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Hemiplegia is a common motor dysfunction caused by a stroke. However, the

dynamic network mechanism of brain processing information in post-stroke hemiplegic

patients has not been revealed when performing motor imagery (MI) tasks. We acquire

electroencephalography (EEG) data from healthy subjects and post-stroke hemiplegic

patients and use the Fugl-Meyer assessment (FMA) to assess the degree of motor

function damage in stroke patients. Time-varying MI networks are constructed using

the adaptive directed transfer function (ADTF) method to explore the dynamic network

mechanism of MI in post-stroke hemiplegic patients. Finally, correlation analysis has been

conducted to study potential relationships between global efficiency and FMA scores.

The performance of our proposed method has shown that the brain network pattern of

stroke patients does not significantly change from laterality to bilateral symmetry when

performing MI recognition. The main change is that the contralateral motor areas of the

brain damage and the effective connection between the frontal lobe and the non-motor

areas are enhanced, to compensate for motor dysfunction in stroke patients. We also

find that there is a correlation between FMA scores and global efficiency. These findings

help us better understand the dynamic brain network of patients with post-stroke when

processing MI information. The network properties may provide a reliable biomarker for

the objective evaluation of the functional rehabilitation diagnosis of stroke patients.

Keywords: stroke, motor imagery, time-varying network, graph theory, Fugl-Meyer assessment

INTRODUCTION

Stroke, also known as cerebrovascular accident, is a disease of the blood vessels supplying the
brain are damaged. It can lead to avascular necrosis or hemorrhage of our brain tissue. Stroke
has high morbidity, disability, and mortality rates, 40% of stroke survivors still suffer from various
disabilities, and the incidence of stroke increases disproportionately with age. Moreover, aging is a
stroke risk factor (Egorova et al., 2019).
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Two types of Motor Imagery (MI) can be divided: Kinesthetic
Motor Imagery (KMI) and Visual Motor Imagery (VMI). KMI
is defined as the thought process of imagining a given movement
without anymotor output. VMImainly relies on the visualization
of the execution of that movement (Rimbert et al., 2019).
MI is regarded as a mental process involving a variety of
advanced cognitive functions (Li et al., 2019). The MI-based
brain-computer interface (BCI) has been widely used in motor
function rehabilitation, motor skill learning, and other fields
(Long et al., 2011; Mane et al., 2020; Xu et al., 2021b). Patients
with motor cortex damage can get better functional recovery
by MI therapy (Xu et al., 2021a). Researchers aim to obtain
good performance from MI recognition (Xu et al., 2016, 2021c;
Wang et al., 2020). Electroencephalography (EEG), as a method
of recording brain activity using electrophysiological indicators,
has the characteristics of high time resolution, low cost, and easy
operation (Zhang et al., 2015; Xu et al., 2020a). EEG is the most
commonly used brain signal for BCI (Xu et al., 2021d). In recent
years, EEG-based BCI systems have developed rapidly, and the
number of commands that BCI can process has increased from
the initial 30 to more than 100 (Xu et al., 2020b). Recently,
the measurement precision of BCI first reached the level of the
sub-microvolt in amplitude (Xu et al., 2018), which significantly
broadened the category of BCI. EEG is also the commonly used
brain signal for clinical rehabilitation. Ding et al. (2022) have used
transcranial magnetic stimulation and electroencephalography
(TMS-EEG) to directlymeasure cortical responses in aging stroke
patients after intermittent theta-burst stimulation (iTBS) and
found that iTBS can normalize natural frequency in aging stroke
patients, which can be utilized in stroke rehabilitation.

The human brain is a complex network consisting of a
large number of interconnected cortical regions. Recently, the
brain network method has attracted much attention and has
been widely used in decoding related cognitive functions. The
main methods of brain networks are effective and functional
connectivity. Functional connectivity is an undirected network
that represents the coordination mechanism between different
neurons (Reid et al., 2019). Effective connectivity is a directed
network defined as the direct or indirect influence from one brain
function area to another brain function area (Park et al., 2018).

Based on EEG analysis, directed networks have directional
information compared to undirected networks. The directed
networks can more accurately assess the information flow
between brain nodes and better understand the brain’s
information processing mechanism when performing MI
recognition. Directed analysis methods such as granger causality
analysis (GCA), partial directed coherence (PDC), and directed
transfer function (DTF) have significant advantages in capturing
directional coupling between different brain regions (Jastreboff,
1990; Maudoux et al., 2012). Based on the DTF method, Vecchio
and Babiloni (2011) have found that the directionality of frontal-
parietal EEG synchronization in Alzheimer’s Disease (AD) and
Amnestic Mild Cognitive Impairment (MCI) is abnormal.

