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Myeloid-derived suppressor cells (MDSCs) are generated under biological stress such as
cancer, inflammatory tissue damage, and viral infection. In recent years, with occurrence
of global infectious diseases, new discovery on MDSCs functions has been significantly
expanded during viral infection and COVID-19. For a successful viral infection, pathogens
viruses develop immune evasion strategies to avoid immune recognition. Numerous
viruses induce the differentiation and expansion of MDSCs in order to suppress host
immune responses including natural killer cells, antigen presenting cells, and T-cells.
Moreover, MDSCs play an important role in regulation of immunopathogenesis by
balancing viral infection and tissue damage. In this review article, we describe the
overview of immunomodulation and genetic regulation of MDSCs during viral infection
in the animal model and human studies. In addition, we include up-to-date review of role of
MDSCs in SARS-CoV-2 infection and COVID-19. Finally, we discuss potential
therapeutics targeting MDSCs.
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INTRODUCTION

Coronavirus Induced Disease 2019 (COVID-19) caused by Severe Acute Respiratory Syndrome
Corona Virus (SARS-CoV)-2 started in the Hubei province, China in 2019 (1). In the past two years,
despite the efforts of many countries in response to the global pandemic situation, more than 260
million COVID-19 cases have been confirmed and over 5.2 million deaths have been reported to the
World Health Organization (2). Patients infected with SARS-CoV-2 show various pathologies
ranging from asymptomatic to mild, moderate, severe, and fulminant symtoms. Among them,
critical pathology is followed by complications such as respiratory failure, myocarditis, sepsis, and
various organ failures (3, 4).

It has been reported that the onset of COVID is not only directly affected by the virus, but also
affected by immune responses such as cytokine storm syndrome, neutropenia, and lymphopenia (5,
6). However, the main potential targets for therapeutic purposes in relation to these immune
mechanisms still remain challenging. Reduced function and depletion of CD8+ T cells were
observed in patients with severe symptoms of COVID-19 (7, 8), CD4+ T cells have been
reported to be important for patient recovery and protective immunity against SARS-CoV-2 (9, 10).
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So far, immunological studies for COVID-19 individuals have
mainly focused on innate and adaptive immune responses.
Several studies report how the induction of MDSC and its role
affect the progression of COVID-19 (11–14). Accordingly,
studies confirm the role of the MDSC subset in severity of
COVID-19 progression and provide potential therapeutic
targets for COVID-19 (15–17). Further research identifying
new biomarkers could be critical in developing therapeutics for
disease prevention and amelioration. In this review, we discuss
the latest studies focusing on the immunoregulating properties of
MDSC and with biomarkers that may influence the intervention
in treatment of COVID-19.
DYSREGULATED IMMUNE
RESPONSE IN COVID-19

Since the outbreak of COVID-19, numerous publications related
to immune responses and immunopathogenesis have been
reported. The pathophysiology of COVID-19 has been listed as
a complex state according to age, sex, pregnancy, presence of
underlying disease, etc. (18–20). In the innate immune system,
similar to Middle East respiratory syndrome (MERS)-CoV,
SARS-CoV-2 modifies the signaling of TRAF3 and RNA
sensor adapter molecules (MAVS) through proteins such as
PLpro and inhibits type I interferon (IFN-1) production (21,
22). Antagonism of IFN-1 production aids viral replication,
promotes release of pyroptotic products, and induces
additional inflammatory responses (23). Pyroptosis is a form of
programmed cell death within inflammatory cells (24) and is
mediated by the production of IL-1b during SARS-CoV-2
infection (25).

Severe COVID-19 patients showed impaired IFN-1 signaling
compared to mild patients, and developed an inappropriate
inflammatory state due to early delay in IFN-1 expression and
activation of pro-inflammatory cytokines (IL-1, IL-6, IL-8,
MCP-1, and CXCL-10) (26–28). In addition, there were high
viral titers and accumulation of monocyte-derived macrophages
and neutrophils in the lungs. This condition leads to a systemic
inflammatory response and cytokine storm syndrome via a
massive release of cytokines. In addition, the risk of COVID-
19 may increase or decrease differently depending on the number
and activity of natural killer (NK) cells. Healthy children have
been reported to have more NK cells than adults and the elderly
(29), which might explain why children are expected to have a
better defense against SARS-CoV-2. According to a recent study,
the number of NK cells in adults with severe COVID-19 was
reported to be low, and the activated form of CD56low NK cells
increased to generate cytokines (30, 31).

