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Pathogens of viral origin produce a large variety of infectious diseases in livestock. It is

essential to establish the best practices in animal care and an efficient way to stop and

prevent infectious diseases that impact animal husbandry. So far, the greatest way to

combat the disease is to adopt a vaccine policy. In the fight against infectious diseases,

vaccines are very popular. Vaccination’s fundamental concept is to utilize particular

antigens, either endogenous or exogenous to induce immunity against the antigens or

cells. In light of how past emerging and reemerging infectious diseases and pandemics

were handled, examining the vaccination methods and technological platforms utilized

for the animals may provide some useful insights. New vaccine manufacturing methods

have evolved because of developments in technology and medicine and our broad

knowledge of immunology, molecular biology, microbiology, and biochemistry, among

other basic science disciplines. Genetic engineering, proteomics, and other advanced

technologies have aided in implementing novel vaccine theories, resulting in the discovery

of new ruminant vaccines and the improvement of existing ones. Subunit vaccines,

recombinant vaccines, DNA vaccines, and vectored vaccines are increasingly gaining

scientific and public attention as the next generation of vaccines and are being seen as

viable replacements to conventional vaccines. The current review looks at the effects

and implications of recent ruminant vaccine advances in terms of evolving microbiology,

immunology, and molecular biology.

Keywords: ruminant viral vaccine, development of vaccine, attenuated vaccines, DNA vaccines, subunit vaccines,

inactivated vaccine, innate immunity and adaptive immunity, next generation vaccine technologies

INTRODUCTION

Vaccinology was founded with Edward Jenner’s discovery of the smallpox vaccine, permanently
transforming the history of medicine. He discovered that immunizing against a virus that is less
virulent yet antigenically related (Cowpox virus) protects against a virus that is more virulent
(smallpox virus) (1). The first century and a half since Jenner’s discovery was mostly devoted to
the Development and understanding of scientific fundamentals. Vaccinology’s marvels have been
shaped over the past five decades (1). The global eradication of smallpox, as well asmajor reductions
of other viral diseases such as polio, measles, mumps, and rubella, show that vaccination is the most
practicable and cost-effective tool for detecting, managing, and eradicating infectious diseases (2).
The usage of the “Plowright” vaccine, for example, is generally thought to have been crucial in
virtually eradicating the rinderpest virus from the globe. The Kabete O strain was passaged 90 times
in tissue culture to establish this attenuated vaccine (3, 4).
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Today’s most vaccines on the market are either inactivated
(killed) or live attenuated (weakened) (5). Many significant
veterinary diseases have been effectively addressed using
such methods. Both methods, though, have their own set
of shortcomings and future issues. Vaccines that have been
inactivated must be entirely safe and non-infectious (6).
Incomplete inactivation has been blamed in the past for
outbreaks in the area. Such issues should not happen if
the production method utilized more accurate inactivates,
inactivation processes, and innocuity checking. Furthermore,
since the production of such vaccinations necessitates the culture
of vast quantities of the infectious agent, there is a risk to
both the workers and the community (7). Vaccines made
in embryos, tissue culture, or culture medium can produce
unwanted “foreign” proteins that may reduce immunogenicity
or cause allergic reactions (8). Finally, inactivated vaccines’
presentation style and the quality of the immune response they
can evoke are restricted (7). The reaction to vaccination may
be small and short-lived, necessitating the use of adjuvants
or immunostimulants to improve overall immunogenicity and
efficacy. Attenuated vaccinations must be strictly controlled
and specified in order to have the desired level of protective
immunity without having severe disease effects in the host
animal. Also a remote possibility that the attenuated antigen
will revert to full virulence necessitates meticulous virulence
defense checks (9). Furthermore, other infectious agents could
be added to the vaccine antigen culture, which may contribute to
unintended side effects as the vaccine is used in the field. For these
and other reasons, scientists are progressively focused on new
vaccine technologies, including preventive efficacy, production
expense, and whether the infectious agent can be produced in
vitro. These vaccine technologies include split-product, subunit,
isolated protein, peptide, marker vaccine, live vector, and nucleic
acid approaches.

Vaccines for ruminants are used to accomplish a variety
of objectives. The key objectives are to provide cost-effective
methods for preventing and controlling infectious diseases in
cattle, improving animal welfare, and reducing the yield of food
animals (10). The widespread vaccination of wildlife, on the other
hand, has been remarkably regarded as a way of avoiding the
transmission of zoonoses (11). Furthermore, as a consequence
of widespread vaccine campaigns, the intake of numerous
ruminant medications has declined dramatically, reducing their
environmental influence, side effects, and contaminants in food
animal goods. To summarize, ruminant vaccinations have greatly
increased human well-being while still bolstering animal welfare.
The majority of newly licensed veterinary vaccines are either
killed or live vaccines that have been modified. Despite the
fact that widespread use of these vaccines has greatly enhanced
ruminant and public well-being around the world, they are
not without drawbacks and are far from perfect. Traditional
vaccinations are usually expensive to produce (inactivated
Vaccines), need adjuvants (inactivated Vaccines) and several
doses (live attenuated and inactivated vaccine) to cause sufficient
immunity, interfere with maternal antibodies (live attenuated,
inactivated, subunit vaccines), and have little or no protection
for newborns (12). Toxoid vaccines are created using pathogens

toxins. They provide protection against the disease rather than
the infection itself. Toxoids evoke a consistent humoral immune
response but little to no cell-mediated immunity (13, 14). Toxoid
vaccinations, in contrast to attenuated viral vaccines, do not
often last for long periods of time. Therefore, like other kinds of
immunizations, toxoid vaccines may need booster injections for
continuing protection. Depending on risk factors, revaccination
(booster) may be needed several times within a single year
(15–17). They may also trigger negative side effects as a result
of undesirable elements, such as endotoxins (18). Due to all
of these drawbacks, continuous researches are essential for the
development of vaccines and vaccination. The goal of the study
is to describe the existing methodologies used to construct
traditional ruminant vaccine, as well as the next generation
approaches for developing these vaccines. This article would not
go into great depth on vaccinations and vaccination in the global
animal healthmarket. Still, it will aim to concentrate on ruminant
animal health of concern.