EEG has millisecond-level time resolution, which leads to
different network structures corresponding to different stages of
the brain processing information. Therefore, the study of time-
varying networks helps us to explore the dynamic process of

brain information processing in MI recognition and to capture
the time-varying connections of cognitive processes. Including
time-varying granger causality analysis (tv-GCA), time-varying
partial directed coherence (tv-PDC), and adaptive directed
transfer function (ADTF) can get different network connection
structures in different cognitive procedures (Li et al., 2015;
Manomaisaowapak et al., 2015). Li et al. (2016) have used an
adaptive directed transfer function to construct a time-varying
network of P300 and found that different stages of P300 induce
different brain network structures. Based on the ADTF method,
Si et al. (2019) have studied the role of the frontal cortex in the
decision-making stage and the different network structures in
different decision-making stages.

Fugl-Meyer assessment (FMA) is an authoritative method to
assess the motor function of stroke patients. It can provide a
visual representation of motor function after stroke, and can play
an important role in the baseline assessment, as well as monitor
and quantify longitudinal changes in motor function (Riahi et al.,
2020). FMA is a reliable and effective method for measuring
motor dysfunction, a higher score corresponds to better motor
function (Saes et al., 2019). All patients have been completed
the FMA to ensure the consistency of the FMA scores and the
EEG recording. Saes et al. (2021) have used the resting state EEG
parameters of stroke patients to predict FMA scores, and they
have proved that resting-state EEG parameters can be used as a
biomarker for predicting stroke recovery. A challenge associated
with this assessment is the availability of trained doctors to
conduct the evaluation. The study of biomarkers can estimate
that FMA may help to solve the problem.

The network mechanism of stroke patients based on the
ADTF method has been studied. The dynamic reorganization
and compensation of the brain network have been revealed. The
correlation between network properties and FMA scores has been
analyzed. Our proposed method provides a new neuroregulatory
index for diagnosis and treatment of post-stroke patients.

MATERIALS AND METHODS

Participants
After receiving a detailed explanation of the purpose and
potential risks of the experiment, all subjects have provided
written informed consent. The study protocols have been
approved by the medical ethics committee of Qilu Hospital,
Cheeloo College of Medicine, Shandong University. The
study is carried out in accordance with relevant guidelines
and regulations. Twenty-one right-handed subjects have been
recruited in our current study, consisting of seven male patients
with left hemiplegic stroke (marked as LS, age 49± 12 years); five
male patients with right hemiplegic stroke (marked as RS, age 54
± 8 years); nine male health control (marked as HC, age 45 ±

12 years). All subjects have normal hearing and vision, and no
psychiatric drugs are taken for healthy subjects.

Experimental Procedures
The experiment is conducted in a separate relatively shielded
room. The room is lighted with soft luminance. In addition,
during the acquisition of EEG signals, the indoor temperature
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FIGURE 1 | EEG experimental paradigm. One KMI trial includes a 4-s resting

state (represented by a blank screen), and a 6-s KMI task (represented by the

left or right arrow on the screen).

is maintained at ∼21◦C by the air conditioner, and the doors
and windows are tightly closed to avoid the influence of noise.
Throughout the experiment, all subjects are asked to stay relaxed
to avoid real hand movements affecting the validity of the data.
The experiment adopts the KMI paradigm. Each subject has
performed 70 independent experiments, including 30 MIs for
each of the left and right hands, 10 actual exercises, and EEG data
have been acquired from 64 electrodes. Each KMI trial has a total
of 10 s. The first 4 s are resting, and a blank screen appears to
remind the subjects to prepare, and the next 6 s are the task state.
When the KMI recognition starts, a left or right arrow appears
on the screen to remind the subjects to imagine the left-hand
or right-hand lifting action. The left-hand or right-hand KMI
trials are randomly presented to the subjects. The experimental
paradigm is shown in Figure 1.

Signal Recording
A BrainAmp 67-node amplifier from Brain Products (Australia)
has been used to record EEG. All 64 Ag/AgCl electrodes are
placed according to the 10–20 international system. The REF
electrode between the CZ electrode and the CPZ electrode is used
as a reference. In all experiments, the sampling rate is 1000 Hz.

