via FBA. A biomass fraction κt+1 between both scenarios is then determined by 
using proxies for biomass (for a detailed description see Methods - Parameterizing the objection and of TC-
iReMet2 and estimating fractions of biomass yield). We fix the biomass reaction of scenario B to its respective 
value derived from FBA. In contrast, biomass flux in scenario A is fixed to a fraction κt+1 of its optimal yield. 
Lower and upper bounds are specified as deviations, denoted by δ , of the calculated fraction. Therefore, biomass 
fluxes for both scenarios can be constrained as follows:

Furthermore, we assume that: (i) the metabolic network to operate in quasi-steady state at every time point. 
Hence, SvA = SvB = 0 , where vA and vB denote the flux distributions of scenarios A and B respectively. (ii) the 
biological system aims to maintain an optimal state given by the enzymatic setup. This assumption is captured by 
making sure that the flux distributions between the two scenarios at a given time point t + 1 are as close as pos-
sible, i.e. ||(vBt+1 − vAt+1)||

2
2 . (iii) the physiological state at time t + 1 depends on the physiological state at time t. 

We model this assumption by accounting for the magnitude of possible physiological changes by assuring that the 
difference of flux distributions between time points is as small as possible, i.e. ||(vBt+1 − vBt )||

2
2, ||(v

A
t+1 − vAt )||

2
2 , 

respectively. This magnitude obviously depends on the difference between time points, where the magnitude of 
possible flux changes increases with time. To this end, we introduce weighting factors to minimize the difference 
of flux distributions between scenarios at the current time point, weighted by α , as well as for differences between 
prior time points for scenario A, weighted by β , and scenario B, weighted by γ.

In summary, the TC-iReMet2 approach is cast as a quadratic program (QP) as follows:

(2)vBi qi
∏

j∈F(i)

(rmin
j )|Sji | − εi ≤ vAi ≤ vBi qi

∏

j∈F(i)

(rmax
j )|Sji | + εi .

(3)(κt+1 − δ) optA ≤ vABiomass ≤ (κt+1 + δ) optA,

(4)vBbiomass = optB.
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Application of TC‑iReMet2 to data from the reil1‑1 reil2‑1 A. thaliana mutant.  We employed 
TC-iReMet2 to gain insights into the metabolic effects of the ribosome biogenesis defect that is caused by A. thal-
iana REIL deficiency. To this end, we compared predicted flux differences between Col-0 wild type and reil1-1 
reil2-1 double mutant with deficiency in cytosolic 60S ribosome biogenesis. The REIL proteins are required for 
growth when plants are shifted to cold ( < 10 ◦C ) conditions, but not at optimal temperature ( ≃20 ◦C)2. The 
reil1-1 reil2-1 double mutant and wild type differ only slightly in size when grown at 20 ◦C . Young developing 
leaves of the mutants showed an acute tip and two basal serrations instead of the typical rounded leaves of the 
Col-0 wild type, and were similar to the pointed leaves phenotype of cytosolic ribosome mutants26–28. However, 
the pointed-leaf phenotype of the reil1-1 reil2-1 double mutant was no longer apparent after transfer to soil and 
at developmental stages < 1.1029 that were analyzed in this study. When shifted to 10 ◦ C (cold), both the mutant 
and the wild type stopped growing. Following seven days in the cold, the wild type resumed growth, while the 
mutant remained strongly growth-inhibited (Fig. 1, Supplementary Table S1). The mutant survived at least four 
weeks after cold shift and maintained cellular integrity as was determined by electrolyte leakage assays of rosette 
leaves30. Growth parameters of wild type and reil1-1 reil2-1 were determined as proxies of relative biomass accu-
mulation at day 0, day 1, days 7 and 21 after cold shift using morphometric data (see Methods – parameterizing 
the objective function). Along with the morphometric data, the relative changes of metabolite pools and tran-
scripts were profiled30 (see "Methods" section for details).