HOST DEFENSE MECHANISM

Vaccination seeks to activate the immune system in such a
way that the host can develop an efficient (and potentially
long-lasting) memory immune response that can track and
eventually eliminate the pathogen once it has invaded the
body (19). This may be accomplished by administering an
antigenic stimulation (vaccine). An effective vaccine must be
seen as a non-self agent that, ideally, activates innate immune
responses before “instructing” adaptive and memory responses.
Unlike innate immunity, adaptive immunity recognizes foreign
antigens in a very precise way (20). Adaptive immunity is mostly
humoral and cell-mediated (14). Extracellular infections may
be avoided by strengthening humoral immunity. Extracellular
pathogens, which exist and reproduce outside host cells in
alimentary, urogenital, and respiratory tracts, are avoided by
host monocytes, neutrophils, and macrophages in the process
of being phagocytosed and killed. It is the generation of
particular antibodies and activation of the complement system
that are responsible for the primary effector function of host
immunity to regulate and remove the external infection. An
intracellular defense against pathogens is a complicated process
that depends on powerful cell-mediated immune responses (21).
During infection, pathogens normally remain in the host cell and
multiply within it. The immune system may interfere with any
of these phases, which may prevent the illness. Inhibiting the
adhesion and entrance of intracellular infections may be the most
efficient way of preventing disease (22, 23). An effective humoral
immunity may prevent the host cells without Fc receptors from
being infected by pathogens (24). Moreover, antibodies may bind
to pathogens and make them easier for phagocytes carrying
Fc receptors to take up. The internalization process that is
performed by phagocytes is detrimental to most infections and
leads to the breakdown of engulfed organisms (25, 26). Following
the host cell entrance, humoral immunity is unlikely to be
effective against the pathogen, therefore a robust cell-mediated
immunity is needed to constrain and eliminate the internalized
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FIGURE 1 | The cellular cooperation in the immune response. Following vaccination, advanced phagocytes present the processed antigens to naive B or T cells,

which can be activated if co-stimulatory signals are produced (derived from the interaction of PAMPs with cellular PRRs). When lymphocytes become stimulated, they

release soluble mediators and antibodies that cause inflammatory responses. In this simplified illustration, immune systems that may protect animals from invading

viral infections are illustrated. CTL that identifies pathogen-derived epitopes presented in combination with MHC class I on infected cells or antibody-dependent lysis

or opsonization of infected cells expressing pathogen molecules. Extracellular and intracellular pathogens on their way to infect other cells, can be attacked by specific

circulating antibodies and killed by lysis or agglutination or phagocytosed by macrophages and neutrophils. Assistance is required from pathogen specific CD4 helper

T cells both for antibody and CTL induction and that are activated after interaction with pathogen-derived epitopes presented in combination with MHC class II

molecules on the surface of MHC class II+ antigen-presenting cells. When pathogens infect antigen-presenting cells, they can be killed directly by CD4T cells and

CD8 CTL through the induction of mediators such as interferon gamma (IFN-γ), reactive oxygen and nitrogen species, and indoleamine 2,3-dioxygenase. Pathogen

toxins can be neutralized by circulating antibodies, resulting in decreased infection-related clinical symptoms.

pathogen. Inside the host cell, intracellular pathogens are
either held in membrane-bound vesicles (phagosomes) or the
cytoplasm (27).

As we see in Figure 1, Antigenic determinants can be
presented to näive (B and T) lymphocytes by infected
cells or specialized phagocytic cells (antigen-presenting cells
or APCs, such as macrophages and dendritic cells) (28,
29). As a general rule, antigens from vesicular intracellular
pathogens are processed and presented in the context of
major histocompatibility complex (MHC) class II molecules to
activate näive or reactivate memory CD4+ T-cells (30, 31).
Antigens of cytoplasmic intracellular pathogens are processed
and delivered to CD8+ T-cells through the class I processing
and presentation pathway (32). Although it is known that
antigens that are produced outside of cells (exogenous) may be
presented through the class I pathway, it has been shown that
this may be achieved by linking antigens to various peptides,
thus influencing the presentation of an antigen by a certain
MHC molecule (33). CD4+ T-cells are powerful effectors, and
CD4 failure is connected to increased vulnerability to different
diseases. CD4+ T-cells play a crucial role in both the induction
(antigen recognition and T-cell activation) and effector stages
(cytokine production and cytosolic activity) of the immune
response (34). Additionally, they offer assistance with pathogen-
specific B-cell cloning and differentiation, and they have a large

impact on the generation of antibodies by B-cells. Additionally,
CD4 assistance is required for CTL (cytotoxic T-lymphocyte)
activity induction and in particular for maintaining CD8 T-
cell responses (35). The presence of virus-specific cytotoxic T
cells is widely acknowledged as being necessary for the immune
system to manage viral infection (CTL) (36). Dendritic cells
and other professional antigen presentation cells activate CTL
by processing viral proteins that are generated endogenously or
taken up from infected cells through apoptosis (crosspriming)
(37). Following the growth of a viral clone, the virus-specific
CTL may begin killing infected cells by using perforin- and/or
Fas-dependent pathways, thereby halting further viral particle
creation. The death of the infected cells is completed in <4 h,
after the presentation of viral peptides on the MHC class I
molecules that is seen on the infected cell surface (38–40).
This assault happens in conjunction with CTL’s production of
cytokines and chemokines that are antiviral. Again, in cellular-
mediated immune responses to foreign antigens, CD8+ T cells
play a crucial role (41). In vitro, it was shown that co-stimulating
pure CD8+ T cells promotes de novo CD4 molecule production
and that ligation of CD4 on this cell type regulates CD8+ T
cell activity (42–44). CD4 expression on CD8T lymphocytes
influences cytotoxic T lymphocyte activity and is necessary for
effective cell-mediated immunity against viruses and alloantigens
in vivo (45–47).

Frontiers in Veterinary Science | www.frontiersin.org 3 November 2021 | Volume 8 | Article 697194

https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/veterinary-science#articles


