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Abstract: Spatial transcriptomics has revolutionized our understanding of cellular network dynamics in aging
and disease by enabling the mapping of molecular and cellular organization across various anatomical
locations. Despite these advances, current methods face significant challenges in throughput and cost, limiting
their utility for comprehensive studies. To address these limitations, we introduce IRISeq (Imaging
Reconstruction using Indexed Sequencing), a optics-free spatial transcriptomics platform that eliminates the
need for predefined capture arrays or extensive imaging, allowing for the rapid and cost-effective processing of
multiple tissue sections simultaneously. Its capacity to reconstruct images based solely on sequencing local
DNA interactions allows for profiling of tissues without size constraints and across varied resolutions. Applying
IRISeq, we examined gene expression and cellular dynamics in thirty brain regions of both adult and aged
mice, uncovering region-specific changes in gene expression associated with aging. Further cell type-centric
analysis further identified age-related cell subtypes and intricate changes in cell interactions that are distinct to
certain spatial niches, emphasizing the unique aspects of aging in different brain regions. The affordability and
simplicity of IRISeq position it as a versatile tool for mapping region-specific gene expression and cellular
interactions across various biological systems.

One Sentence Summary: IRISeq, an innovative optics-free spatial transcriptomics method, uncovers
aging-related changes in spatial gene expression and focal cell interactions in brain aging.
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Main Text:

Understanding the spatial organization of molecules and cells is crucial for studying cellular network dynamics
in aging and disease. For example, recent advancements in spatial transcriptomics, by multiplexed in situ
hybridization(1–3) or indexed oligonucleotide capture arrays(4–10), have revolutionized our ability to spatially
profile genome-wide RNA expression across diverse anatomical locations. These technologies offer detailed
insights into cellular networks, significantly enhancing our understanding of the cellular interactions essential
for maintaining organismal functions.

Despite these advances, current spatial transcriptomic methods face significant challenges in throughput and
cost, which hinder their ability to quantify the alterations in cellular interactions across multiple regions,
conditions, and independent replicates. For example, while multiplexed in situ hybridization provides
subcellular resolution(1–3), it is limited by imaging speed and requires specialized equipment and pre-selected
gene probes. On the other hand, oligonucleotide capture arrays face limitations in their throughput and the
ability to cover extensive areas: prior indexing methods (e.g., 10X Genomics Visium (4), DBiT-seq(6)), use
predefined DNA barcodes at specific positions, whereas posterior indexing methods, such as slide-seq (5, 11),
HDST (7) and Stereo-seq(8), distribute unidentified DNA barcodes on a 2D surface and later identify them
through imaging techniques like sequencing. Scaling up these indexing approaches is technically challenging,
constrained by issues such as barcode pre-assignment or the reliance on multiple rounds of optical imaging.

The approach of "spatial mapping by sequencing" offers a promising solution to these challenges by utilizing
barcoded DNA sequences to record the spatial proximity of millions of biological molecules(12). This strategy,
previously employed in DNA Hi-C for constructing three-dimensional chromatin structures(13), is recently being
adapted to profile spatial interactions of several targeted mRNA molecules for inferring cellular spatial
interactions in cultured cell lines (e.g., DNA microscope(14)) or the spatial distribution of cellular surface
proteins(15). Despite these innovations and the development of supporting theoretical frameworks(14, 16, 17),
we still lack a robust, high-throughput, and cost-effective "spatial mapping by sequencing" platform for
region-specific transcriptomic analysis of complex tissues.

Here, we present IRISeq (Imaging Reconstruction using Indexed Sequencing), a scalable and cost-effective
spatial genomic analysis method that relies exclusively on sequencing, eliminating the need for predefined
capture arrays or optical imaging. This approach utilizes DNA barcoded beads to capture gene expression
across each of thousands of spatial locations, with the global spatial positions of these beads decoded through
their interaction signals with adjacent beads. This method allows for the parallel processing of multiple tissue
sections in a single day at a significantly lower cost than commercial platforms and without specialized
equipment. Furthermore, IRISeq offers the flexibility to map genome-wide RNA expression across a range of
resolutions (from 5 µm to 50 µm) and capture areas (from 0.6 cm to 1.5 cm in diameter). Meanwhile, we
developed computational pipelines designed to reconstruct tissue images solely from sequencing data. This
pipeline also facilitates the integration of single-cell and spatial data for assessing region-specific cellular
distributions and interactions. We applied IRISeq to analyze brain sections from both adult and aged mice and
revealed widespread and region-specific gene expression changes, as well as alterations in spatial cell-cell
interactions associated with brain aging. The resulting spatially resolved atlas provides a detailed view of
molecular and cellular changes in the aging brain, demonstrating the applicability of IRISeq for exploring
spatial gene expression dynamics in complex biological tissues.
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Overview of IRISeq (Imaging Reconstruction using Indexed Sequencing)