The experimental setup and the availability of transcriptomics data and data on relative metabolite levels 
allowed the application of TC-iReMet229,31 to quantify the nominal and relative differences in metabolic fluxes 
of the wild type and the mutant (Supplementary Fig. S1). We refer to nominal changes as the sum of predicted 
flux differences, defined as the absolute value of difference between wild type and mutant flux, over all analyzed 
time points. The nominal changes may provide a skewed picture about the differences, particularly since the 
differences in fluxes between reactions in a given flux distribution differ in several orders of magnitude20. As a 
result, differences between fluxes that are anyhow small will be dominated by the differences between fluxes that 
take larger values. To remedy this issue, we also calculated the relative changes, defined as the sum of normalized 
flux differences over all analyzed time points, where the flux differences between wild type and mutant were 
normalized to their respective absolute maximum value over all time points. To apply TC-iReMet2 we used a 
bottom-up assembled model of A. thaliana, ArabidopsisCore23. This model consists of 549 reactions, of which 
229 are transport reactions and artificial reactions representing growth (biomass) and non-growth-associated 
maintenance functions (NGAM22).

Sum of predicted flux differences.  The overall flux distance of wild type compared to mutant across 
all predicted reactions differed before cold shift, with the wild type having a higher overall flux (Fig. 2A). This 
prediction was consistent with the slight growth advantage of the wild type at the optimized growth temperature 
(Fig. 1). The difference of fluxes between consecutive time points remained approximately constant during the 
common hibernation phase, up to day 7. When the wild type resumed growth in the cold, the overall predicted 
flux differences increased approximately 3-fold. When considering the sum of flux changes per time step for wild 
type (Supplementary Fig. S2) and mutant (Supplementary Fig. S3), we find similar changes for the wild type and 

min
vA ,vB ,ε

α||(vAt+1 − vBt+1)||
2
2 + β||(vAt+1 − vAt )||

2
2 + γ ||(vBt+1 − vBt )||

2
2 + ǫ �

p
i=1 εi

s.t.

SvAt+1 = SvBt+1 = 0,

vAmin ≤ vAt+1 ≤ vAmax ,

vBmin ≤ vBt+1 ≤ vBmax ,

(κt+1 − δ) optA ≤ vABiomass ≤ (κt+1 + δ) optA,

vBbiomass = optB,

∀i ∈ I : vBi qi
∏

j∈F(i)(r
min
j )|Sji | − εi ≤ vAi ≤ vBi qi

∏
j∈F(i)(r

max
j )|Sji | + εi ,

∀j ∈ {ℓ|χ(rℓ) = 1} : rmin
j = r̂min

j , rmax
j = r̂max

j ,

∀j ∈ {ℓ|χ(rℓ) = 0} : rmin
ℓ = minm: m∈{ℓ|χ(rℓ)=1} r̂

min
m , rmax

ℓ = maxm: m∈{ℓ|χ(rℓ)=0} r̂
max
m ,

∀i ∈ {η|H(qη) = 1} : qmin
i = q̂min

i , qmax
i = q̂max

i ,

∀i ∈ {η|H(qη) = 0} : qmin
η = minm: m∈{η|H(qη)=1} q̂

min
m , qmax

η = maxm: m∈{η|H(qη)=0} q̂
max
m ,

∀i ∈ I : 0 ≤ εi .
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Figure 1.   Morphometric analyses of reil1-1 reil2-1 and wild type after shift from optimized (20 ◦ C) to low 
temperatures (10 ◦C). Reil1-1 reil2-1 double mutants and A. thaliana Col-0 wild type plants were shifted at 
developmental stage 1.1029. Week-0 plants were grown at 20 ◦ C and assayed before the temperature shift. Rosette 
diameter, (A); leaf area, (B), (mean +/− standard deviation; n =3–10 plants), for original data and definitions 
of morphometric parameters refer to Schmidt et al. 20132. The R coefficients represent the Pearson correlation 
between mutant and wild type with respect to the Diameter (A) (P-value = 2.91−11 ) and Leaf area (B) (P-value 
= 1.53−5).

Figure 2.   Changes in predicted sum of Fluxes. Shown are the optimal values of the Euclidean distance 
(displayed on y-axis) at each corresponding time point or time step (displayed on x-axis). Distances were 
visualized by plotting the Euclidean distance value above each bar. (A) Displayed are the sums of flux difference 
between wild type and mutant at each corresponding time point. (B) Displayed are the sums of flux differences 
between wild type fluxes and mutant fluxes between each two time consecutive points.
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the mutant at the steps from 0 days to 1 day and 1 day to 7 days, with an increase in the change from day 7 to 
day 21 (Fig. 2B). However, we observe that the changes between day 7 and 21 are considerably larger in the wild 
type in comparison to the mutant, in line with the resumed growth of the former in the cold. In the following, 
we identify the reactions and pathways which contribute most to these observed differences.