Choudhury et al. Ruminant Viral Vaccine Development

Pathogen-associated molecular patterns (PAMPs) bind to
intracellular PRRs (Pattern recognition receptors) and trigger
phagocytic cells by inducing NFκB-mediated gene transcription
of many co-stimulatory molecules, pro-inflammatory cytokines,
and chemokines, as well as IRF-mediated gene transcription
of type-I interferons (IFNs) and other cytokines such as IL-
1β and TNF-α (48–50). NK cells express functional TLRs
specifically for detecting viral PAMPs (51). IFN-γ, which is
secreted by activated lymphocytes such as CD4T helper cell
type-1 (Th1) cells, CD8 cytotoxic T cells, natural killer (NK)
cells, natural killer T (NKT) cells (52) can increase macrophage
phagocytic activity and antigen presentation through mature
dendritic cells (DCs), which are an important part of the innate-
adaptive immunity bridging mechanism (53). DCs’ capacity
to signal naive lymphocytes can determine whether or not
these cells are involved in fighting the virus. Vaccines based
on attenuated viruses or replicating live virus vectors take
advantage of this point rather than vaccines focused on inert
antigens. The effectiveness and severity of adaptive responses are
greatly improved when innate immune responses are triggered
(inactivated virus or subunit vaccines) (29). Owing to their
vital role in regulating the immune response, antigen targeting
of dendritic cells, or APCs, has recently become a major
priority for specific immune stimulation to improve vaccine
efficacy and other immunotherapy forms (54, 55). When naive
lymphocytes interact with DCs, clonal expansion of B and
T cells capable of recognizing the same antigen arises, the
immune response becomes more specific (56). As a result of the
vaccine activation, a pool of advanced lymphocytes including
memory and effector cells will be expanded. In response to
infection and viral antigen encounters, the secondary response
will be greatly improved, gradually contributing to protection
and long-term immunity through specific effector and memory
cells (14). B cells choose antigen experienced CD4T cells to
become memory and start an organized genetic program that
preserves memory CD4T cells throughout life of the individual
(57). B cells collect less antigens during the clearance of an
infection, and that makes previously antigen-exposed CD4T
cells become dormant. Without antigens, the resting state with
minimal energy expenditure and multiplication keeps memory
CD4T cells alive in mice almost indefinitely (58). Low levels of
antigen presentation may be a critical strategy for regulating CD4
memory T cell long-term survival and preventing cross-reactivity
to autoantigens, and hence autoimmunity (59). The issue of
precision is vital to a vaccine’s efficacy. It can be resolved by
choosing a suitable antigen fraction, whole antigen, or antigens
of choice, as well as remembering the memory lymphocyte pools
developed during the primary responses after vaccination (60).
Determining the correlates of protective immunity following
infection, such as related epitopes that elicit neutralizing
antibodies and primary T-cell epitopes liable for helper or
cytotoxic roles, is one of the logical methods for vaccine design
(61, 62). This knowledge would ideally come from studies on
the pathogenesis of viral infection in the target species for which
the vaccine is being developed. These experiments, on the other
hand, are much more complex to conduct than those involving
experimental animals such as rodents (mainly due to the genetic

diversity of the outbred species, the lack of reagents and markers
for cell phenotype characterization, and the limitation in the
number of animals used for experimentation). However, in
some cases, the pathogenesis of other animal models of disease
(primarily rodents) is sufficiently similar to that of the target
species to include valuable information about protective immune
mechanisms. Following the accumulation of data gathered over
decades of viral research, it is apparent that successful immuno-
prophylaxis can be accomplished by triggering an immune
response against surface antigens expressed on virions and virus-
infected cells for viruses with less complicated pathogenesis. In
order to produce an efficient immune response to a pathogenic
agent or an immunization, both the innate and adaptive immune
subsystems are required. Furthermore, successful vaccinations
must produce effector cells for the present infection and memory
cells for future infections with the pathogenic agent, resulting in
long-term activation of both the humoral and cell-mediated arms
of the adaptive system as in most viral infections induction of
both humoral and cellular immunity is important for protection
(14, 63). Some viruses (such as poxvirus, herpesvirus, and
lentivirus) have more complicated pathogenesis (i.e., persistence
activation, replication in privileged immune tissues, immune
escape processes, and recruitment of hazardous host immune
responses) and need a vaccine that elicits specific T-cell responses
in addition to neutralizing antibodies (29).

RUMINANT VIRAL VACCINES

While in their historic function in agricultural research and
education, ruminants are considered to be essential. These
ruminants are currently also utilized in investigations in
molecular biology, genetic engineering, and biotechnology for
applications in fundamental science and agricultural research
and therapeutic usage. Public concern and curiosity in the welfare
of these species and the biology and behavior of the animals
have persisted and are reflected in updated husbandry and
management techniques. But, several viruses like Foot andmouth
disease virus (FMDV), Peste des petits ruminants virus (PPRV),
Bovine viral diarrhea virus (BVDV), Bluetongue virus (BTV),
Bovine herpesvirus type 1 (BHV-1), Capripox virus, etc. cause
fatal diseases in ruminants having a great negative impact on
both socio and economic condition. When there are no broad-
spectrum antiviral pharmaceuticals usable, the only methods
for avoiding or managing virus infections are vaccination and
hygienic measures to reduce exposure. Some of OIE’s notifiable
diseases and their traditional vaccines are Live attenuated for
BTV, BVDV, LSDV, PPRV, SPV (64–71) and inactivated for
FMDV, BVDV, SPV (67, 70–72).

Viruses (particularly RNA viruses) are extremely variable
consisting of large numbers of variant genomes and through
mutation they alter the nucleotide sequence of the genome. Viral
replication constantly produces mutants, and their frequency of
occurrence changes as replication progresses (73). One of the
example of this issue is Sars-CoV infection (74). Viruses evolved
several techniques to protect infected cells against CTL (cytotoxic
T-lymphocyte) assault. Interference with the peptide-presenting
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FIGURE 2 | Biotechnological approaches to vaccine development. The antigen-coding gene is isolated and either expressed and extracted from a protein-production

device or directly expressed by the vaccine receiver after injecting an engineered plasmid or a live vector. To extend the immune response, prime-boost techniques

use a variety of antigen distribution mechanisms. The method with reverse genetics Attenuated vaccines are made with cell passage, whereas inactive vaccines are

made with heat or chemical reagent.

pathway and viral epitope mutation are among the reasons for
this issue (75). Viruses with multiple serotypes are responsible
for several viral infections (e.g., FMD virus, bluetongue virus,
and influenza viruses). As a consequence, many existing virus
vaccines are often unable to cope with the most current strains
in the region, necessitating the Development of new ones based
on field strains that have recently caused outbreaks. For decades,
the animal health industry has created a range of standardized
live and inactivated virus vaccines that have been used in routine
vaccine procedures for pets and livestock. The industry is seeing
an influx of rationally formulated and subunit vaccines, and
this segment will concentrate on these “second-generation” viral
vaccines (summarized in Figure 2 and Table 1).

LIVE-ATTENUATED RUMINANT VACCINE

Similar to the first human smallpox vaccination, certain live
veterinary virus vaccinations induce minor infections of live

cells from non-target hosts or are attenuated by passage across
several cell line cultures or chicken embryos (eggs) (76). Random
mutations are often used to establish attenuated viral strains,
which are then chosen for decreased virulence (77). These
vaccines can multiply and induce cellular and humoral immunity
without using an adjuvant since the live organism can also infect
target cells (78). Live drugs often benefit from being easy to
administer, whether in drinking water, intranasally, intraocularly,
or otherwise. They do, however, carry the possibility of latent
virulence and reversion to pathogenic wild forms, as well as
being a possible cause of pollution in the ecosystem. Although
current regulatory systems demand data to assure these matters,
challenges may emerge in the sector. Live virus vaccinations
were crucial in the effective prevention and eradication of
diseases (79).

Many of the Peste des petits ruminants (PPR) vaccine virus
genes have attenuating mutations, but none are sufficiently
debilitating to trigger intense pressure for reversion. The
PPR vaccine is thought to be relatively safe, with no
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TABLE 1 | OIE’s notifiable disease and licensed vaccine.