In terms of the adaptive immune system, inefficient innate
immune responses in SARS-CoV-2 infection lead to dampen
adaptive immune responses and exacerbate inflammation (32).
Pro-inflammatory cytokines induce the expansion of CD4+ and
CD8+ T cells, decrease regulatory T, and lead to activation of
Th1-type and B cells. When patients with underlying severe
disease are infected with SARS-CoV-2, the number of
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lymphocytes is decreased while the blood levels of CD4, CD8,
and regulatory T cells were also significantly lower than those in
patients with mild disease. At this time, monocytes, macrophages,
and T cells are accumulated in the lungs, and T cells migrate from
the blood to these tissues to regulate the depletion of blood
lymphocytes (23). In addition, a recent study showed that the
lymphocyte counts of children infected with SARS-CoV-2
remained at a steady normal level compared to adults, and thus
had less negative effect on immunomodulation (33).

Extensive studies on analyzing immune responses in COVID-
19 patients show that the number of T or B lymphocytes, DC,
NK cells, and HLA-DRhigh cells are reduced in patients with
severe symptoms (34–36). Additionally, severe COVID-19-
associated hyperinflammatory syndromes have been reported
that they originate from a host innate immune response (37).
Studies of transcriptome, proteomic, and epigenomics have
revealed a wide range of functional impairments, including
marked neutrophil hyperactivation symptoms in severe
COVID-19 (38–41). Collectively, COVID-19 caused by SARS-
CoV-2 is associated with a failure of innate and adaptive immune
system regulation due to changes in other immune cells
associated with a decrease in adaptive T cells. Although
the link between the immune systems is still only partially
explained, studies on MDSC, have been risen significantly and
may provide explanation for dysregulated immune responses in
COVID-19.
MDSC’s IMMUNOREGULATORY
FUNCTION IN VIRAL INFECTION

MDSC Phenotypes
Myeloid-derived suppressor cells (MDSCs) are defined as a
heterogeneous population of immature bone marrow cells that
suppress T cell responses, and was first described in a mouse
model of lung cancer in 1987. Together with myeloid progenitor
cells, they have the ability to suppress the immune responses at
the forefront of viral infection (42). It has been reported that
these cells have changed research fields related to cancer,
inflammation, and immune response over the past 30 years,
and even serve as a marker for distinguishing disease progression
(43–45). MDSCs are mainly classified into two distinct group–
neutrophilic/granulocytic (PMN)-MDSCs and monocytic (M)-
MDSCs (46, 47) (Table 1). Granulocytic MDSCs have multi-
lobed nuclei similar to polymorphonuclear cells, and monocytic
MDSCs have a single, round nucleus; therefore, they look similar
to monocytes (48). The morphological heterogeneity of these
cells depends on the expression of Gr1, and the Gr1-specific
antibody binds to both Ly6G and Ly6C, which are myeloid
lineage differentiation antigens. Granulocyte and monocyte
MDSCs of mice have phenotypes of CD11b+Ly6G+Ly6Clow

and CD11b+Ly6G-Ly6Chigh, respectively (49). Human MDSCs
are mainly identified as phenotypic markers Lin−HLA-
DR−CD33+ or CD11b+CD14−CD33+ (46). In early studies on
MDSC, the target of MDSC-mediated suppression was mainly T
cells. After that, research on MDSC was gradually expanded, and
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it was additionally reported that it modulates innate immune
cells such as NK cells, dendritic cells (DCs), and macrophages as
well as adaptive immune cells such as B cells (50–52).