Data Analysis
In this study, the preprocessing procedure and analysis procedure
are shown in Figure 2, the time-varying network analysis has
been performed and the correlation between the global efficiency
(GE) and the FMA score has been calculated.

Preprocessing
The purpose of preprocessing is to acquire clean EEG data
for subsequent analysis. The detailed procedures include
8–30Hz band-pass filtering, performing reference electrode
standardization technique (REST) processing on the filtering data
(Yao, 2001; Dong et al., 2017), segmenting data with a time
window of [−4 s, 6 s] (0 s corresponds to the stimulus onsets), and
removing bad trials [±70 µV as the threshold for ocular artifacts
(Li et al., 2019, 2021)]. Then, the data has been down-sampled

to 100Hz. To reduce the influence of the volume conduction
between network nodes, 21 electrodes (i.e., Fp1, Fpz, Fp2, F7, F3,
Fz, F4, F8, T7, C3, Cz, C4, T8, P7, P3, Pz, P4, P8, O1, O2, and
Oz) of the 64 electrodes have been selected to construct the brain
functional network.

Time-Varying Network Pattern Analysis
For each subject, the preprocessed EEG is used to further
construct time-varying KMI networks based on ADTF (Li et al.,
2016). Then, the left-hand and right-hand time-varying KMI
networks corresponding to each trial are averaged for each
subject. Therefore, a time-varying network of two-classes KMI
tasks is generated. The detailed description of ADTF in our study
is as follows:

Time-Varying Multivariable Adaptive Autoregressive Model
For the time series of each subject’s trial, the following
formula can be used to construct a corresponding time-varying
multivariable adaptive autoregressive (tv-MVAAR) model to
describe the dataset:

X (t) =
∑p

i=1
A (i, t)X (t − i) + E (t)

where X (t) is the data vector of each trial at time t, A (i, t)
denotes the model coefficient matrix estimated by the Kalman
filter algorithm (Arnold et al., 1998; Pagnotta and Plomp, 2018),
E (t) denotes the multivariate independent white noise, p is the
optimal model order automatically determined by the Akaike
information criterion (AIC) within the range of 2–20.

AIC
(

p
)

= ln
[

det (ε)
]

+ 2β2p/α

where β is the number of nodes, p is the order of the best model
of tv-MVAAR, α is the number of sampling points in the time of
[−4 s, 6 s] (0 s corresponds to the stimulus onsets), and ε is the
corresponding covariance matrix.

Adaptive Directed Transfer Function
The time-varying model coefficient matrix A (i, t) can be
transformed in the frequency domain to obtain the transfer
matrix H

(

f , t
)

of the time-varying model, which can be further
derived Hij

(

f , t
)

is the directional information flow from the
jth node to the ith node at time t. Then, the time-frequency
representations of X (t) and A(i, t) are described as follows:

A
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)

X
(
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)
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)

X
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(
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(
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)

where A
(

f , t
)

=
∑p

k=0
Ak (t) e−j2π f△tk with the A(t) denotes

the matrix of model coefficients, X
(

f , t
)

and E
(

f , t
)

are
the representations of X (t) and E (t) in the frequency
domain, respectively.

Under the premise of a given frequency f and corresponding
time point t, the ADTF value describes the directional causal
interaction from the jth node to the ith node is normalized and
defined as:

r2ij
(

f , t
)

=

∣

∣Hij

(

f , t
)∣

∣

2

∑n
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∣
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2
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FIGURE 2 | The framework of EEG processing procedure. (A) Preprocessing. (B) Time-varying network pattern analysis. Between the two electrodes, the connecting

edge represents the coupling relationship and the arrow represents the flow direction.

Finally, the ADTF values on the frequency band of interest
containing MI-related rhythms at 8–30Hz are averaged to
evaluate the directional information flow of two different nodes
(Burianová et al., 2013; Zhang et al., 2018):

22
ij (t) =

∑f2
k=f1

r2ij
(

k, t
)

f2 − f1

For each subject, all trials connectivity networks are averaged
across all of these artifact-free trials and then induce the final
time-varying network model. When exploring the group-wise
networks’ differences, the time-varying networks of the LS, RS,
and HC have been binarily thresholded into the time-varying
binary networks with a connectivity cost of 5% to illustrate the
time-varying network architectures. The networks have been also
statistically compared by using the non-parametric Wilcoxon
rank-sum test. Some previous studies have shown that the
difference between 2ij and 2ji determines the direction of
information flow in time-varying networks (Babiloni et al., 2009;
Vecchio and Babiloni, 2011). As ADTF captures the dynamic
networks for each time point, and nearby time points have shown
highly similar network patterns. In our study, we describe the
KMI time-varying networks with a time interval of 1.5 s and
reveal the dynamic KMI network mechanism by evaluating the
time-varying networks corresponding to different KMI stages.