Diseases Virus acronym Host Available vaccine References

Bluetongue BTV Cattle, Sheep, Goats, Buffalo, Deer Live Attenuated (66)

Foot and mouth diseases FMDV Cloven-hoofed animal Inactivated (BEI) (72)

Bovine viral diarrhea BVDV Cattle Inactivated/Attenuated (67, 69)

Lumpy skin disease LSDV Cattle Attenuated (68)

Infection with pestedes petis ruminants virus PPRV Sheep/Goat Attenuated/Recombinant capripoxvirus (64, 65)

Sheep pox and Goat pox SPV Sheep/Goat Inactivated/attenuated (70, 71)

immunosuppressive impact on the host (80–82). While single
point mutations in the polymerase gene have been shown
to trigger sound attenuations, the high incidence of random
mutations in RNA viruses raises the likelihood of reversion
to virulence. As a result, various attenuating mutations spread
across the genome are likely to be needed for safe live viral
vaccines (83–85).

The bovine herpesvirus type 1 (BHV-1) causes contagious
bovine rhinotracheitis (IBR), infectious pustular vulvovaginitis
(IPV), and infectious balanoposthitis (IBP), as well as
conjunctivitis, encephalomyelitis, mastitis, enteritis, and
miscarriage, and vaccination is an essential part of preventive
and eradication programs (86). In multiple herpesviruses, the
thymidine kinase (TK) gene has been related to virulence,
and deletion or insertion of the TK gene results in a stable,
attenuated mutant. TK-BHV-1 vaccines, on the other hand, have
been linked to dexamethasone-induced lag and reactivation.
Attenuated vaccine strains have been generated by deleting
BHV-1 glycoproteins such as gB, gC, gD, gE, gG, and gI, which
are responsible for attachment, penetration, and cell-to-cell
contact (87). It was discovered that knocking out both TK and
gC protectagainst infection with wild-type BHV-1, and that a
single glycoprotein gG, gI, and gE, as well as a double mutant
of gI/gE, have attenuated the effect of a single glycoprotein
gG, gI, and gE. Due to the poor immunogenicity of gI and
gI/gE deleted mutants, only gG and gE deleted mutants have
been proposed as vaccine candidates (88–90). In another
research, the safety of the BHV-1 mutant with a deletion in
glycoprotein E gene in calves was demonstrated. Intranasal
inoculation of glycoprotein E gene deleted BHV-1 resulted in a
100-fold reduction in viral replication, shorter virus shedding,
and overall reduced virulence, with no impact on neutralizing
antibody production, according to immunogenicity findings
(89, 91). A vaccine candidate with multiple deleted genes was
evaluated for safety and efficacy (glycoproteins E and G and
US2). Live-attenuated marker vaccines that differentiate between
vaccinated and naturally infected animals have been developed
using gene deletion techniques (92, 93). BVDV is a ruminant
pestivirus that is very widespread. Subclinical manifestations,
malnutrition, immunosuppression and leukopenia, congenital
anomalies, infertility, and digestive tract erosions are among
the risks (mucosal disease) (94). As a result, BVDV causes
significant economic losses to the cattle industry by lowering
reproductive success and milk yield and raising the prevalence
of other infectious diseases and mortality (94). Vaccination has

been commonly used in several BVDV surveillance programs
in several nations (67). Live vaccinations have the potential to
trigger transplacental diseases in pregnant animals and can even
have immunosuppressive properties (69, 95–98).

INACTIVATED OR KILLED RUMINANT
VACCINE

In comparison to live vaccines, inactivated or killed virus
vaccines are generally more stable and may not be subject to
virulence reversion; nevertheless, their inability to enter cells
and cause cytotoxic T cells makes them less immunogenic (14,
99). As a result, strong adjuvants and multiple treatments are
normally necessary to achieve the desired level of protection,
even though they are usually mainly effective in treating clinical
signs rather than infection (100, 101). Inactivated adjuvanted
vaccinations are often more prone to induce inflammatory
illnesses, allergic conditions, and sarcomas at the injection sites.
Heat or chemicals are widely used to inactivate viruses (e.g.,
formaldehyde, thiomersal, ethylene oxide, and propriolactone)
(102). These vaccines are more costly to produce due to higher
manufacturing costs and the need for adjuvants. Inactivated viral
vaccines for a wide range of viral diseases have been available for
several decades and are still being developed for some recently
emergent diseases (103). The creation of improved adjuvanted
formulations to counteract maternal antibodies’ effects on young
animals has been the subject of much recent research in this
field (104). Inactivated vaccines for various infectious diseases
must be updated regularly to ensure that they include the correct
serotypes (105).

The use of cross-linking agents (e.g., formaldehyde,
glutaraldehyde, aldrithiol, or 2,2/-dithiodipyridine) for vaccine
production is plagued by two primary disadvantages. The
first is the possibility of aggregation, which may result in
antigenic epitope disruption or alteration, potentially accounting
for the vaccines’ decreased immunogenicity, which typically
requires two or three booster doses to maintain sufficient
and long-lasting levels of protective immunity (106, 107).
Another concern is the risk of insufficient inactivation, which
could lead to disease exacerbation if partially (or suboptimal)
induced immunity cooperates with infectivity through pathways
such as antibody-dependent enhancement (ADE) (108).
Virus complexed with non-neutralizing antibodies will attack
monocytes or macrophages (cells with Fc-receptors) in this
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case, a process close to those seen in dengue virus infections
(109). Finally, inactivated vaccinations face the challenge of
solving the distinction between sick and vaccinated animals
without interfering with surveillance diagnostics. Although
formaldehyde primarily modifies proteins, propiolactone (BPL)
and binary ethylenimine (BEI) primarily change DNA or
RNA so that BPL can retain high immunogenicity throughout
virus inactivation (110). However, certain amino acids, such
as cysteine, methionine, and histidine, have been documented
to trigger BPL to respond so that these protein modifications
can influence BPL vaccines’ immunogenicity (111). On the
other hand, BEI has been also found to bind to proteins
(112). This substance is widely used in the formulation of
vaccines to inactivate the virus that causes foot and mouth
disease (FMDV) (72, 113, 114). About this, inactivated vaccines
remain a popular type of vaccine development (for both
human and veterinary use), thanks to the efficacy of adjuvants
(primarily aluminum salts) in vaccine formulations, which help
to overcome the key problem of reduced immunity (115). In
reality, other inactivation techniques, such as hydrogen peroxide
or protonating compounds like diethylpyrocarbonate (DEPC),
can profit from this technology (29). Hydrogen peroxide can
inactivate all DNA and RNA viruses (vaccinia virus) while
causing minimal disruption to the antigenic structure, reducing
immunogenicity (116). Surprisingly, this inactivation method
enabled vaccines to elicit humoral (neutralizing antibodies)
and cellular immune responses targeted at CD8+ cytotoxic
T-cells (117). The infectivity and pathogenicity of the vesicular
stomatitis virus (VSV) was said to be eliminated when a histidine-
protonating agent like DEPC is used (118). Despite advances in
a variety of innovations for improving immune responses, the
traditional inactivation approach is still widely used to develop
most vaccines for ruminant use, in part because producers must
closely balance the costs of adapting their current production
methods to new technologies with expected profits. Other
popular physical inactivation techniques necessitate exposure
to various types of radiation, such as microwave, chemical, or
ionizing radiation. UV radiation is one of the most often used
techniques in the manufacture of human vaccines (119–121).