Immunosuppressive Function of MDSCs
Soluble factors related to MDSC function include reactive oxygen
species (ROS), inducible nitric oxide synthase (iNOS), and
arginase-1. Each of these key mediators independently
attenuates the host immune response. Granulocytic MDSCs
mainly use ROS generated by NADPH oxidase to cause
immunosuppression. Monocytic MDSCs use iNOS to generate
nitric oxide (NO) (48, 53, 54). iNOS nitrosylates T-cell receptor
(TCR) together with arginase-1 to generate reactive nitrogen-
oxide species that inhibit T-cell or induce apoptosis (55).
Interestingly, both granulocytic and monocytic MDSCs utilize
the action of arginase-1 to deplete L-arginine, which is required
for T cell proliferation and function (56, 57). Effects of T-helper
(Th)1 and Th2 cytokines, such as interleukin (IL)-2, IL-4, IL-13,
and interferon (IFN)-g on aginase-1 led to the identification of
crosstalk between MDSCs and T cells (58–61).

MDSCs from hepatocellular carcinoma patients have been
shown to inhibit NK cell cytotoxicity and IFN-g release (62). This
was an arginase-1 independent, contact-dependent suppression
effect that required the expression of NKp30, a receptor for NK
cells. In the case of MDSCs expanded from tumor mice,
membrane-bound transforming growth factor-b1 (TGF-b1)
inhibited NK cell cytotoxicity, IFN-g production, and the
expression of the activating receptor NKG2D (63). In addition,
MDSCs cause differentiation of immature DCs in cancer and
limit the immune response by inhibiting the antigen uptake
ability of DCs (64–66).

During viral infection, similar increases in PMN- and M-
MDSCs are initially observed in acute and chronic infection
models, but rapidly return to baseline levels in acute cases. In
chronic infection, it has been reported that it takes quite a long
time to return to the baseline level. In the case of the mouse acute
infection model, the inhibitory activity of M-MDSC did not
appear at any time point. In the case of chronic infection model,
it became more prominent from the 7th day to the 14th day after
infection and decreased on the 30th day, but it was still detected.
Recently, it has been reported that the ER stress response is
essential for the inhibitory activity of M-MDSC in viral infection,
and it is known that the acquisition of the most potent inhibitory
activity is mediated by IFN-g signaling (67).
Frontiers in Immunology | www.frontiersin.org 3
Factors Involved on MDSCs Generation
Selective mediators have been shown to be responsible for the
generation of MDSCs. Prostaglandin E2 (PGE2) exerts
numerous biological actions, including anti-inflammatory and
pro-inflammatory and is a key mediator for MDSC generation.
Administration of PGE2 blocks DC differentiation and allows
myeloid progenitor cells to acquire the characteristics of MDSC
(68). In addition, anti-inflammatory mediators such as NOS2,
iNOS, indolamine-2,3-deoxygenase (IDO), and IL-10 are
secreted between PGE2 and cyclooxygenase 2 (COX-2), and
their function as MDSCs regulating immunosuppression has
been reported (69, 70). MDSCs suppress T cell effector function
via co-expression of arginase1 and NOS1. When they are added
to the co-culture of MDSC and activated T cells, T cell function
is completely restored (71). Since the expression level of PGE2 is
elevated when tumors form, the inhibitory effect of COX-2 is
considered to partially affect the reduction in MDSC production.
Among the many factors that can induce MDSC production,
IL-1b further stimulates the recruitment of MDSCs in the non-
tumor state (72). S100A9 increases the immunosuppressive
ability of MDSCs by increasing the expression of nuclear
factor-kB (NF-kB) dependent arginase by binding to the
receptor for advanced glycation end products (RAGE) (46, 73).

To date, MDSCs have also been reported in numerous non-
cancer pathologies, including viral, parasitic, bacterial, and
fungal infections (74, 75). The functional role of accumulated
MDSCs in most infectious diseases is to inhibit host defense and
regulate inflammatory cytokines such as TNF-a, IL-1b, and IL-6
(76). Some studies have also mentioned a detrimental role of
MDSC, but the study model, pathogen, disease stage, and T cell
ratio show different results (77–79). In relation to the study of
MDSC viral infection, induction of MDSC expansion of viruses
such as hepatitis B or C virus, Epstein-Barr virus, human
papillomavirus, influenza, and SARS-CoV-2 has been reported,
and these induce virus persistence; nonetheless, evidence of
MDSC’s tissue damage protective role has also been reported
in other studies (80–82). In these various inhibitory mechanisms,
the activity of MDSCs effectively interferes with enhancing
tumor and non-tumor immune responses (Figure 1).