Time-Varying Network Properties
According to the obtained adjacency matrix, Brain Connectivity
Toolbox (BCT, http://www.nitrc.org/projects/bct/) has been

employed to calculate the GE of all subjects at each time point
(Zhang et al., 2020), the time-varying KMI networks are analyzed
through graph theory. The GE describes the ability of the brain
network to process information. The GE calculation formula is
as follows:

GE =
1

n

∑

i∈N

∑

j∈N,j 6=i

(

d−→
ij

)−1

n− 1

Here, n represents the node number, d−→
ij
represents the shortest

characteristic path length, and N denotes the set of current
network nodes.

Correlation Analysis Between Time-Varying Network

and FMA
According to the FMA scores, 12 stroke patients have been
divided into three classes: severe (FMA: 0–20), moderate (FMA:
20–40), and mild (FMA: 40–60). The 12 patients are ranked
from lowest to highest score. The high scores correspond to
better motor function, and the low scores correspond to poor
motor function. Pearson correlation analysis has been used to
explore the potential relationship between each patient’s GE and
FMA scores to reveal whether the network properties can be
used as potential biomarkers to indicate the degree of motor
function rehabilitation.
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FIGURE 3 | The dynamic KMI network patterns of RS/LS/HC. (A) Time-varying network pattern in the right hand of the RS group; (B) time-varying network pattern of

the left hand in LS group; (C) time-varying network pattern of left/right hand in HC group. The connecting edge in the figure represents the coupling relationship

between the two electrodes, the red edge represents the two-way connection between the two nodes, the green edge represents the one-way connection between

the nodes, and the arrow represents the flow direction between them.

RESULTS

Dynamic KMI Network Patterns
To investigate the dynamic network difference between post-
stroke hemiplegic patients and healthy subjects when performing
KMI recognition, the ADTF function has been used to calculate
the time-varying network matrix of LS, RS, and HC groups in the
8–30Hz frequency band of interest, and take the sparsity of 5%
(i.e., the connection edge with the strongest weight remaining
5%) to display the transient topology. When performing the
right-hand KMI tasks, the crucial hubs for the RS subjects
(Figure 3A) are located at the contralateral P4 and ipsilateral
P3. The motor areas of the stroked hemisphere (i.e., right
hemisphere) for the LS subjects (Figure 3B) have been shown
the weaker connectivity when executing the left-hand KMI tasks,

but the contralateral F3 and C3 electrodes (i.e., at the left
hemisphere) extend to the occipital lobe have been shown the
stronger connectivity. However, the electrodes C3 or C4 for the
HC subjects (Figure 3C) have served as the important hub to
control the KMI recognition, and then have transferred to the
joint control from bilateral C3 and C4 electrodes.

Dynamic Network Differences
To further explore the differential dynamic network patterns
of the time-varying networks between post-stroke hemiplegic
patients and healthy subjects, Figure 4 shows the corresponding
statistical network topology diagrams at different time points.
Compared to HC subjects (Figure 4A), stronger information
flow in the LS group has transferred from the occipital lobe
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FIGURE 4 | Differential time-varying network topologies between the pairwise groups. (A) LS vs. HC groups and (B) RS vs. HC groups. Here, the red edge represents

the connection edge where LS/RS is stronger than HC, the blue edge denotes the connection edge where HC is stronger than LS/RS, and the arrow indicates the

information flow between nodes.

(e.g., O1, O2) to the left frontal lobe (e.g., F7); however, these
phenomena in the RS group (Figure 4B) have occurred from
occipital lobe (e.g., O1) and left frontal lobe (e.g., F7) to the right
frontal lobe (e.g., F8).

Dynamic of the Time-Varying GE
To further explore the connection pattern of the time-varying
network, the values of GE at each time point are averaged for
the subjects in the three groups of LS, RS, and HC. Figure 5A
shows the GE increase along with the progress of the KMI
recognition. When performing right-hand KMI tasks, the GE of
the HC group is greater than that of the RS group (p < 0.05), as
shown in Figure 5B.