SUBUNIT VACCINES AND VIRUS-LIKE
PARTICLES (VLPs)

Subunit vaccines include a component of the target pathogen
which evoke an immune reaction that is unique to that
section (122). While baculovirus-expressed Rinderpest virus
(RPV) “H” and “F” proteins were used as antigens for subunit
vaccines, they did not provide protection in cattle against
virulent RPV despite eliciting a robust neutralizing antibody
response (123). However, virulent virus challenge protection
was reached when baculovirus-expressed H protein was inserted
into immunostimulating complexes (ISCOMs) (124). Given
that ISCOMs are considered to elicit a cell-mediated immune
response, it’s possible that the cell-mediated immune response is
a key factor in triggering a protective immune response against
morbilliviruses (125).

VLP vaccines are virus-like particles (VLPs) that lack
replicative genetic material but enable antigens to be presented
in a replicated, ordered sequence similar to that of a virus,
boosting immunogenicity (126, 127). Owing to their similarities
to native viruses in terms of molecular scaffolds and the lack of
genomes, VLPs can effectively trigger both humoral and cell-
mediated immune responses without the use of an adjuvant
(128). Although in some cases VLPs do not require adjuvant,
they typically necessitate the incorporation of adjuvant in the
formulation to be immunogenic (18, 101, 129). However, all
of this work has yet to be put into practice in a commercial
vaccine. Using a recombinant baculovirus that co-expresses the
PPRV (Peste des petits ruminants virus) H, N, and M proteins,
PPR virus-like particles (VLPs) may be budded from insect cell
membranes (130). These VLPs were discovered to elicit powerful
virus-specific neutralizing antibodies in mice, suggesting that a
VLP-based vaccine candidate for PPR may be created (131). It
was demonstrated that the antibodies specific to the F and H
proteins were produced in experiments on goats using PPRV
VLPs. The goats were three times immunized with 150 or 300
µg VLPs or 105 TCID50 Nigeria 75/1, while the control goats
were immunized with either PBS or alum adjuvant alone. After
the third immunization, all goats immunized with VLP and
PPRV Nigeria 75/1 produced significant levels of antibodies
against PPRV F, H, and N proteins, while none of the goats
immunized with PBS or alum adjuvant alone exhibited an
immunological response. These findings indicated that VLP
immunization resulted in substantially higher levels of serum
neutralizing antibodies than PPRV Nigeria 75/1 immunization
in goats (131). Again, IL-4, IL-10 and IFN-γ were measured in
goats after vaccination with 150 or 300 µg VLPs and control
goats were treated with PBS or alum adjuvant alone. IL-4, IL-10,
and IFN-γ were significantly higher while goats were immunized
with 300 µg VLPs than control. Interestingly, IL-4 and IL-10
levels were higher while immunized by PPRV Nigeria 75/1 than
the control animals or immunized with VLPs, whereas IFN-γ
levels in animals immunized with 300µg VLPs were substantially
lower. IFN-γ concentration in VLP-immunized animal serum
were higher, suggesting that VLPs stimulated a cellular immune
response in goats. These findings show that VLPs trigger a strong
immune response against PPRV infection in small ruminants,
suggesting that PPRV VLPs may be used to develop a PPRV
vaccine (131).

Bluetongue virus (BTV) VLPs consist of VP3, VP7, VP2,
and VP5 proteins. These proteins are expressed in insect
cells using baculovirus expression (132–136). A serotype 1, 2,
10, 13, and 17 cocktails with VLPs protected against all five
serotypes and partly protected from additional serotype types
(137). Large scale sheep experiments with 50–200 sheep each
trial demonstrated protection against homologous challenges by
the VLP vaccine (138). Despite all these efforts and promising
findings, VLPs were not produced in that period. More likely,
inactivated BT vaccinations on the market are considerably
cheaper and also safe to manufacture (139). Protein and VLP
in vegetation production have become more popular and cost-
effective alternatives for artificial protein synthesis of complicated
high-value proteins (140).

Frontiers in Veterinary Science | www.frontiersin.org 7 November 2021 | Volume 8 | Article 697194

https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/veterinary-science#articles


Choudhury et al. Ruminant Viral Vaccine Development

In research, E2 glycoprotein and Erns have been utilized
to develop recombinant vaccines to prevent bovine viral
diarrhea BVDV illness (98). BVDV-VLPs consisting of dimerized
viral proteins E2 and Erns, and VLPs consisted of spherical
particles of ∼50 nm in diameter (141). Mice vaccinated with
15 µg of ISA201-adjuvant VLPs produced increased E2-
specific antibodies such as IgG, IgG1, and IgG2a and increased
neutralizer activity in BVDV to control (142). Stimulation of
splenocytes from VLP-immunized mice resulted in substantially
higher numbers of cells of CD3+CD4+T and CD3+CD8+T.
Furthermore, the proliferation and production of Th1-associated
IFN-γ and Th2-associated IL-4 were significantly increased as
opposed to the non-stimulated control group of the splenocytes.
These results showed that BVDV-VLPs elicited BVDV-specific
humoral and cellular immune responses to mice effectively,
indicating a promising potential to create BVDV-VLP-based
vaccines for BVDV infection prevention (142). Again, a
shortened form of E2 glycoprotein (tE2) of BVDV has been
expressed in tobacco plants (143). The construct was improved
with a signal peptide to guide the protein into the plant secretory
route, Kozak consensus sequence, and KDEL retention signal.
Recombinant protein accumulated up to 20 µg of tE2 per gram
of fresh leaves. Immunization of guinea pigs with 20 µg of tE2
induced neutralizing antibodies comparable to those induced
by a whole virus vaccine (143). Transgenic alfalfa plants were
created, which express tE2 of BVDV fusion into a single-chain
antibody that aims to deliver antigen cells (APCH-tE2) (144).
APCH-tE2 was stably expressed, and the antigen accumulation
in all the clones tested was comparable. The recombinant
vaccination produced high neutralizing antibody titers (145). In
addition, the experimental vaccine was assessed with two doses
of 3 µg APCH-tE2 injected in animals. The immunogen elicited
a robust antibody reaction that was neutralizing (146). More
importantly, they demonstrated full virological protection when
animals were challenged by virulent BVDV (146).