Analysis of differential reactions.  We next considered the flux differences for each reaction in the meta-
bolic model. Additionally, we investigated reactions displaying large changes in flux differences at early time 
points, as the most interesting to understand the changes in the metabolic network functionality in response to 
the cold shift.

K‑means clustering of reaction behaviour.  We focussed on differential behaviour of all reactions between mutant 
and wild type, excluding transport reactions and artificial reactions to avoid bias due to lack of gene association 
for these reactions. To this end, we applied K-means clustering to group reactions (Supplementary Table S2) with 
similar relative flux changes, where the number of clusters was determined by the silhouette index (Supplemen-
tary Fig. S4). As a result, we identified K = 7 clusters of reactions (Fig. 3), with a maximum silhouette index value 
of 0.78, based on the relative flux changes (Fig. 3A). For comparison, we also consider the K-mean clustering of 
the nominal flux changes (Fig. 3B). To provide an intuitive description of clusters as well as reaction behaviour 
over time, we introduce a three-character pattern consisting of Up (U), Down (D) and No changes (N) if the 
respective relative flux differences increased, decreased or stayed the same between two time points. Using this 

Figure 3.   Overview of K-means clustering based on relative changes in reaction fluxes. K-means with 
Euclidean distance was used to identify seven clusters (C) of reactions (excluding transporters and artificial 
reactions). (A) Shows flux difference values normalized to the absolute maximum difference of each reaction for 
each time point. Corresponding nominal flux differences are shown in (B).
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classification method we found 17 from the 27 possible patterns displayed by 320 reactions. A total of 111 reac-
tions were classified by the most common pattern ’UUU’ making up roughly 35% of all observed patterns.

Overall, we mainly identified conserved flux differences in the first three time points with a shift in flux dif-
ference at day 21. This behaviour can be observed in the three biggest clusters. Cluster 5 consisted of 164 reac-
tions, which exhibit an increase of relative flux changes (UUU). In contrast, cluster 2, consisting of 46 reactions, 
exhibited mainly decrease of relative flux changes (DDD). This inverse behaviour is best captured by the function 
of RuBisCO as it exhibits strong flux changes for its carboxylation function (cluster 5) and oxygenation function 
(cluster 2). Reactions in cluster 3 mainly exhibited no changes (NNN). Similarly, cluster 6 summarizes reactions 
that exhibit constant positive flux change over all time points. The remaining clusters 1, 4 and 7 group reactions 
that exhibit an inverse shift in behaviour at day 21.

If we consider the top 10 reactions (Supplementary Table S3) with respect to relative and nominal changes 
directly after cold shift, we find H-serine dehydrogenase (HSerDHNADP_h (UDU), HSerDHNAD_h(DUD)), 
isocitrate dehydrogenase (iCitDHNADP_m (DDD), iCitDHNAD_m(UUD)) as well as 6-phosphogluconic 
dehydrogenase (6PGDHNAD_h(DUD)), glutamate dehydrogenase (GluDH1NADP_m(DUD)) and gluta-
mate synthetase (GluSNAD_h(UDD)) conserved among both measures. All these reactions are redox reac-
tions. Additionally, 6-phosphogluconic dehydrogenase (6PGDHNADP_h(UDU)), glutamate dehydrogenase 
(GluDH2NAD_m(DUD)) and glutamate synthetase (GluSNAD_h(UDD)) can only be found in the top 10 reac-
tions of nominal changes. Conversely, malate dehydrogenase (MalDH2NADP_c(UNN)), fructose-biphosphate 
aldolase (SBPA_h(UDD)) and sedoheptulose-biphosphatase (SBPase_h(UDD)) can only be found in the top 10 
reactions of relative changes.