Correlation of GE and FMA Scores
Clinically, the higher the FMA scores are responding to the
less severe the damage of motor function. Figure 6A shows the
average GE of 12 stroke patients, and the x-axis represents the
12 stroke patients who have been ranked in ascending order
of FMA scores. The scatter plot of GE and FMA of 12 stroke
patients and the positive correlation (r = 0.61, p = 0.035) are
shown in Figure 6B.

DISCUSSION

Stroke causes damage to the motor functional areas of the
brain, which in turn leads to motor dysfunction. Compared
with healthy subjects, the functional connections between
different brain regions of stroke patients are more complicated
in performing KMI. Moreover, the brain processes information
very efficiently, which leads to different network structures

corresponding to different cognitive stages. To evaluate
the network reorganization and compensation of brain
function after stroke, the ADTF has been employed to better
explore the dynamic network mechanism of post-stroke
hemiplegic patients and healthy subjects during the execution
of KMI.

Time-varying network topology diagrams under different
conditions are calculated to study the interaction patterns
between different brain regions of post-stroke hemiplegic
patients and healthy subjects. Figure 3 shows the dynamic
network patterns of the RS, LS, and HC groups when performing
KMI recognition. When the patients with left brain damage
perform right-hand KMI tasks, the connection between the
motor areas on the stroked left hemisphere and other functional
brain areas is enhanced, and the hub node has transferred from
node C3 to node C4, as shown in Figure 3A. The enhancement
of the bilateral occipital lobe (i.e., P3 and P4) connection is
enhanced during the later stage of KMI. These phenomena might
further indicate that the contralateral brain areas of the stroked
hemisphere have functional compensation, and the ipsilateral
non-motor areas that are responsible for the high-level cognition
also have functional compensation, such as motor planning and
attention (Li et al., 2021). When the patients with right brain
damage imagine the left-hand movement, stronger functional
connectivity has existed between the frontal and parietal-occipital
lobe, while seldom connectivity of the stroked right hemisphere
has been observed, as shown in Figure 3B. The phenomena
may account for the deficits in performing left-hand KMI tasks
and left-hand wrist extension of the LS patients. The frontal
and parietal lobe is responsible for the advanced regulation
of limb movement. Right brain damage causes human motor
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dysfunction, the left brain areas increase the response to provide
compensation for motor function (Li et al., 2020). Thereafter, the
bilateral motor areas C3 and C4 are more connected. Because
the brain of stroke patients is damaged, the response pattern
and functional connection of the brain are different from healthy

FIGURE 5 | The time-varying GE of left-hand and right-hand KMI recognition.

(A) Dynamics of the GE. (B) Statistics of the average GE. The asterisk

represents significant differences in GE between the two groups (p < 0.05).

subjects. The location and severity of brain damage affect the
degree of brain function network remodeling (Arun et al., 2020).
For healthy subjects, when performing left-hand and right-hand
KMI tasks, the brain function networks appear a network pattern
from the opposite side to the bilateral connection, as shown
in Figure 3C. When performing the left-hand KMI tasks, the
network connection of the right motor areas is enhanced, and
then the network connection gradually appears in the bilateral
motor areas. During the right-hand KMI procedure, the left
motor areas have presented significantly stronger connectivity,
which has switched to a bilateral connectivity architecture.
During KMI procedure, the brain functional areas involved in
healthy subjects include the main motor areas, medial frontal
gyrus, parietal lobe, and primarymotor cortex (Zhou et al., 2022).
The KMI procedure of health subjects mainly responds to the
contralateral brain areas (Sharma and Baron, 2013).

The functional compensation and plasticity of the brain after
stroke are related to the functional connection difference between
stroke and healthy subjects, and are related to the response
between different brain regions (Bundy and Nudo, 2019). The
study further explores the abnormal networks connection status
of stroke patients. Under the premise of the LS group and HC
group, the connecting edge of LS is significantly stronger than
HC from the occipital lobe to the left frontal lobe, as shown in
Figure 4A. At the beginning of the KMI recognition, when the
subjects see the prompt instruction, the LS is relative to the HC,
the connection of the occipital lobe is stronger at this time. The
occipital lobe is the center of the visual cortex (Chu et al., 2021).
The damage to the brain motor function areas of stroke patients
leads to payingmore attention to prompt instructions. Therefore,
the patients’ attention to action prompt instructions is also a
good compensation effect for the motor dysfunction (Rowe et al.,
2002). In addition, the stronger connectivity of the occipital lobe
plays an important role in improving the performance of SSVEP-
based BCI systems (Gao et al., 2018; Sun et al., 2020). During
KMI recognition, the functional connections of the LS brain are
enhanced from the left frontal lobe (i.e., F7 node) to the bilateral