The factors involved in the production and suppression of
MDSC in various disease states include stem cell factor (SCF),
HIF-1a, IL-6, macrophage colony stimulating factor (M-CSF),
signal transducer and activator of transcription 3 (STAT3),
myeloid-related protein S100A9, and IL-1b (51, 52, 70, 83, 84).
TABLE 1 | Two categories of myeloid-derived suppressor cells and functions.

Type of
MDSC

Markers Immunosuppression mediators and mechanisms

Murine Human

PMN-MDSCs CD11b+Ly6G+Ly6Clow CD11b+CD14-CD15+HLADR- Suppressive immune responses, ROS, ARG1, CD33, and CD66b
CD11b+GR-1high CD11b+CD14-CD66b+

LOX-1+

M-MDSC CD11b+Ly6G-

Ly6Chigh
CD11b+CD14+CD15-

HLADRlow/-
Suppressive T cell responses, NO, iNOS, ARG1, pSTAT3, S100A8/9, IL-4R, TGF-1b, HLA-DR,
and IRF8

CD11b+GR-1low
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In these microenvironmental factors, MDSCs go through a
journey to the site of immune response to exert an
immunosuppressive effect. In particular, the efflux from the
blood to the tumor depends on CXCR4 and also affects the
chemotaxis of mature myeloid cells (85). Another function of
MDSC is epigenetic regulation. Histone deacetylase-2 (HDAC-2),
which has been studied for a long time as a cancer treatment agent,
converted monocyte MDSC to granulocyte MDSC, and the
mechanism was suggested. In addition, HDAC-11 suppressed the
expression of IL-10, an immunosuppressive cytokine, in
chromosomal modification due to the action of tumor-derived
factors (TDF) infiltrating MDSC (86). Meanwhile, the DNA
methylation inhibitor zebularine decreased the expression of
IDO, a potent immunosuppressive mediator of MDSC (87). This
may support the epigenetic function of MDSCs regardless of
acetylation or methylation.

MDSCs Function and Biomarkers
in COVID-19
MDSCs are innate immune cells that can be increased in activity
by infection-causing factors as previously described for various
viral, parasitic, and bacterial infections, and also regulate the
adaptive immune system. Several studies related to COVID-19
have reported that the high frequency of MDSC is associated
with symptomsof severe disease and appears in the formofmyeloid
cell compartments that are difficult to control. Expansion ofMDSC
that occur in blood of severe COVID-19 patients had a close effect
on lymphopenia and enhanced arginase activity (88). In particular,
the ratio ofMDSC to effectorCD8+T cells was increased in patients
Frontiers in Immunology | www.frontiersin.org 4
with severe pneumonia accompanied by acute respiratory distress
syndrome (ARDS). MDSC frequencies in total circulating
mononuclear cells ranging from mild to severe cases were
recorded at a maximum of 25% and 90%, respectively (89). In
addition,MDSCis involved innot only the inhibitory effectonTcell
proliferation and activation, but also functional impairment of NK
cells, B cell inhibition, Treg expansion induction, and
downregulation of cytokine production by macrophages (89, 90).
Markers suggesting granulocytes, such as eosinophils, neutrophils,
and basophils, were highly expressed in COVID-19 patients,
predicting the activity of granulocytic MDSCs. Decrease in the
expression of granulocytes identified by the integrin CD11b,
increase in the number of neutrophils identified in CD15+CD16+,
and down regulation of Th2-related CRTH2 in eosinophils and
basophils were established as the signature of COVID-19. In
addition, the appearance of PD-L1 checkpoint expression in
eosinophils and basophils was found to be related to severity (91).
In the immune cell metabolism program of COVID-19 patients,
voltage-dependent anion channel 1 (VDAC1) was expressed in the
T cell population, which is associated with mitochondrial
dysfunction and apoptosis. This may provide a means to predict
disease severity, follow-up, and design metabolic therapy
regimens (92).