Pathways enriched in reactions with highly altered fluxes across time points.  Metabolic reac-
tions do not function in isolation, so analysis and interpretation of the prediction is best carried out in terms of 
pathways. To identify the pathways that are changed over time, we used the metabolic pathways as defined by 
the underlying A. thaliana model23(for definitions of pathway membership refer to Arnold et al. 201423 (Sup-
plementary Table S4). We inspected and considered as relevant those pathways that were enriched with reactions 
displaying large predicted flux differences between wild type and mutant (Fig. 4). A reaction was defined to 
exhibit large changes, if its absolute sum of flux changes across all time points was above the median of consid-
ered reactions present in the model (excluding transport and artificial reactions, as specified above). To identify 
pathways enriched with such reactions we used the Fishers exact test with significance threshold P considering 
multiple hypotheses correction following the Benjamini–Hochberg procedure (Supplementary Table S5). Con-
sidering nominal changes, we found five pathways to be enriched for reactions with large changes. These path-
ways, ordered by decreasing P-value, with p < 0.01, include: the Calvin–Benson-Cycle (CBC), photorespiration, 
gluconeogenesis, leucine synthesis, and in addition with < 0.05 , glycolysis. Considering relative instead of nomi-
nal changes, we found pathways with p < 0.01 to include the Calvin–Benson cycle, glycolysis, gluconeogenesis, 
and in addition with p < 0.05 , photorespiration.

Flux sampling analysis with quadratic constraints.  We examined how specific these findings are by 
sampling the solution space given in optimal solution for each considered time point. As a sufficiently large 

Figure 4.   Pathways enriched in reactions with highly altered fluxes. Displayed are pathways significantly 
( P <= 0.05 ) enriched in regulated reactions based on (A) relative and (B) nominal differences. They are 
descending ordered according to their respective P-value. Size of the dots corresponds to the count of reactions 
present in the pathway. Bar size represents the negative logarithm of the P-value (x-axis).
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enough sample size gives information about range of fluxes as well as their probability, it gives the means to 
explore for alternative solutions and so for the uniqueness of the solution. In this case for each considered time 
point the proposed approach (see Methods - Flux sampling for TC-iReMet2) did not find a solution after 1000 
trials. Therefore, this analysis indicates that the findings are specific, in the sense that alternative optima are 
unlikely, and significant as there are no other possible flux distributions in optimal solution.

Discussion
Here, we proposed a computational approach, termed TC-iReMet2, and showed that it provides the means for 
time-resolved predictions of fluxes while keeping the simplicity of the constraint-based modelling framework 
and allowing for the integration of relative metabolomic, transcriptomic, and morphometric data. The findings of 
this study indicate that TC-iReMet2, a differential flux profiling method, can be used to identify differential fluxes 
between wild type and mutants over time. It is important to note that TC-iReMet2 uses the ratio of transcripts 
as a proxy for the ratio of enzyme abundance (following GPR rules). This is a strong assumption, knowing that 
post-translational modifications and translational efficiency have a large effect on both the abundances and ratios 
of proteins. However, since transcript ratios are used as one component of the constraints, such an approach 
provides a better coverage of metabolic networks than proteomics data14. With the advances in the proteomics 
profiling, TC-iReMet2 has the potential to provide further applications closer to the assumptions of the approach.

Moreover, the enzyme kinetic assumed in TC-iReMet2 does not consider saturation effects no presence of 
regulators (e.g. activators or inhibitors) of enzyme activity. Inclusion of a saturation effect, like in Michaelis-
Menten kinetic, would not allow casting the problem with only linear constraints, rendering application to 
large-scale networks computationally challenging. Similar problem arises when considering the inclusion of 
regulation, which is additionally problematic due to the lack of information on how the effect of the regulator 
is captured in the enzyme kinetic form used, particularly for plants32,33. One possible approach to overcome 
this issues is to use a power-law formalism34, which would allow the constraints to remain linear, at the cost of 
making assumptions about which regulators affect a reaction rate and with what strength. For this reasons we 
have decided that TC-iReMet2 is formulated based on mass-action-like kinetic, while allowing for discrepancy 
to model possible effects due to the mentioned saturation and regulation.