The optimized IRISeq protocol comprises several key steps (Fig. 1A, fig. S1): (i) Bead preparation: two types
of oligo-barcoded beads are prepared: 'receiver beads' coated with PolyT sequences to capture nearby cellular
mRNA, and 'sender beads' with a photocleavable linker and a PolyA sequence. These barcoded beads are
created through a split-pool ligation approach (18), such that each bead has its unique barcode (fig. S1A). (ii)
Photocleavage and oligo capture: beads are evenly distributed on a glass slide. A UV device is then utilized to
photocleave oligos from the sender beads, which then diffuse and are captured by the receiver beads,
mimicking the capture of tissue mRNA (fig. S1B). The bead array is then frozen on dry ice to stabilize it. (iii)
Tissue transfer and mRNA capture: frozen tissue sections are transferred onto this array using cryosectioning.
The mRNA from the tissue is then captured by the receiver beads through hybridization and tissue digestion
processes. (iv) Reverse transcription and sequencing: post tissue digestion, beads are collected for reverse
transcription and PCR, followed by sequencing to obtain transcriptome data and bead connection details.
Detailed IRISeq protocols are provided in the supplementary files to enable cost-efficient spatial transcriptomic
mapping of large tissue sections in individual laboratories (Supplementary Note 1, Table S1).

After library preparation and sequencing, the output from IRISeq includes a bead-bead interaction counts
matrix, which identifies connections between sender and receiver beads, and a gene expression matrix that
details transcripts mapped to each receiver bead (Fig. 1C, left). To determine the global spatial positions of the
receiver beads, we applied principal component analysis (PCA) to the bead-bead interaction matrix, followed
by Uniform Manifold Approximation and Projection (UMAP) analysis (19) (Methods, fig. S2). The resulting 2D
UMAP coordinates will reflect the designed layout of the assay, preserving the positional relationships among
the beads (Fig. 1C, middle). Furthermore, we utilized dimension reduction and clustering techniques on the
gene expression matrix to annotate each receiver bead based on region-specific gene expression patterns
(Fig. 1C, middle). This was followed by cell-type-specific deconvolution analysis, integrating single-cell
RNA-seq data to map diverse cell types and quantify their spatial interactions (Methods).

As an initial demonstration of IRISeq, we profiled a coronal mouse brain section using a 0.6 cm x 0.6 cm bead
array with a bead diameter of approximately 50 μm (Fig. 1D). This experiment yielded 5,028 receiver beads,
each capturing a median of 4,587 unique transcripts (2,535 genes) and 1,998 unique bead-bead connection
oligos, with each receiver bead connecting to a median of five sender beads (Fig. 1E-F, fig. S3A). Clustering
analysis based on the gene expression profiles of all receiver beads identified 12 transcriptionally distinct brain
region clusters, including cortical, caudal putamen, amygdalar, ventricles, white matter, and midbrain regions,
validated using region-specific gene markers (Fig. 1G, fig. S3B). Further validation was achieved by
integrating the IRISeq data with the published 10x Visium spatial transcriptome dataset (20), which showed
consistent region-specific gene expression patterns across spatial locations (fig. S3C-D). We then mapped the
spatial locations of all receiver beads based solely on their connection signals with sender beads (Fig. 1F).
The resulting reconstructed image (Fig. 1H) preserved the local neighborhood structure of the receiver beads
and accurately positioned beads from different regions to their expected locations (fig. S3E-F), akin to the
pre-indexed 10x Visium oligo array. This success highlights the capability of IRISeq to map the spatially
barcoded transcriptome without the need for optical imaging.

A distinctive feature of IRISeq is its ability to construct the spatial distribution of micro-beads based solely on
their local interactions, bypassing the need for pre-indexed bead arrays or imaging to decode transcript
locations. This enables the spatial profiling of large tissue sections beyond the typical size limits of
conventional methods, such as the 0.65 cm x 0.65 cm restriction with the commercial 10x Visium platform(4).
Demonstrating this capability, we constructed a large 1.5 cm x 1.5 cm bead array without subdivisions, allowing
the simultaneous profiling of two entire mouse brain coronal sections (Fig. 1I). This setup recovered a total of
14,756 receiver beads, each yielding a median of 5,329 unique transcripts and 652 unique bead-to-bead
connection oligos. Similar to its performance on the small array, IRISeq effectively mapped transcriptionally
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distinct brain regions to their precise spatial locations on the large array (Fig. 1J-L), which underscores its
efficacy in spatial transcriptomics analysis for large tissue areas.

Another unique aspect of IRISeq is its adaptable resolution, achieved by adjusting the size of the beads used
in constructing the bead array, similar to other bead-based spatial transcriptomic methods(5, 11). To illustrate
this capability, we constructed a high-resolution bead array using 5µm magnetic receiver beads. This
modification allowed for high-resolution spatial transcriptome mapping of a mouse coronal hemisection (fig.
S3G), resulting in a collection of 27,732 receiver beads, each with a median of 77 unique transcripts, and a
range of 26 to 2,620 unique transcripts per bead, comparable to published Slide-seqV2 (bead size of 10µm)
(11) (fig. S3H). Despite the reduced bead size, the connection signals between beads enabled the precise
reconstruction of the global distribution of most sender beads and detailed mapping of gene expression
features with high specificities, such as Ttr in the ventricle and Neurod6 in the hippocampus, aligning with data
from published spatial transcriptomics(21) (Fig. 1M). This demonstration confirms the versatility of IRISeq for
spatially mapping molecular distributions at various resolutions and scales.