PMN-MDSCs in COVID-19
PMN-MDSC was expanded during COVID-19, especially in
patients requiring intensive care. A positive correlation was
found between PMN-MDSC and the concentration level of
inflammatory cytokines (IL-1b, IL-6, IL-8, and TNF-a) in the
FIGURE 1 | Molecular mechanisms of MDSCs on the immune system. Several mechanisms contribute to MDSC-induced immune suppression and hyperinflammatory
activation in viral infection and including those with COVID-19 patients. Specially, MDSCs are able to suppress T cells, NK cells, and other myeloid cells function. T cells
are mainly inhibited through the production of ROS or depletion of L-arginine, and the delayed production of IFN-1 seems to result in the continuous accumulation of
MDSCs into the lungs. Several signaling pathways, such as STAT1/3/6, are involved, to increase levels of immunosuppressive factors such as ROS, iNOS, NO, and
Arg-1, which inhibit T cell responses. High levels of PD-L1 found in MDSCs and macrophages can reduce the activation of antigen-specific T cells by binding to the
PD-1 receptor on T cells. In addition, the release of IL-10 and TGF-b by MDSC induces additional inflammatory system of macrophages by recruiting lymphocytes and
granulocytes as well as inflammatory monocytes. MDSCs, myeloid derived suppressor cells; NK, natural killer cell; ROS, reactive oxygen species; TGF-b, transforming
growth factor-b; APC, antigen presenting cells; NO, nitric oxide; STAT, signal transducer and activator of transcription; JAK, janus activated kinase; IL, interleukin;
MMP, matrix metalloporteinases; G-CSF, granulocyte colony stimulating factor; COX-2, cyclooxygenase 2; Arg, arginine.
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blood (93, 94). Inflammatory cytokines play a central role in
inducing the expansion of MDSCs (46). The expression level of
lectin-type oxidized LDL receptor 1 (LOX-1) was suggested as a
marker to distinguish a subset of MDSCs with strong
immunosuppressive ability in patients suffering from ARDS
(16). In addition, a significant increase in hexokinase II+ PMN-
MDSC was confirmed in severe COVID-19 patients with
moderate or severe disease. In mild COVID-19 patients, IFN-
stimulating inflammatory HLA-DRhiCD11chi monocytes
increased, and IFN-1 deficiency was confirmed in severe
patients. On the other hand, the high frequency of monocytes
in HLA-DRlow and neutrophils in CD10lowCD101CXCR4+/-

suggest emergent myelopoiesis as immunosuppressive markers
in the blood and lungs of severe patients (95–101). Reductions in
MDSCs during the COVID-19 recovery phase were associated
with increases in inflammatory cytokines in the patient’s blood,
including decreases in TGF-b (88). A multivariate regression
analysis showed an association between the PMN-MDSC rate
and fatal disease state, and the frequency of PMN-MDSC was
higher in the non-survivors group than that in the recovered
group (93). A recent study reported a significant correlation
between C-reactive protein, ferritin, and lactate dehydrogenase
levels and MDSC in patients with COVID-19. This indicates that
immature PMN-MDSCs are associated with disease severity
(102). Expansion of PMN-MDSCs and immature neutrophils
in severe COVID-19 conditions indicates Th1 cell suppression
and an increase in the frequency of Th17 cells due to strong polar
migration to Th17 cells (103).

M-MDSC in COVID-19
M-MDSCs that have been mainly identified in PBMCs from
acute COVID-19 patients, are associated with disease severity,
and also suppress T cell responses (17). They are characterized by
expressing VDAC and carnitine palmitoyltransferase I. M-
MDSC isolated from COVID-19 patient inhibited T cell
proliferation and IFN-g production through an Arg-1-
dependent mechanism, and increased Arg-1 and IL-6 levels
(104). In an in vitro study that tested T cell proliferation,
arginine supplementation helped restore T cell proliferation in
patients with COVID-19, which had been reduced (88). In
addition, the monocyte distribution width (MDW), which has
recently emerged as a promising early biomarker of sepsis, has
been considered as a key mediator of hyperinflammatory
disorders in severe COVID-19 conditions. High MDW values
have been reported to be associated with prognostic lethal
outcome in COVID-19 patients (105).