Applying TC-iReMet2 to the comparison of growth deficient reil1-1 reil2-1 double mutant to A. thaliana 
Col-0 wild type before and after cold shift strongly supported for the previously suggested theory stating that 
REIL mediated ribosome biogenesis deficiency feeds back into metabolism. Overall, we find that flux differences 
are more similar during hibernation phase, with strong flux redistributions occurring at day 21. This is evident 
from the data from the morphometric analysis (Fig. 1, Supplementary Table S6). Mutant and wild type plants 
grow similar but start to differ strongly between days 7 and 21 after temperature shift.

Even more important, TC-iReMet2 enables a way to compare wild type and mutant differential fluxes prior 
to cold shift and in the early hibernation phase. Thus, it allows for the analysis of the mutant system relative 
to wild type without being obscured by the effects of differential growth occurring between days 7 and 21 of 
the current experiments. When considering differential fluxes during the hibernation phase, we find that REIL 
mediated ribosome biogenesis deficiency might feed back into metabolism by altering the RuBisCO carboxylase 
to oxygenase ratio (Supplementary Table S7). Additionally, mutant associated deficiencies of the CBC and gly-
colysis fluxes combined with mutant-specific increase of all fluxes in the photorespiratory pathway support this 
hypothesis (Fig. 4). Overall the strongest mutant flux deficiencies appear to be in the RuBisCO (carboxylation), 
FNR, malate dehydrogenase and alanine transaminase reactions (Supplementary Table S5).

Predicted relative flux changes directly after cold shift appear to be small. However, one day after cold shift, 
the fluxes of reactions distributed across various pathways of central metabolism, including carbohydrate, organic 
acid and amino acid metabolism differ between mutant and wild type. What is common to these reactions is that 
they all require NAD(P) as a cofactor. These changes may indicate either an altered redox state of these cofactors 
or more likely differential use of NAD and NADP after cold shift in the mutant. For example, when considering 
the predicted inverse flux changes of the mitochondrial iCit dehydrogenase isozyme reactions, iCitDHNAD_m 
and iCitDHNADP_m, we can deduce in agreement with our metabolic model that the mutant switches to 
preferential use of NAD rather than NADP for this reaction. Inversely, a preferential use of NADP is predicted 
for 6-phosphogluconic dehydrogenase reactions, 6PGDHNADP_h and 6PGDHNAD_h, and for the H-serine 
dehydrogenase isozyme-reactions, HserDHNADP_h and HserDHNAD_h. Taken together with the additional 
indicated flux changes of glutamate synthetase (GluSNAD_h), and of the mitochondrial malate dehydrogenase 
(MalDHNAD_m), or glutamate dehydrogenases, GluDH1NADP_m and GluDH2NAD_m, we hypothesize that 
the reil1-1 reil2-1 double mutant defect is associated with a NAD/ NADP cofactor deregulation.

Generation of this hypothesis would not have been possible by stand-alone analysis of the transcriptome 
data alone. When we compare the results of TC-iReMet2 with a differential analysis of the transcriptomics data 
reaction per reaction following GPR rules, only the increase of isocitrate dehydrogenase (iCitDHNAD_m) flux 
in the mutant can be found overlapping with TC-iReMet2’s predictions (Supplementary Table S8). This indicates 
that TC-iReMet2’s integration of metabolomics and transcriptomics data provides added value compared to the 
sole analysis of either, thus, allowing new and additional support for hypothesis generation. Verification of these 
findings and hypothesis testing can be performed by subsequent studies and detailed quantification of NAD and 
NADP levels and their redox states under same and extended experimental set-ups. Altogether, the predictions 
from TC-iReMet2 suggest that altered use of NAD and NADP or of their redox state is an important mechanism 
by which REIL mediated ribosome biogenesis deficiency feedbacks into metabolism early after cold shift.

The current formulation of TC-iReMet2 has the potential to be further optimized, since the weighting param-
eters of the objective function are chosen based on the assumption that the consecutive increase between time 
points equals consecutive decrease of weighting. Validation of predictions gave robustness to this assumption. 
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Yet, the usage of different weights could be considered based on other insights from independent physiological 
measurements. In addition, rather than using relative transcriptomics data, relative proteomic data9 or enzyme 
activity measurements35 could be integrated to provide more reliable predictions that are less influenced or 
obscured by post-transcriptional levels of regulation than transcriptome data. Therefore, TC-iReMet2 improves 
existing constraint-based approaches for differential flux prediction by accounting for possible temporal physi-
ological change while also allowing for the integration of morphometric data.