In summary, the IRISeq platform distinguishes itself from traditional spatial genomic methods through several
unique features: (i) Cost-effectiveness: IRISeq is significantly more affordable than commercial platforms,
costing approximately $30 per tissue section (or less than $1 per mm²) (Fig. 1B), compared to over $1,000 per
section typically required by other methods(22). (ii) Scalability: the ability to process multiple tissue sections in
a large-area array facilitates comparative studies of various conditions and replicates within the same
experiment. (iii) Optics-free spatial mapping: By relying on local neighborhood interactions for spatial
reconstruction, IRISeq is particularly well-suited for profiling large tissues, such as human brains, without the
need for imaging. (iv) Adjustable resolution: IRISeq offers flexibility to explore cellular interactions at different
scales by varying bead sizes. This adaptability makes IRISeq a versatile tool suitable for a wide array of
research applications.
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Figure 1: Overview and Validation of the IRISeq Platform. (A) Schematic illustrating the IRISeq
experimental pipeline utilizing barcoded gel beads (‘receiver beads’) to capture mRNA expression from nearby
cells, along with barcoded oligos from adjacent ‘sender beads’ for spatial localization. (B) Pie chart detailing
the reagent cost breakdown for profiling a tissue section using a 0.6 cm x 0.6 cm bead array. (C) Diagram
showing the generation of gene count and bead-bead connection matrices from IRISeq data to identify
region-specific gene expression and infer bead spatial locations for image reconstruction. (D) Depiction of a
small-scale IRISeq experiment using a 0.6 cm x 0.6 cm bead array to profile a mouse brain hemisection. (E)
Box plots displaying the distribution of unique transcripts and genes detected per receiver bead in the
small-scale experiment. (F) UMAP plot showing the spatial distribution of receiver beads based on interactions
with sender beads, colored by the number of unique transcripts per bead. (G) We integrated the gene
expression data of receiver beads with spatial transcriptome data from 10x Visium(20). The UMAP plot shows
the integrated gene expression clusters, with each bead colored by annotated brain regions. (H) UMAP plot
visualizing the spatial distribution of receiver beads, with each bead colored by annotated brain regions. (I)
Depiction of a large-area IRISeq experiment using a 1.5 cm x 1.5 cm bead array to profile two entire brain
sections. (J) UMAP plot of receiver beads from the large-area IRISeq experiment, colored by the number of
unique transcripts detected per bead. (K-L) UMAP plots displaying gene expression clusters (K) and
reconstructed spatial distributions (L) of receiver beads from the large-area experiment, colored by annotated
brain regions. (M) UMAP plots comparing the spatial distribution of 5 µm receiver beads in IRISeq (Top) with
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beads from published Slide-seqV2 data(21) (Bottom), colored by expression of region-specific markers Ttr and
Neurod6. IRISeq and Slide-seq2 data are normalized and scaled per bead (Methods).
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A spatially resolved transcriptome atlas of the mouse brain

With the IRISeq platform, we next conducted a spatial transcriptome analysis of the brains of adult (4-month)
and aged (23-month) wild-type C57BL/6 female mice, with three replicates per age group (Table S2). We
profiled twenty-four coronal sections in total, including one section each for the frontal and middle part of the
cortex ("Section 1" and "Section 2"), and two adjacent sections near the dorsal part of the cortex ("Section 3")
(Fig. 2A). These sections covered brain areas from the frontal part of the isocortex to the dorsal aspect of the
cortex, including the hippocampus, thalamus, hypothalamus, and other associated brain regions (Fig. 2A).
Following data processing and quality control to exclude low-quality receiver beads, we recovered a median of
6,358 receiver beads per section, resulting in a total of 128,405 spatially distinct transcriptome profiles (Fig.
2B). Of note, these samples were profiled using an earlier version of IRISeq (0.6cm x 0.6cm bead array with a
bead diameter of ~50um), which has slightly lower efficiency compared to the optimized version (protocol
details in Supplementary Note 1). Nevertheless, we successfully recovered an average of 3,682 unique
transcripts (median of 2,662) and 6,771 unique bead-bead connection oligos (median of 4,209) per receiver
bead (Fig. 2C-D).

To annotate spatially barcoded transcriptome profiles across brain regions, we utilized LIGER(23), a
non-negative matrix factorization technique, to integrate gene expression data from IRISeq with published
spatial transcriptomics datasets profiling corresponding sections (21, 24) (Methods). The spatially resolved
transcriptomes from IRISeq showed a high degree of overlap with published datasets, enabling the
identification of thirty distinct brain regions annotated from the existing studies (Fig. 2E, fig. S4A). Based on
bead connection data, we reconstructed the spatial distribution of each receiver bead across different
sectioning regions. This reconstruction accurately mapped the receiver beads to specific brain regions,
consistent with their gene expression-based annotations and with the published spatial transcriptome datasets
(Fig. 2F, fig. S4B). The region-specific gene expression signatures, such as Plp1 for white matter, Drd1 for the
caudate putamen, and Ttr for the ventricles, further validated the accuracy of the spatial reconstruction (Fig.
2G). These results underscore the capacity of the IRISeq platform to recover region-specific molecular
signatures without reliance on pre-indexed oligo arrays or optical imaging.