It was investigated that Foot andmouth disease virus (FMDV)
type O/IND/R2/75 polyprotein genes encoded recombinant
FMD virus like particles (VLPs) expressed in Sf9 cells and
adjuvanted with CpG and Poly I:C induced protective immune
responses in guinea pigs via FMDV (147, 148). Guinea pigs
vaccinated with VLP + CpG had significantly higher cell
mediated immunity (CMI) than traditional vaccine groups as
evident from higher IgG2 levels than IgG1. Although in VLP
+ CpG vaccine, humoral response was less than conventional
vaccines, but VLP + CpG had a greater lymphocyte stimulation
index than conventional VLP and VLP+ Poly I:C. The challenge
tests with 28 and 56 dpv showed 75% protection in VLP +

CpG vaccinated guinea pigs primary and boosted animals, while
50 and 62% protection in primary and boosted animals in
VLP + Poly I:C, respectively (149–151). Again, a recombinant
baculovirus clone encoding P1-2A-3C coding sequences of foot-
and-mouth disease virus (FMDV) serotype O (1) Manisa was
generated. FMDV structural proteins were expressed in Sf9
cells together with 3C protease, and the generation of virus-
like particles (VLP) was investigated. The recombinant protein
was prepared as a vaccine using an oil adjuvant, ISA 206,
and the vaccine’s potency was evaluated in cattle (152–154).

The potency value of the vaccine [PD (50)] was 5.01, and most
inoculated animals developed neutralizing antibody titers after
two vaccinations. CpG adjuvant in eliciting protection in VLP-
based FMD vaccinations was shown to be higher, followed by
ISA206 and Poly I:C in guinea pigs (155).

Development of chimeric virus-like particles (VLPs) with
FMDV epitopes has shown significant humoral responses in
the vaccinated pigs but only limited protection against the
homologous challenge. Recombinant adenovirus expressing the
highly conserved non-structural FMDV 3D protein and its ability
to elicit particular T-cell responses in a mouse model were
developed (156). Rangel G also presented two distinct prime-
boost methods—FMDV serotype C-specific chimeric VLP and
mice immunogenicity analysis (157).

Unfortunately, there is no commercially available ruminant
vaccine. Still, in the veterinary field, only porcine circovirus type
2 (PCV2) VLP-based vaccine is commercially available (Porcilis
PCV-manufactured by Intervet International, The Netherlands)
(158, 159). Some ruminant VLP vaccines are in clinical trials,
such as FMDV (152, 155, 157, 160), BTV (161, 162), and
RVFV (163).

DIVA (DIFFERENTIATING INFECTED FROM
VACCINATED ANIMALS) VACCINE

Even though effective conventional vaccines are available for a
few ruminant viral diseases, they cannot be utilized. Because they
would interfere with disease monitoring based on serological
testing and may cause a country to lose its disease-free status.
A classic example is FMD in sheep. Including the fact that
inactivated FMD vaccinations have been around for a long time
and are very good at controlling clinical illness (164). They are
not used in FMD-free countries because doing so will jeopardize
their position and trigger foreign commerce to be disrupted.
Conventional vaccinations, on the other hand, also decreased
epidemic incidence in enzootic regions, and vaccination was
used to monitor the disease’s dissemination in a outbreak in
the Netherlands (165). The vaccinated livestock, on the other
hand, were slaughtered to enable the country to rapidly recover
its FMD-free status. The ability to recognize and selectively
remove genes from a pathogen has contributed to the creation
of “marker vaccines” that, when paired with adequate diagnostic
assays, can distinguish infected from vaccinated animals (DIVA)
by distinguishing antibody responses induced by the vaccine (no
antibodies produced to deleted genes) from those induced during
wild-type virus infection. DIVA vaccinations and screening
testing are now available or in progress for a variety of diseases,
including infectious bovine rhinotracheitis (IBR) and FMD. IBR,
which is triggered by BHV-1 infection in livestock, has been listed
as a candidate for eradication from national herds around the
world, promptingDIVA to improve vaccinations and diagnostics.
The need for a marker (DIVA) vaccine for IBR in Europe was
fulfilled by the synthesis of a glycoprotein E (gE)-deleted vaccine
using traditional methods (166). Although the gE protein is not
necessary for viral replication, it is critical for viral intercellular
dissemination, especially in nerve cells. Basic diagnostic tests
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dependent on gE deletion have been developed using both
gE-blocking enzyme-linked immunosorbent assay (ELISA) and
PCR amplification techniques (167, 168). Because there are
serious concerns about the long-term viability of “stamping-
out” strategies in regions with high animal population density,
there is a lot of money being invested in DIVA vaccines for
FMD (169, 170). Since subunit antigen vaccines only offer a
limited number of epitopes to the immune system of the species,
they have been relatively unsuccessful, and several antigens
are normally needed for defense. The aim of current research
is to establish responsive tests (ELISA) for antibodies against
non-structural proteins and combinations of capsid proteins,
such as empty capsid delivered by different expression systems
(170). Bluetongue virus in sheep, Peste des petits ruminants,
and bovine viral diarrhea are only a few of the diseases for
which a DIVA solution is extremely beneficial but still in the
works (171–173).

VECTORED VACCINE

The discovery of new prophylactic and therapeutic vaccine
candidates has been aided by antigen/gene delivery systems (115).
A vector is used to transmit defensive protein(s) to the vaccinated
host’s immune system in vector vaccine technology (174). A wide
variety of vector types, both replicating (Adenovirus, Measles
virus, Pox virus-Vaccinia, Vesicular stomatitis virus) and non-
replicating (Adenovirus, Alphavirus, Herpesvirus, Pox virus-
NYVAC, Pox virus -MVA, Pox virus-ALVAC, and Pox virus-
FPV) are available (175). The proper vaccination for a given
situation will rely on the biology of the target pathogen, the
quantity and amount of gene inserts, and whether the vaccine
is to be used to prevent infection or provide protection to
those already infected. In certain instances, these vectors are
immunogenic and may present several antigens (176).

There are recombinant vaccines in which BTV antigen-
specific genes are carried by recombinant viruses and expressed
in the host. Since the viral vectors (carrier viruses) used for
this reason have been attenuated, they are deemed safe (177).
Furthermore, they have BTV antigen-specific genes (transgenes)
but neglect the parental BTV’s molecular regulatory elements. As
a result, the chance of gene segment reassortment with field BTV
strains is significantly reduced (178). Viruses that may express
the BTV VP2 gene, such as capripox, canarypox, vaccinia, and
herpes virus, have been used to make recombinant viral vector
vaccines with differing degrees of effectiveness (179, 180). Again,
Poxviruses replicate in the cytoplasm of infected cells, effectively
eliminating the possibility of genomic incorporation and viral
survival in the host DNA. It is also possible to accommodate large
pieces of foreign DNA. Any Poxviridae family members, such
as canarypox, capripox, and vaccinia viruses, have been used to
express BTV antigens (179, 181).