The presence of neutrophils and macrophages was confirmed
in the bronchoalveolar lavage fluid (BALF) from patients with
severe COVID-19, while large amounts of cytokines and
chemokines were secreted. Among the gene signatures
identified in single-cell RNA sequencing (scRNAseq) data,
gene sinatures such as H3F3B, IFITM1/2, SAT1, and S100A8
are associated with neutrophils, and CCL2/3/8, KLF6, and SPP1
are associated with macrophages (106, 107). This was the similar
result as the high level of S100A8/9 found in the plasma of severe
patients (98). High levels of proinflammatory cytokines and
chemokines such as CXCL8, IL-6, and IL-10 were associated
Frontiers in Immunology | www.frontiersin.org 5
with upregulation of the monocyte compartment (108, 109).
Another additional serum chemokines and cytokines (IL-6, IFN-
l3, IP-10, CXCL9, CXCR1/2/4 and CCL17), virus-sensing TLRs,
HIF1a, and several genes involved in various metabolic
regulation were identified in COVID-19 (110, 111).
Furthermore, it was reported that soluble triggering receptor
expressed on myeloid cells and an IL-6-based algorithm could
serve as a very sensitive marker for early discrimination among
patients with adverse reactions among COVID-19 patients (112).
Although more research is needed, one of the markers that can
predict the correct mortality rate among COVID-19 ICU
patients is mid-regional pro-adrenomedullin (MR-proADM): it
presented as high levels in non-survivors (113). In addition,
several recent studies have shown new markers such as
neutrophil-to-lymphocyte ratio, neutrophil-to-platelet ratio,
uric acid level, total antioxidant capacity, eosinophil/PMN
ratio, high-density lipoprotein, and apoprotein A1 (114–119).

In summary, monocytes and segmented neutrophils from
peripheral blood migrate to immature myeloid cell candidates
due to the elevation of cytokines and pro-inflammatory
mediators during COVID-19, demonstrating the generation of
emergency myeloid cells. Bone marrow cells identified in severe
COVID-19 conditions are a subset of the primary immune cells
that have initiated their activity, and studies on their ratio,
inflammation, and identification of chemotactic genes will lead
to potential diagnostics and therapeutics. Many studies related to
COVID-19 have addressed the roles of MDSCs and their subsets,
suggesting their selection as biomarkers for immune
dysregulation in COVID-19 (120). This is clearly clinically
meaningful given its correlation with disease. Candidates for
newly added biomarkers related to COVID-19 are shown
in Table 2.
POTENTIAL THERAPEUTICS TARGETING
MDSC IN COVID-19

Based on the expansion of MDSC in COVID-19, several
molecular mechanisms for MDSC differentiation have been
elucidated, making it possible to target and develop therapeutic
agents. As cancer therapy, MDSC removal is beneficial to boost
anti-tumor immunity such that chemotherapy reduces MDSC-
mediated inhibition of T cells (125, 126). Rather this therapy
was able to concert MDSCs into pro-inflammatory cells and
disrupt tumor growth (127). Given the immunophenotype and
suppression mechanism of the existing tumor microenvironment
(TME) are diverse, it is challenging to target various human
MDSC types (128). By using information gained from cancer
studies, MDSCs-target therapeutic strategies can be applied to
COVID-19 (70, 129). Table 3 summarizes the core of MDSCs
targeting strategies for disease control and inhibition of MDSCs
activity identified so far and the candidates applicable to COVID-
19. Various types of drugs have been reported as 1) drugs that
differentiate MDSCs into mature myeloid cells, 2) drugs that
interfere with MDSC maturation from cell precursors, 3) drugs
that reduce MDSC accumulation in peripheral organs, and
4) drugs that affect MDSC inhibitory function (120).
February 2022 | Volume 13 | Article 842535
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First, as a potential MDSC target, COX-2 inhibitors are useful
because of significant role of the PGE-COX-2 axis in MDSC
generation. COX-2 inhibitors inhibit the migration of MDSCs to
tumor sites and reduce the incidence of several cancers by
regulating transcriptomes (137–139). Prostaglandin D2
(PGD2) plays a role as a key mediator for lymphopenia in a
recent COVID-19 study, and induces upregulation of M-MDSC
through the DP2 receptor in group 2 innate lymphoid cells.
Targeting PGD2/DP2 signaling using a related receptor
antagonist (ramatroban) has been consedered as a therapy to
Frontiers in Immunology | www.frontiersin.org 6
address immune dysfunction and lymphopenia in COVID-
19 (153).