Methods
Flux sampling for TC‑iReMet2.  Uniform flux sampling provides an unbiased characterization of the solu-
tion space. When enough flux distributions are sampled, they can be used to analyze their probability distribu-
tions or the range of specific fluxes. In this setup, flux sampling was performed using a random walk algorithm 
(Hit and Run).

A linear program with a single quadratic constraint is defined to find possible alternative solutions. For this, 
the solution space has to be defined. In addition to the defining constraints given by TC-iReMet2, a single quad-
ratic constraint, due to quadratic objective function TC-iReMet2 is based on, has to be introduced. It fixes the 
value of the objective function to be the same as in optimal solution, forcing the optimization to find alternative 
optima. Here, z denotes the value of TC-iReMet2’s objective function and z∗ the value found in optimal solu-
tion at the specific time point. Fluxes at the current time point are denoted by vt+1 , whereas vt denotes the flux 
distribution of the prior time point. We also allow for a small deviation, denoted by ζ , of the objective function 
at the optimum to counteract numerical problems. This way the solution space, containing all possible solutions 
at the time point specific optimum, is defined. To sample this space, steps are done as follows:

1. Select an initial point v0 in solution space (here, we used vt+1 in optimal solution, derived from the main 
optimization problem of TC-iReMet2 as v0 , since it must lie in the solution space).

2. Select a random direction vdirection pointing in solution space.

3. Find the extreme point in solution space described by vt+1 = v0 + � vdirection by solving a linear program with 
a quadratic constraint (due to the quadratic problem the main objective is based on): If there is no solution to 
the optimization problem given above, vdirection does not point into solution space. As a consequence, steps 2. 
and 3. are repeated until a solution is found.

4. If there is a solution for the optimization program at step 3, a new point at the edge of the solution space can 
be determined to form a line segment with the initial point.

max
�,vt+1,z

�

s.t.

SvAt+1 = SvBt+1 = 0,

vAmin ≤ vAt+1 ≤ vAmax ,

vBmin ≤ vBt+1 ≤ vBmax ,
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∀i ∈ I : vBi qi
∏
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min
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∏
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5. Randomly choose a point on this line segment to create a sample, which is in turn updated as a new initial 
point v0.

6. Repeat steps 1. to 5. until the defined number of samples is collected.

Numerical stability of TC‑iReMet2.  The multiplication of relative metabolite levels, substitution of 
unmeasured metabolite ratios with their respective minimum and maximum ratio value together with approxi-
mated enzyme ratios can lead to immense ratio constraints, which in turn could lead to numerical instabilities. 
Determining a maximum considered ratio constraint is therefore crucial to ensure numerical stability. To this 
end, we calculated the flux distributions allowing for a maximum ratio constraint ranging from 101 to 1021 
(includes the maximum possible ratio constraint in this setup) 10 times. Since each of those repeated measure-
ments resulted in the same flux distribution, we used Pearson correlation to measure similarity between each 
flux distribution to its prior and successive one. Overall, correlations between flux redistributions were very high 
being above 0.9. The highest correlated region, while having a feasible solution at each considered time point, 
was detected when allowing for a maximum ratio constraint of 108 . This leads to 252, 252, 253 and 189 ratio 
constraints made at each considered time point. Hence, no ratio constraint exceeding 108 was considered in this 
setup to ensure numerical stability.

K‑means clustering.  We used R statistical programming languages implementation of the K-means algo-
rithm with seven assumed clusters ( K = 7 ) and Euclidean distance as distance measure. The reason for select-
ing K = 7 is the following: We assumed there to be one cluster of no differences fluxes, one cluster displaying 
stronger wild type flux with a rise at 21 days and inversely the same for mutant. Two clusters of inverse behav-
iour where wild type or mutant flux is stronger at the first time points with a shift in sign at 21 days. Lastly, we 
assumed two clusters of consistent flux difference favouring wild type or mutant conserved over all time points. 
This line of reasoning was supported by the silhouette index analysis, which specify the number of clusters K = 
7 to maximize the value of the index.