To further investigate the spatial distribution of brain cell types, we utilized RCTD (25), a supervised learning
approach that integrates spatial expression data with single-cell transcriptome data for mapping region-specific
distribution of heterogeneous cell types. RCTD computes mean gene expression profiles for each cell type
from the scRNA-seq dataset and generates a spatial cell type map by representing each spatial
transcriptomics pixel as a linear combination of these cell types. Using RCTD, we integrated the spatial
transcriptomics data from IRISeq with our previously published brain single-cell transcriptome dataset that has
identified over 300 distinct cell subtypes across different age stages(20). This integration effectively mapped
known brain cell types and subtypes across various regions, such as oligodendrocyte subtypes in white matter,
striatal neurons in the caudate putamen, and choroid plexus epithelial cells in the ventricles (Fig. 2H). As
further validation, we observed a high consistency in cell-type-specific locations inferred by IRISeq compared
to a spatial transcriptomics dataset generated using the 10X Visium platform (20) (fig. S5).

Through differential analysis, we identified highly region-specific gene features and cell types (Fig. 2I-J, Table
S3-4). For instance, genes like Ccdc153 and Rarres2 were highly enriched in the ventricular areas of sections
2 and 3, consistent with previous findings (26, 27). However, section-specific features were also evident, such
as the enriched expression of Enpp2 only in section 3. Similarly, cell type distributions varied by section; OB
neuroblast (OBN1-17) enrichment only appeared in section 2, corresponding with its prevalence in the
subventricular zone(28). This analysis highlights the necessity of sampling multiple brain regions to accurately
map the spatial distribution of heterogeneous cell types.
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Figure 2: Spatial transcriptomic analysis of mouse brain aging using IRISeq. (A) Schematic of IRISeq
profiling across various brain regions, including the frontal isocortex, dorsal cortex, hippocampus, thalamus,
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hypothalamus, and additional associated regions. "Section 1" and "Section 2" are for the frontal and middle
part of the cortex and "Section 3" is near the dorsal part of the cortex. (B) Barplot showing the number of
spatially barcoded receiver beads recovered per mouse individual. (C-D) Boxplots showing the number of
unique transcripts (C) and unique bead-bead interactions (D) detected per receiver bead, aggregated across
all brain sections for each mouse individual. (E) UMAP plots showing the gene expression clusters of receiver
beads integrating IRISeq data with published spatial transcriptomics datasets (21, 24), colored by annotated
brain regions. (F) Image reconstruction of all receiver beads derived from bead-bead connections, with coloring
corresponding to the annotated regions based on gene expression shown in (E). (G-H) Similar to (F), but each
bead is colored according to the expression of region-specific gene markers (G) or cell type weight (H)
representing cell type abundance by RTCD analysis (25). (I) Heatmap showing the gene expression specificity
across regions, with expression data aggregated, normalized, and scaled for each region. (J) Cell type
distribution across regions, showing sub-cluster IDs from the previous single-cell study (20). Cell type weight is
calculated using RCTD(25), integrating published single-cell data(20) with IRISeq data, then regional subtype
proportions are aggregated, normalized, and scaled. Cell type abbreviations: DGN: Dentate Gyrus Neurons.
CtxPN1: Cortical Projection Neurons 1. Endo: Endothelial Cells. Astro: Astrocytes. IMN: Interbrain and
Midbrain Neurons. VLMC: Vascular Leptomeningeal Cells. Oligo: Oligodendrocytes. OBN: Olfactory Bulb
Neurons. StrN: Striatal Neurons. HabN: Habenula Neurons. Epen: Ependymal Cells. ChPec: Choroid Plexus
Epithelial Cells. Micro: Microglia.
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Age-associated changes in region-specific gene expression programs

We next investigated aging-associated gene expression changes by conducting differentially expressed gene
(DEG) analysis across thirty brain regions, identifying 274 genes upregulated and 245 downregulated (FDR of
0.05 with more than three-fold changes between aged and young brains) (Fig. 3A, Table S5). These changes
showed distinct region-specific patterns (Fig. 3B-C, fig. S6A). For instance, Sult1c1, associated with
detoxification, hormone regulation, and inflammation(29), showed more than a fivefold increase in the aged
ventricular region of section 3. Clec18a, known for its roles in metabolic and immune responses(30), was
uniquely upregulated in the aged habenular region. In contrast, the aged hypothalamic region displayed a
significant decrease in Hcrt expression, which is linked to changes in sleep-wake cycles and appetite control in
aging(31). The observed age-related, region-specific gene expression changes were further validated using
the 10x Visium platform(20) (fig. S6B).

Notably, we identified 92 downregulated and 47 upregulated genes exhibiting consistent aging-associated
changes across more than ten brain regions. Genes showing global downregulation were primarily associated
with mitochondrial function (e.g., mt-Ta, mt-Ts2, mt-Tf, mt-Tq), oxidative phosphorylation (e.g., Ndufa1, Ndufa3,
Cox8a, Cox6c), and ribosomal functions (e.g., Rpl30, Rps15a, Rps17) (Fig. 3B-D). These findings are
consistent with previous studies (32, 33), indicating significant declines in energy production, cellular
metabolism, and protein synthesis in aged brains. Additionally, alterations in genes related to neuronal
modulation and signaling (e.g., Ntsl, Npy, Cck, Tac2) suggest potential age-related disruptions in
neuromodulatory cells, particularly in neuronally enriched regions such as the cortex and the diverse
neuromodulatory area of the hypothalamus, which is further confirmed by the published 10x Visium dataset
(20) (fig. S7A-B).