Herpesviruses have a dsDNA genome, which allows for a
massive transgene insert scale. Using an equine herpes viruses
construct, recombinant-vectored vaccines against BTV8’s VP2
and VP5 genes were developed. In experimental vaccination in
IFNAR (−/−) mice, these vaccinations only offered limited safety

during the challenge (182). Similarly, the BTV VP2 gene was
expressed in a non-pathogenic bovine herpes virus 4 (BoHV4)
strain, and recombinant BoHV4 -VP2 construct was created. The
experimental model- the IFNAR (−/−) mouse, showed limited
protection against the BoHV4 -VP2 construct (183).

Recombinant adenovirus vectors are being used as vaccine
candidates for a variety of viral diseases since they can trigger
T cell immunity. Replication-defective recombinant human
adenovirus serotype 5 (Ad5) expressing VP2, VP7, or NS3 BTV
proteins were given to IFNAR(–/–) mice and sheep. As evidenced
by humoral and cellular immune responses (BTV-specific CD8+
and CD4+ T cells), mice vaccinated with different rAd5 showed
full protection against BTV challenge (184). Sheep had mild
disease signs and lower viremia after vaccination with Ad5-BTV-
VP2 and Ad5-BTV-VP7, or only with Ad5-BTV-VP7 followed
by BTV challenge. Sheep were inoculated Ad5-BTV-VP7 formed
ample BTV-specific CD8+ T cells but there were no neutralizing
antibodies (185).

Another study used the VP7 core protein of BTV2 to cause
an immune response in sheep using a non-replicative canine
adenovirus type 2 (Cav-VP7 R0) or a leporipoxvirus (SG33-
VP7). Both recombinant antigens elicited a humoral immune
response in cattle. Only Cav-VP7 R0 elicited an important
antigen-specific CD8+ cell response, whereas both SG33-VP7
and Cav-VP7 R0 elicited an adequate antigen-specific CD4+
response. Sheep given the Cav-VP7 R0 vaccine is later exposed
to either homologous serotype BTV2 or heterologous serotype
BTV8. As determined by real-time PCR in plasma, the immune
response caused by Cav-VP7 R0 was insufficient to provide
protective immunity against BTV (Bouet-Cararo) (186). It only
gave homologous serotypes partial immunity. It implies that
the function of BTV core proteins in cross-protective immune
responses should be explored further (186).

Animals, including sheep, goats, and cattle, were protected
against a fatal challenge by receiving a single dose of a
recombinant adenovirus expressing the surface glycoproteins of
Rift Valley fever virus (RVFV) (187). Sheep were vaccinated two
recombinant replication-defective human adenoviruses serotype
5 (Ad5) expressing either the highly immunogenic fusion
protein (F) or hemagglutinin protein (H) from Peste des
petits ruminants virus (PPRV) by intramuscular inoculation.
PPRV-specific B- and T-cell responses were induced by both
recombinant adenovirus vaccinations. As a result, neutralizing
antibodies were detected in serum from vaccinated sheep (188).
In 2012, the United States Department of Agriculture (USDA)
approved conditional licensing to the Adt.A24 FMD vaccination
to protect cattle. The replication deficient Adt.A24 vaccine uses
a human adenovirus construct as a vector to deliver empty
capsids of A24 FMD strain to induce an immune response (189).
Previous investigations in bovine have demonstrated that the
Adt.A24 vaccine prevents FMD and FMD viremia 7 days after
first immunization, and combined with the ENABL R© adjuvant
being the most effective (190, 191). This vaccine does not have
a tendency to become virulent again, it doesn’t shed from
vaccinated animals to naïve ones, and it doesn’t provide a dairy
cow the ability to excrete the vaccine via her milk, thus it has a
64% effectiveness rate in clinical FMD (192, 193).
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DNA AND RNA VACCINE

Antigen production is induced in the host by DNA vaccines.
A plasmid containing a viral gene that can be expressed in
mammalian cells or a gene encoding a mammalian protein
that can be expressed in mammalian cells is known as a
DNA (or RNA) vaccine (121). The requisite genetic elements,
such as solid eukaryotic promoters for transcriptional control,
a polyadenylation signal sequence for stable and effective
translation, and a bacterial replication origin, are integrated into
a plasmid (194, 195). The plasmid is transfected into host cells
and transcribed into mRNA, which is then encoded, causing
the host cellular machinery to produce an antigenic protein
(196). The host immune system recognizes the expressed proteins
as foreign, resulting in the formation of cellular and humoral
immune responses (197, 198). Immunizing animals with naked
DNA encoding protective viral antigens would be useful for viral
vaccines in some situations (199) because it overcomes the safety
problems associated with live vaccines and vector immunity
while still allowing cytotoxic T cells to trigger and express the
antigens intracellularly (120, 200).

Early studies propose using a gene producing the VP4
protein of bovine rotavirus (BRV), which has been shown
to be efficient in generating a Th1-like immune response, to
combat viral infections in cattle (201). Later, it was found that
the plasmid expressing the envelope glycoprotein gp51 and
transmembrane glycoprotein gp30 of the bovine leukemia virus
(BLV) could generate an efficient cellular immune response (202).
Furthermore, researchers have discovered that the DNA vaccine
encoding fusion (F) gene from bovine respiratory syncytial virus
(BRSV) is capable of providing calf immunity against the disease
(203). It was reported that DNA immunization with gC gene
of bovine herpes virus-1 (BHV-1) may lead to neutralization
antibody and lympho-proliferative responses in cattle (204,
205). Furthermore, BHV-1 gB and IL-12 have been proposed
to improve CTL responses. Plasmid-based suppositories that
include the gD gene of BHV-1 help promote mucosal immunity
and also improve the immune responses of bovine CD 154 co-
stimulatory molecules connected to the gD gene (206, 207).
Additionally, it has been suggested that the gD gene is more
protective than the gC gene. In addition, the capacity of BHV-
1 VP22 protein to affect intracellular trafficking has been used
to enhance the effectiveness of a DNA vaccine expressing gD
gene (208). Another nucleic acid vaccine is now available that is
expected to prevent cattle from contracting bovine viral diarrhea
virus (BVDV). BVDV type 1 glycoprotein E2-expressing plasmid
DNA elicited virus-specific neutralizing antibodies (209). One
possible approach to BVD vaccine development is using the non-
structural protein NS3 to promote humoral protection (210).
It was reported that compared to the administration of DNA
or protein vaccines alone, the DNA prime boost regimens
were efficacious in the prevention of BVD in cattle (211). The
development of vaccinations for foot and mouth disease is being
advanced through the use of VP1-based DNA vaccines (113,
212). Plasmid DNA encoding the FMDV VP1 protein, followed
by boosting with a VP1 peptide conjugate, resulted in high
titers of neutralizing antibodies, indicating that the prime-boost

approach may be a critical component in the development of a
DNA vaccine against FMD (213). Amicroparticulate-based DNA
vaccine that codes for the T and B cell epitopes of the FMDV’s
VP1 has recently been produced (214).