Fishers exact test for enrichment analysis.  We used a right-tailed Fisher’s exact test to determine the 
enrichment in regulated reactions of a pathway. To this end, we defined a reaction as regulated if its sum of rela-
tive or nominal differences across time points was above its corresponding median of all considered reactions, 
else we considered the reaction to be unregulated. Therefore, we tested the association between regulated reac-
tions and pathways for both relative and nominal differences. This test was conducted with a significance level of 
0.05 through Matlab’s ’fishertest’ function. The resulting P-values were corrected for multiple hypotheses testing 
following the Benjamini–Hochberg procedure.

Parameterizing the objective function of TC‑iReMet2 and estimating fractions of biomass 
yield.  The analyzed time points differed in scale and therefore constituted a good case to test the assumption 
that a subsequent flux distribution is dependent on the previous one, therefore allowing for different magnitudes 
of physiological change. To model the dependency of flux distributions between time points, we assumed a 
steady decrease in the dependence as the interval between the points increases. More specifically, the following 
weights were used at each time point depicted by Table 1. Weighting of flux distribution dependency of scenario 
A and B to a prior one is denoted by β and γ respectively. Difference of flux distributions between scenario A and 
B at analyzed time point was weighted by α.

To model the fraction of biomass yield in scenario A to the biomass yield in scenario B at each specific time 
point κt+1 , we used four biomass proxy parameters (Supplementary Table S1), two diameter measurements of 
the A. thaliana rosette, diameter 1 and 2, the apparent planar leaf area, and leaf perimeter (i.e. the circumference). 
The morphometric parameters apparent planar leaf area and perimeter underestimate biomass accumulation, 
since rosette leaves could slightly overlap. We contrasted these estimates by using the sum of diameter 1 and 2 
as proxies of biomass accumulation. The diameter may slightly overestimate biomass because only the longest 
leaves are considered. Accordingly, we integrated the four biomass proxy parameters by giving equal weight to 
each one of them (Supplementary Table S1). In detail, the morphometric parameter measurements were averages 
separately for the wild type and the mutant. Ratios of mutant and wild type were calculated per time point based 
on the averages of biomass proxies. Finally, the resulting ratios across the four biomass proxies were averaged to 
obtain time point specific biomass fractions κt+1 . We allowed to a deviation δ of +/- 0.05 from the biomass frac-
tion κt+1 as these calculations are estimates. In absence of biomass estimates, e.g. at day 1, we assumed a steady 

Table 1.   Weight values of TC-iReMet2’s objective function and biomass fraction values at each analyzed time 
point.

Time point α β γ κ

day 0 1 0 0 0.77

day 1 0.34 0.33 0.33 0.77

day 7 0.7 0.15 0.15 0.76

day 21 0.9 0.05 0.05 0.51
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decrease of biomass fraction κt+1 between day 0 and day 7. Therefore, the ratio at day 1 is a seventh closer to 
the biomass fraction κt+1 of day 7 compared to day 0, resulting in a fraction of 0.77. All used biomass fractions 
κt+1 are depicted in Table 1.

Transcriptomics and metabolomics data used.  The transcriptomics data are already published and 
are uploaded to the Gene Expression Omnibus (https​://www.ncbi.nlm.nih.gov/geo/) and are available through 
accession number GSE101111. The metabolomics data are obtained from the Supplemental Table S1 of Beine-
Golovchuk et al., 201830. The morphometric data are obtained from Schmidt et al., 20132. All data are included 
in the provided GitHub repository (https​://githu​b.com/tcire​met2/TC-iReMe​t2) as well as in the Supplementary 
Tables to ensure easy access and reuse of the provided implementation.

Implementation and tools.  For implementation of TC-iReMet2 we used “MATLAB 2017b, The Math-
Works”36 in conjunction with the Tomlab optimization environment37. Statistical analysis and creation of figures 
was done with R38 programming language and R’s ggplot2 library39 and “MATLAB 2017b, The MathWorks”36. 
The implementation is available at https​://githu​b.com/tcire​met2/TC-iReMe​t2.

Code availibility
The transcriptome data are available from the Gene Expression Omnibus (https​://www.ncbi.nlm.nih.gov/geo/) 
through accession number GSE101111. The metabolome data are previously published among the supplemental 
data of Beine-Golovchuk and co-authors2,3.
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