The 47 genes upregulated across various aged brain regions were significantly enriched in immune response
pathways, including the complement pathway (e.g., C4b, C1qa), interferon response (e.g., Isg20, Ifi27, Ifit3),
and antigen presentation (e.g., Psmb8, H2-Q7, B2m, H2-K1) (Fig. 3B-D). This upregulation, consistent with
previous studies (32, 34), indicates increased neuroinflammation with age. These immune responses were
particularly pronounced in the ventricles, white matter, and regions abundant in meningeal, endothelial, and
ependymal cells (Fig. 3D-E), indicating the crucial roles of the blood-brain and blood-CSF barriers in
neuroimmune dysfunction associated with aging. Additionally, there was a significant upregulation of genes
related to tissue structural integrity (e.g., Col6a1, Col6a2, Hapln2), suggesting age-related extracellular and
intracellular structural remodeling that could affect tissue integrity and cellular function (fig. S7A-B).

Focusing on the ventricles, a primary site of inflammation in brain aging (32), we identified significant
alterations in gene expression between young and aged brains (Fig. 3F). The down-regulated genes are
predominantly involved in protein synthesis (e.g., Rpl35a, Rpl34, Rps28), mitochondrial function (e.g., Cox8a,
Cox7b), and neurogenesis (e.g., Hdac8, Stau1, Romo1). For example, Hdac8, linked to DNA stress response,
impacts neural stem cell proliferation in the subventricular zone (35), while Stau1 plays a critical role in neural
progenitor cell renewal by regulating mRNA stability (36). Conversely, up-regulated genes highlight an increase
in immune response and inflammation (e.g., C1qa, C1qb, Ctss, Ifit3), antigen presentation (e.g., B2m, H2-D1),
glial activation (e.g., Gfap), and non-coding RNA expression (e.g., Neat1). These changes suggest a state of
chronic inflammation and heightened immune activity in the ventricles, associated with neurodegenerative
processes in the aging brain(37). Remarkably, the gene expression changes were highly consistent across
different ventricular regions from two coronal sections, demonstrating the robustness of our platform in
identifying region-specific vulnerable genes in aging (Fig. 3G).
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Figure 3: Age-associated changes in region-specific gene expression programs. (A) Bar charts depict
the number of genes differentially expressed (DE) between adult and aged animals across various brain
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regions, categorized as upregulated (red) and downregulated (blue). DE genes are defined by more than
three-fold changes between the ages with an FDR-adjusted p-value < 0.05. (B) Barplot displays the distribution
of down-regulated (top) and up-regulated (bottom) DE genes across regions, highlighting genes consistently
altered in more than ten brain regions, grouped by pathway. (C) Heatmap showing the log2-transformed fold
changes in normalized gene expression between aged and adult animals for DE genes across different brain
regions, distinguishing shared changes (left) from region-specific changes (right). (D) Barplots showing the
scaled expression and standard error of gene modules related to ribosomal genes, mitochondrial function, the
interferon response, and immune activation across brain regions in both adult (blue) and aged (red) conditions.
Gene inclusion for each module is detailed in panel (B). Expression values for each pathway were calculated
by aggregating and normalizing pathway-related gene expressions, followed by log transformation and scaling.
(E) Reconstructed spatial maps display the expression levels of gene modules associated with the
complement and interferon response pathways in adults (top) and aged animals (bottom) for Sections 2 (left)
and 3 (right). (F) Volcano Plot showing differentially expressed genes in the ventricles of Section 3 when
comparing aged versus adult samples, with significant changes highlighted in red. (G) Scatter plots compare
the alterations in differentially expressed genes between ventricle regions from Sections 2 and 3, including a
linear regression line. Only DE genes that are identified in both sections are shown.
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Age-associated changes in the spatial distribution and interaction of different cell types

Using the cell-type-specific deconvolution approach RTCD(25) as previously described, we integrated IRISeq
spatial expression data with a published single-cell transcriptome dataset (20). This integration enabled us to
map previously annotated brain cell types and subtypes across various brain regions, identifying both
widespread and region-specific cell types (Figure 2J). We also conducted differential abundance analysis to
explore region-specific cell population dynamics during aging. Additionally, by analyzing cell-cell co-locations
on the same bead, we quantified cell-cell interactions and examined changes in these interactions across
regions (Methods, Figure 4A).

To analyze age-associated changes in the spatial distribution of cell types, we quantified cell-type-specific
fractions across each of the thirty reconstructed brain regions. Using differential abundance analysis between
adult and aged conditions (Methods), we identified 170 region-specific differentially abundant cellular subtypes
(1.5-fold change between ages with an FDR of 1e-5) (Figure 4B-C, Table S6). Notably, these
aging-associated subtypes are largely altered in one or two unique regions (Figure 4D). For cell types that
changed in multiple regions, their expansion or depletion was consistent across regions (Figure 4E).
Moreover, despite the deconvolution pipeline not accounting for aging-associated cell dynamics, a comparison
between the top region-specific cell population changes in the IRISeq spatial dataset and the published
scRNA-seq dataset (20) showed high consistency, validating the reliability of our cell type deconvolution
pipeline and regional cell abundance analysis (Figure 4F).