Second, a phosphodiesterase-5 inhibitor (tadalafil) approved by
the Federal Drug Administration (FDA) can inhibit MDSC by
inducing downregulation of Arg1 and iNOS activity in several
preclinical models (140–142). In a study using an animal model,
tadalafil decreased the levels of glutamic oxaloacetic transaminase,
an enzyme that promotes carbohydrate and protein metabolism in
aflatoxin-induced liver cancer cells (154). Similarly, all-trans retinoic
acid (ATRA), which has been previously used as a treatment for
acute promyelocytic leukemia, induces MDSD differentiation,
allowing NKT cells to mature into a state where they can be
helped. ATRA also induces the expression of glutathione
synthase, which leads to the production of glutathione, a ROS
neutralizing agent (130). 1a,25-dihydroxyvitamin D3 (calcitriol) is
able to inhibit IL-6-stimulated MDSC proliferation in a mouse
esophageal squamous cell carcinoma model (131). This treatment
can be extended to treatment of other diseases. Strong pathogen
molecular patterns, such as CpG oligonucleotides and paclitaxel,
have also been shown to differentiate MDSCs into mature myeloid
cells (132, 133).

Third, potential drug can be designed toward aiming at the
migration/recruitment of myeloid cells among treatment strategies
in order to recover COVID-19-related hyperinflammation and the
resulting immunomodulatory disorders (155). CXCR2 and CCR2/
5 inhibitors are known to decrease the migration of MDSCs from
the bone marrow to the circulation (143, 144). The importance of
inhibiting MDSC proliferation and migration to TME with
strategies such as anti-CXCR2 monoclonal antibody has also
been reported (145). Leronlimab (CCR5 blocking antibody)
decreased plasma IL-6 levels, restored the CD4/CD8 ratio, and
induced a decrease in SARS-CoV-2 plasma viremia (156). The
previously mentioned alamin S100A8 is strongly induced in
COVID-19 patients and SARS-CoV-2 infected models.
Paquinimod, known as an inhibitor of S100A8/9, induced a
decrease in viral load in mice infected with SARS-CoV-2,
resulting in relief from pneumonia (151). Although the number
of neutrophils increases in the onset of COVID-19 and is
accompanied by uncontrollable pathological damage,
paquinimod decreased the number of neutrophils. The
treatment of this drug can be suggested as a method for
TABLE 2 | Candidates for biomarkers to identify COVID-19 severity.

Biomarkers Responses of each
markers in COVID-19

References

CD15+CD16+CD11blow Increased (91)
PD-L1 Increased (91)
VDAC1 Increased (92)
LOX-1 Increased (16)
Hexokinase II+ Increased (17)
T cell and NK cell ratio Increased (15, 88)
HLA-DRhiCD11chi Increased (95)
IFN-1 Decreased (96)
HLA-DRlow Increased (98)
Calprotectin (S100A8/9) Increased (98)
CD10lowCD101CXCR4+/- Increased (95, 96)
TGF-b Increased (88)
C-reactive protein, ferritin, and
lactate dehydrogenase level

Increased (102)

Arg-1 and IL-6 level Increased (104)
VDAC and carnitine
palmitoyltransferase I

Increased (17)

MDW Increased (105)
CXCL8 and IL-10 level Increased (108, 109)
IFN-l3, IP-10, CXCL9, and CCL17
level

Increased (110, 121)

HIF1a Increased (111)
MR-proADM Increased (113)
LDH, D-dimer Increased (122, 123)
Neutrophil-to-lymphocyte ratio Increased (124)
Neutrophil-to-platelet ratio Increased (114)
Uric acid level Increased (115)
Total antioxidant capacity Decreased (116)
Eosinophil/PMN ratio Decreased (117)
High-density lipoprotein Decreased (118)
Apoprotein A1 Decreased (119)
TABLE 3 | Potential therapeutic candidates for targeting MDSCs.