VACCINE DELIVERY SYSTEMS

A successful vaccination is dependent on effective vaccine
administration. Most vaccinations are injected into the body
through subcutaneous (SC) or intramuscular (IM) routes. The
delivery of a hypodermic injection is linked with suffering and
agony, which may lead to a patient’s non-compliance and the
need for specialized staff. They are linked to the spread of
disease owing to the danger of needle-stick injuries or re-use of
infected needles. Problemsmay arise whenmass immunization is
required because of insufficient vaccine availability or limitations
in vaccine manufacturing (215, 216). Most vaccinations now
are administered into the subcutaneous fat or under the skin’s
muscle. Only a little amount of vaccinations are injected into
the viable skin (epidermis and dermis) (217–219). Dendritic
cells (DCs) in the tissues take up the antigen, digest it, and
deliver it to T lymphocytes in the draining lymphoid organs
via each of these routes of application. While DCs are sparse in
subcutaneous fat and muscular tissue, the dermis and epidermis
are heavily inhabited by various subsets of DCs. Therefore, by
using hypodermic injection, antigen delivery will avoid the skin’s
immune cells, which will result in a less effective vaccination.
As a result, the skin is an ideal site for vaccine administration
since vaccination at this site will evoke strong immune responses
at much lower doses of antigen than intramuscular vaccine
(220). Recent research shows that the nasal mucosa and the
gastrointestinal system may potentially be good sites for vaccine
delivery (221, 222). These alternative routes of delivery have
the potential to elicit immune responses that are qualitatively
different from those elicited by injected vaccines, or to stimulate
immune responses at these mucosal sites, allowing for more
effective defense against pathogens that enter through these
routes e.g., oral or nasal (18, 223). Disabled infectious single
cycle (DISC) viruses use alternative routes of delivery and these
routes have the potential to elicit immune responses that are
qualitatively different from those elicited by injected vaccines, or
to stimulate immune responses at these mucosal sites, allowing
for more effective defense against pathogens that enter through
these routes (224).

MOLECULAR BIOLOGY TECHNIQUES
AND BIOINFORMATICS ANALYSIS ARE
BEING USED IN THE PRODUCTION OF
NEXT GENERATION VACCINES

Pathogen genomic research and increased knowledge of
pathogenesis pathways have led to the discovery of new antigens
and the creation of recombinant veterinary vaccines. Viruses,
prokaryotes, and eukaryotes viruses have also been exposed
to whole-genome and draft sequencing (225, 226). These
advancements have also improved antigen discovery and
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heterogeneity classification amongst viral pathogens, which
generally have fewer than 10 genes, and eukaryotic pathogens,
which typically have >10,000 genes (227–229). Since relevant
antigenic structures may identify and produce recombinant
vaccines containing only the antigen needed to elicit protective
immunity, genome sequencing technologies, and methods for
screening a pathogen’s genome and proteome have greatly
improved antigen discovery performance. Whole-genome
fragments and the whole repertoire of encoding proteins
are often used in genomic repositories, allowing for vaccine
screening (106, 230).

Genetic sequencing and bioinformatics have led to a huge
quantity of genetic data on pathogens and their characteristics.
To match phenotypic characteristics to their genetic origin,
reverse genetics (RG) may be utilized. Genetic perturbations
are introduced into a gene of interest using different methods,
and the effects are studied utilizing phenotypic and functional
studies. In recent years, the technologies used in RG have
quickly developed from traditional techniques to the utilization
of clustered regularly interspaced short palindromic repeat
(CRISPR)/associated protein 9 (Cas9) technology, which is
revolutionizing genome editing procedures. RG has contributed
to the understanding of viral replication, transcription and
translation, assembly and budding, virus–host cell protein
interactions, identification and characterization of viral fitness
determinants, and investigation of the mechanisms by which
viruses counter host antiviral defenses. In the field of vaccine
production, recombinant DNA techniques and RG have allowed
targeted genetic changes in viral genomes aimed at attenuating
or neutralizing viral pathogenicity, as well as producing DIVA
vaccines to aid disease monitoring and epidemiological research.
Infectious clones of the transmissible gastroenteritis virus were
developed using RG and were able to produce immunity in
infectious bovine rhinotracheitis (231). RG has also been used
to develop vaccines against FMD (232) and the bluetongue virus
(233). Another use of RG is to create viruses that lack a critical
gene and therefore cannot replicate themselves in vaccinated
hosts, known as disabled infectious single cycle (DISC) viruses
(234). These viruses, upon entrance into a host cell, can
reproduce just once, triggering the host’s immune response and
making traditional infection impossible. The strategy has been
used in the development of bluetongue virus vaccines (224).

A reverse vaccinology (RV)method uses algorithms to analyze
the whole genome of pathogens, synthesizes their protein and
peptide antigens, and then performs in vitro research on them
prior to doing in vivo investigations (230, 235, 236). This program
and many others that identify T-cell and B-cell epitopes all need

a central software package, namely, epitope mapping software
(237–240). Vaxign is a web-based software for mapping both
MHC class I and class II restricted antigens that is publicly
accessible (www.violinet.org/vaxign/) (241). Other web-based
software that predicts MHC-I (http://tools.iedb.org/mhci) and
MHC–II (http://tools.iedb.org/mhcii) epitopes are also publicly
available (242). A total of 5–15 years of development time
was required for traditional vaccination methods, while the
RV method has reduced that time to 1–3 years. In an early
stage study, vaccine candidates were developed using RV for
Histophilus somni which is associated with the bovine respiratory
disease (BRD) complex and for which the available vaccines are
suboptimal (243).

CONCLUSION

Infectious diseases will continue to pose a major challenge to
the global economy and public health in the years ahead, as
shown by the spread of microbial pathogens such as FMDV,
PPRV, and BTV, as well as the emergence of drug-resistant
pathogens and the threat to bioterrorism. Ruminant vaccine
development programs have been given high priority due to
the huge economic losses caused by various ruminant diseases.
More oriented approaches for developing more protective
vaccines have benefited from the advent in molecular genetics
and better understanding of infectious disease immunobiology.
Identification of virulence factors and immunogenic antigens has
been important in the production of new vaccine generations,
which has been augmented by rapid advances in recombinant
vectors. A combination of these factors will almost certainly allow
for the Development and production of vaccines that are less
costly, more potent, safer, and simpler to administer.
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