Compared to single-cell analysis, spatial transcriptome analysis offers unique advantages for identifying
region-specific cell population alterations in the aged brain. For example, the most depleted populations in the
aged brain included OB neuroblasts (OBN 1-11, marked by Prokr2 and Robo2(38, 39)) and OB neuronal
progenitor cells (OBN 1-17, marked by Mki67 and Egfr(40)), both detected primarily in the reconstructed
ventricle regions from section 2 (Fig. 4C). This aligns with the well-known location of adult neurogenesis along
the walls of the lateral ventricles (28). In contrast, oligodendrocyte precursor cells (OLG-6, marked by Prom1
and Tcf7l1 (40, 41)) were depleted in aged white matter and ventricle regions, indicating impaired
oligodendrocyte differentiation with age (Fig. 4C). Additionally, various vascular and blood cell types, including
Myocd+ vascular smooth muscle cells (Myocd+ vSMC, EC-9), Cxcl12+ endothelial cells (EC-6), Nefh+
endothelial cells (EC-5), and Hbb-bs+ erythrocyte progenitor cells (EC-13) were significantly depleted (Fig.
4C), consistent with age-related declines in blood flow, energy supply, and neurovascular functions (42). The
depletion of these cell types corresponds with global cell population changes (Fig. 4F), indicating
region-specific dysregulation of the vascular system in aging.

Meanwhile, several cell subtypes significantly expanded across different regions in the aged brain (Fig. 4B-C).
These included a microglia subtype (MG-9, Apoe+, Csf1+), identified as disease-associated microglia
('DAM')(43), and a reactive oligodendrocyte subtype (OLG-7, C4b+, Serpina3n+ (44, 45)), both predominantly
found in the white matter and ventricle regions, validated by the 10x Visium dataset (20) (Fig. 4C, Fig. S8A-B).
This expansion aligns with the notably upregulated inflammatory response in these areas (Fig. 3D).
Furthermore, we observed a region-specific expansion of Lyz2+ border-associated macrophages (Lyz2+ BAM,
MG-11) around the meningeal regions (Fig. 4C). This cell type is known to degrade the extracellular matrix,
contributing to vascular function defects (46, 47), which is consistent with the observed depletion of endothelial
cells in the same region (Fig. 4C).

Leveraging the IRISeq platform, where each bead captures transcriptomes from multiple cells within the same
neighborhood, we quantified the colocalization of two cell subtypes around the same beads to assess local
cellular spatial interactions (Methods). We next conducted a differential analysis to identify cell-cell spatial
interactions that are significantly altered with aging across various brain regions. This analysis revealed a total
of 499 cell-cell spatial interaction pairs that are either significantly upregulated or downregulated in aging
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(1.5-fold change between ages with an FDR of 1e-5), prominently in regions such as the cortical associated
area, olfactory/striatal area, amygdala, and white matter region (Fig. 4G, Table S7).

While most aging-associated changes in cell-cell interactions are highly region-specific (Fig. S9A), we
identified several interaction pairs that consistently occur across multiple regions (Fig. S9B). For example, in
the aged white matter, we observed a significant decrease in interactions between oligodendrocyte precursor
cells (OLG-6) and Gfap-low Fact2-high astrocytes (Astrocyte-12) across different sections (Fig. 4H, Fig. S9C),
corresponding with their reduced abundance in these regions during aging (Fig. 4C). Conversely, we noted a
notable increase in interactions among three cell types: disease-associated microglia (‘DAM’, MG-9), reactive
oligodendrocytes (OLIG-7), and Gfap-high activated astrocytes (Astrocyte-9), which are involved in astroglial
activation and gliosis during aging and neurodegeneration (48) (Fig. 4H-I, Fig. S9C). The up-regulated
co-localization of these cell types in the aged white matter could form a potential “DAM niche”, which we further
validated by the 10x Visium technique (Fig. S9D).