FIGURE 6 | Correlation analysis. (A) The average GE of 12 stroke patients. (B) Correlation between FMA scores and GE of 12 stroke patients.
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parieto-occipital lobes. The connection of the frontal and parietal
brain areas plays an important role in motor planning, decision-
making, etc. (Bowling et al., 2020). The frontal lobe is related
to the movement of the limbs. Right brain stroked in LS leads
to increased connections between the left frontal lobe and other
brain regions. The phenomena show that the left brain areas
participate in motor planning and regulation as compensation
when performing KMI recognition. As shown in Figure 4B, the
significantly stronger connection edges of RS have transferred
from the occipital lobe and the left frontal lobe to the right frontal
lobe compared to HC. Stroke results in the dysfunction of the
patients’ motor network, more non-injured brain areas and non-
motor areas of the damaged brain areas can participate in the
completion of KMI recognition (Li et al., 2020). The connection
of the brain network of the frontal lobe and the occipital lobe
is abnormal, the functional compensation of the brain to the
damaged motor network is indicated.

Based on the time-varying networks of the three groups of
subjects, the time series of the dynamic GE of the different
groups in the KMI stage are shown in Figure 5. The GE is the
average efficiency of related brain networks and is usually used
to estimate the potential of information transfer among brain
regions. As illustrated in Figure 5A, the time-varying network
efficiency of the HC, LS, and RS groups has increased along
with the execution. When subjects are asked to perform KMI
recognition, more advanced cognitive functions in the brain are
gradually recruited, so network efficiency gradually increases
(Zhang et al., 2016). Throughout the KMI recognition stage,
the gradual increase in network efficiency can guarantee the
completion of KMI recognition. Sabaté et al. (2004) have found
that after left hemisphere stroke, a person’s limb movement
speed is significantly slowed down, and after right hemisphere
stroke, the brain activity during KMI is stronger than that
in the left hemisphere stroke. The information transfer rate
between brain regions in the RS group is lower than the LS
group when performing KMI recognition. LS has stronger brain
compensatory and remodeling capabilities. After a stroke, plastic
changes occur between different brain areas, the interaction
between brain areas is enhanced to compensate for the damaged
brain areas. The patients need to activate other brain areas as
compensation to complete the KMI recognition. And indeed,
when performing the right-hand KMI tasks, the average GE of
the HC group is significantly larger than that of the RS group, as
shown in Figure 5B.

To further investigate whether the GE is correlated with
the FMA scores, we have performed one correlation analysis.
As shown in Figure 6B, there is a positive correlation between
GE and FMA. The higher the FMA scores, the higher the
corresponding global efficiency. It proves that the GE can reflect
the severity of clinical motor function damage. We can conclude
that GE may be used as a potential biomarker to reflect the
severity of motor function damage and objectively evaluate the
efficacy of neuromodulation therapy. And it can also be used as
a feedback indicator to guide the development of more effective
KMI rehabilitation therapies in the future.

Our current study also has some limitations. The number
of patients is scarce, and the subjects between males and

females are unbalanced. To promote clinical treatment and
effective intervention for stroke, more subjects will be recruited,
meanwhile, the balanced male and female subjects will be
considered for analysis.

CONCLUSIONS

In our study, we have constructed the time-varying KMI
networks between post-stroke hemiplegic patients and healthy
subjects based on the ADTF method. In post-stroke hemiplegic
patients, the connection between the damaged brain areas and
other motor areas is weaker when performing KMI recognition.
The effective connection between the non-damaged brain areas
and other motor areas is stronger. The connection between
the frontal-parietal lobe and the occipital lobe is enhanced
to provide compensation for motor dysfunction in stroke
patients, and FMA scores are closely correlated with GE.
These findings allow us to better understand the mechanism
of movement disorders in patients with post-stroke hemiplegic.
It also shows that the brain network may provide a more
reliable quantitative analysis method for the clinical diagnosis
and treatment of stroke.
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