Strategy Agents References

Promote MDSCs differentiation to increase mature
leukocytes and tumor-specific T cells

ATRA, 1a,25-dihydroxyvitamin D3, DNA-methylating agent 5-azacytidine, CpG oligonucleotides,
chemotherapeutic agents (paclitaxel and docetaxel), RUNX1, casein kinase inhibitor
(tetrabromocinnamic acid)

(130–136)

Directly block MDSC supprression of T cells COX-2 inhibitors, Phosphodiesterase type 5 inhibitors (tadalafil and sildenafil) (137–142)
Inhibit migration of myeloid cells from the bone marrow
to the tumor microenvironment or peripheral lymphoid
organs

CXCR2, CXCR4, CSF1R, and CCR2/5 inhibitors (143–146)

Inhibit the production of MDSCs from progenitors or
induce apoptosis of circulating MDSCs

5-fluorouracil, gemcitabine, sunitinib, and zolendronate (125, 126,
147–149)

Block the production of TDF and its reach into the
bone marrow

Targeting the IL-6 receptor (tocilizumab) and HDAC-11 (86, 150)

Cytokines targeting MDSC S100A8/A9 inhibitor (paquinimod) (151, 152)
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therapeutic purposes while simultaneously detecting abnormal
changes in S100A8/9 and neutrophils in the COVID-19
state (151).

Lastly, drug can be designed to regulate metabolism ofMDSCs.
The inhibition of arginase-1 or supplementation of arginine in
severe COVID-19 patients could be a treatment to restore depleted
arginine and impaired T cell function (157). Moreover,
reprogramming of MDSCs targeting epigenetics based on
immune metabolism is also expected to solve the pulmonary
inflammatory state of COVID-19 (158). This diverse list of
drugs capable of manipulating MDSC populations could play an
important role in MDSC-related treatment modalities in chronic
inflammation, cancer, as well as in COVID-19.
CONCLUSIONS

MDSCs plays a pivotal role in regulating the innate immunity and
adaptive immunity. Dysregulated immune response and MDSCs
expansion have been reported in COVID-19 and other viral
infections. The removal of MDSC leads to an increase in the
immune response against the viral infection. Thereby, active
research has been conducted to identify various MDSC phenotypic
markers anddiscover therapeutic agents targetingMDSCs.Despiteof
the detrimental role of MDSCs in human inflammatory diseases,
MDSCs are resistant to allograft transplantation and autoimmune
diseases, limits the inflammatory damaging, and shows a tendency
to return to a non-inflammatory state by homeostasis. There
are still few research reports that MDSC directly inhibits
hyperinflammation and helps clinical recovery, but additional
studies are needed because the possibility cannot be ruled out. In
this regard, it is necessary to keep the tolerogenic properties ofMDSC
in mind to develop MDSC-targeted therapeutics (81).

In patients infected with COVID-19, both PMN-MDSC and
M-MDSC accumulation and their expansion have been
confirmed. Thereby, various markers for identifying MDSCs
are important in the development of diagnostic systems. It can
also open up several possibilities for treatment by targeting
Frontiers in Immunology | www.frontiersin.org 7
immunosuppressive function of MDSCs. The correlation
between BALF and serum MDSC frequency and clinical
biomarkers will facilitate the consideration and selection of
future therapeutics. In many of these studies, the severity of
COVID-19 was clinically evaluated using metabolites, cytokines,
chemokines, and several proteins related to various mechanisms
such as inflammation and apoptosis. Candidates considered as
therapeutic agents for COVID-19 were typically presented as
specific cytokine inhibitors or immunomodulatory agents.
Although official approval of future treatments will be
necessary, reports on various therapeutic approaches and
treatment prognosis for approved drugs will still be required.
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