To assess whether the increased spatial interaction of these cell subtypes is simply due to their expansion, we
performed a hypergeometric test comparing the observed number of beads with colocalized cell types against
a null model assuming random distribution within the region. The results demonstrate that the interactions
between reactive oligodendrocytes, DAM, and activated astrocytes are not only more frequent in the aged
brain but are also significantly enriched within the same neighborhood (p-values = 0.0005 and 1e-17 for
interactions between DAM and reactive oligodendrocytes, and between DAM and activated astrocytes) (Fig.
4J, Fig. S9E). As a further validation, gene signature analysis of beads within the “DAM niche” shows
significantly higher expression of markers for activated astrocytes (e.g., Gfap) and reactive oligodendrocytes
(e.g., C4b) compared to non-DAM beads from the same region (Fig. 4K), underscoring altered cellular
interaction and communication networks as key features of brain aging.
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Figure 4. Age-associated changes in region-specific cell type abundance and cell-cell interactions.
(A) Overview of the approach used to identify region-specific cellular depletion or expansion associated with
aging, and to analyze cell-cell interaction dynamics. (B) Scatter plot illustrating the number of cell types across
different brain regions showing differential abundance between adult and aged animals. Increases are shown
in orange and decreases in blue. Differentially abundant cells were defined by a 1.5-fold change with an FDR <
1e-5. (C) Heatmap illustrates the fold change in key aging-associated cell types across different brain regions.
(D) Histograms illustrating the number of cell states that significantly increased (Top) or decreased (Bottom)
across different brain regions. The x-axis represents the number of brain regions, while the y-axis shows the
count of cellular states. (E) Heatmap displays the number of brain regions where cellular states either expand
(x-axis) or deplete (y-axis) with aging. The color gradient from light to dark red indicates the number of cell
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states, with darker shades representing higher numbers. (F) This panel illustrates both global (Sziraki et al.)
and region-specific changes (IRISeq) in various cell populations with aging. Significant changes are highlighted
to show how specific cell types respond to aging in different brain regions, providing insights into the cellular
dynamics associated with the aging process. (G) Barplot depicting the number of significantly increased and
decreased cell-cell interactions associated with aging across different annotated brain regions (Significance
FDR of 1e-5 and 1.5-fold change). (H) Volcano plot showing significant enrichment and depletion of cell-cell
interaction changes in aged versus adult white matter, across two anatomically distinct white matter regions in
sections 2 and 3, highlighting significantly changed cell-cell interactions in aging. (I) Representative spatial
maps depicting white matter regions in two sections from the adult and aged brain. The top panels show
representative maps of white matter regions from adult and aged brains. Middle panels display beads
indicating colocalization of reactive oligodendrocytes and DAM. The bottom panels show beads with both
reactive oligodendrocytes and activated astrocytes. (J) Histogram illustrating the null distribution of beads with
both cell types assuming random distribution, with a dashed line marking the observed number. (K) Volcano
plots compare gene expression in beads with or without DAM in the white matter of Section 3, highlighting the
top differentially expressed genes.
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Discussion

The rapid advancement of spatial transcriptomics technologies has revolutionized our ability to map the
locations and interactions of heterogeneous cellular states in situ(1–10), particularly in the context of aging or
disease. However, most current approaches, especially imaging-based methods, often prioritize resolution at
the expense of throughput and time, typically restricting analyses to specific tissue regions and limiting their
utility across various conditions and replicates.

To address these limitations, we introduce IRISeq, an optics-free spatial profiling platform that leverages
"spatial interaction mapping by indexed sequencing". IRISeq bypasses the need for imaging or pre-indexed
arrays, allowing multiple sections to be processed in a single day at significantly reduced costs—approximately
$30 per tissue section—without requiring complex equipment. Furthermore, its optics-free design is particularly
suited for mapping large tissue areas exceeding 1cm², which are traditionally limited by imaging speed and the
constraints of pre-indexed arrays. Additionally, IRISeq offers adjustable resolution based on bead size (ranging
from 5 to 50 µm), enhancing its flexibility and user-friendliness. These features make IRISeq a versatile and
accessible tool for a wide range of applications, from basic research to clinical diagnostics.

Using the IRISeq platform, we explored age-related changes in gene expression and cellular dynamics across
thirty regions of the mouse brain. Our findings indicate a general down-regulation of genes associated with
mitochondrial activity, ribosomal function, and neuronal modulation across almost all regions. Conversely,
genes related to the complement and interferon pathways, as well as inflammation markers, were
predominantly up-regulated in specific areas such as the ventricles and white matter. This regional specificity
aligns with previous reports highlighting increased susceptibility to aging in these locations(34, 49).

Further cell-centric analysis pinpointed precise region-specific changes in cell populations. For example, we
observed a marked depletion of neurogenesis-related cells in the subventricular zone and oligodendrocyte
precursor cells in the white matter and ventricles, corroborating earlier studies(50). Additionally, our analysis
uncovered significant changes in other cell types, such as the expansion of border-associated macrophages
(BAM) and the concurrent depletion of Gfap-low Fact2-high astrocytes and vascular endothelial cells in the
aged meninges. Moreover, we developed a computational pipeline to analyze local cell-cell interactions by
assessing the co-localization of two cell types on the same beads. This approach revealed that in the aged
white matter, not only is there an expansion of disease-associated microglia, reactive oligodendrocytes, and
activated astrocytes, but there is also a significant increase in their co-localization, independent of changes in
their abundance. This observation aligns with findings from previous imaging-based studies(34) and validates
the effectiveness of our platform in detecting region-specific alterations in cellular networks during aging.

IRISeq is a highly optimized platform for spatial transcriptomics, yet there are opportunities for further
improvement. Currently, the method does not provide isolated single-cell information. However, it is readily
compatible with nuclei hashing techniques that can extend its capabilities to direct spatial analysis at the
single-cell level (51). Additionally, IRISeq can be integrated with methods to profile proteins(52) and epigenetic
landscape(53), broadening its application spectrum. A current limitation lies in the image reconstruction
process, which relies on the stochastic UMAP algorithm(19). This results in digital approximations that do not
exactly replicate the original images. Despite this, the technique robustly maps the relative locations of different
anatomical regions, as confirmed through comparisons with the 10x Visium platform. It's important to note that
our downstream biological analyses—including transcriptome annotation, cell population dynamics, and
cellular interaction studies—remain unaffected by these imaging constraints.

In summary, IRISeq demonstrates significant potential for detailed mapping of region-specific molecular
signatures, cell population dynamics, and local cell-cell interactions across varied and complex biological
landscapes. Its capacity to reconstruct images based solely on sequencing local DNA interactions allows for

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 8, 2024. ; https://doi.org/10.1101/2024.08.06.606712doi: bioRxiv preprint 

https://paperpile.com/c/Ru421P/JYBm+94da+KXY8+DSpo+0Jgp+IZl6+bIh0+ytKZ+Kc4E+NkQ5
https://paperpile.com/c/Ru421P/XwUW+hIZ5
https://paperpile.com/c/Ru421P/sLX9
https://paperpile.com/c/Ru421P/hIZ5
https://paperpile.com/c/Ru421P/ms2J
https://paperpile.com/c/Ru421P/2k83
https://paperpile.com/c/Ru421P/YLfk
https://paperpile.com/c/Ru421P/7jPu
https://doi.org/10.1101/2024.08.06.606712
http://creativecommons.org/licenses/by-nc-nd/4.0/


profiling of tissues without size constraints and across varied resolutions. Looking ahead, the high-throughput,
cost-effective nature of IRISeq positions it as a transformative tool for comprehensive spatial mapping of entire
organs or organisms, across various genders, ages, and disease states. This opens new possibilities for
identifying region-specific vulnerabilities linked to different diseases, enhancing our understanding of complex
biological systems.
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Supplementary Materials

Materials and Methods:

Animals

C57BL/6 wild-type mice were acquired from the Jackson Laboratory and the National Institute on Aging colony
at Charles River. All mice were housed under standard conditions, with groups matched for sex and age. Brain
tissues were collected from mice at 23 months (n=3) and 4 months (n=3), including three females in each
group. Mice were socially housed. All animal procedures complied with institutional, state, and federal
regulations, and were approved under IACUC protocols 21049 and 20047. Comprehensive metadata for each
animal, including individual ID, sex, age, birth, and euthanasia dates, are detailed in Table S2.

IRISeq library preparation

Detailed step-by-step IRISeq protocol is included as a supplementary protocol (Supplementary Note 1).

Computational procedures for processing IRISeq libraries

Beads Connections Processing

Following the sequencing process, data from two beads—receiver beads and sending beads—were obtained,
with unique molecular identifiers (UMIs) used to identify and quantify individual connection molecules. Reads
were classified into R1 (receiver bead barcodes) and R2 (sender bead barcodes), and mapped to a whitelist of
barcodes with a 1 base pair error tolerance. Duplicated reads were filtered out based on UMIs, and a CSV file
was generated containing the receiver bead barcode, UMI, and sender bead barcode, where each line
represented a unique molecular connection between beads.

To ensure data quality, connections between beads with fewer than 7 UMIs were filtered out. A matrix was then
generated, with each row representing a receiver bead, each column representing a sender bead, and the
values corresponding to the number of UMIs for each connection. Principal Component Analysis (PCA) was
applied to this matrix to reduce dimensionality while preserving variance, using an elbow plot to determine the
optimal number of principal components, typically capturing around 80% of the variance. Subsequently,
Uniform Manifold Approximation and Projection (UMAP) was performed on the PCA matrix to further reduce
dimensionality, using parameters such as a minimum distance of ~0.2 and approximately ~20 neighbors to
obtain a square-shaped projection. UMAP coordinates for each receiver bead were saved in CSV files for
spatial mapping. For larger arrays, UMAP was run on a GPU with increased training epochs (from ~500 to
~10,000 or more) to handle the larger data matrix. Additionally, for large array analysis, density-based spatial
clustering of applications with noise (DBSCAN) was applied post-UMAP to remove several erroneously
mapped beads (54). A detailed workflow is summarized in Figure S2.

cDNA Data Matrix processing

After the sequencing process, the data is obtained as two sets of fastq files. The first set of fastq files
(R1.fastq) contains the barcode sequences for receiver beads along with their associated UMIs, while the
second set of fastq files (R2.fastq) contains the tagmented cDNA sequences. The barcode sequences from
R1.fastq are mapped to a whitelist of bead barcodes with a tolerance of one base pair error, and the identified
bead barcode is added as an identifier for the corresponding sequences in R2.fastq. New Read2 files are then
generated, incorporating the corresponding Read1 barcodes in the sequence names, and any PolyA tails
present at the end of the sequences are trimmed for accurate mapping and analysis. The filtered and trimmed
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reads are mapped to the reference genome using STAR (Spliced Transcripts Alignment to a Reference) (55) to
align the sequences from R2 to the genomic sequences, identifying their locations and potential splice sites.
Duplicate reads are identified and removed post-mapping to eliminate redundant data and ensure accuracy in
downstream analysis, resulting in new SAM files containing the mapped reads with duplicates removed.
Finally, gene count matrices are generated from the processed SAM files for each receiver bead, quantifying
the number of reads aligned to each gene and providing information about gene expression levels.

Dimensionality Reduction, Clustering, and Region Annotation

Raw data from the cDNA sequencing experiment, presented as receiver bead-by-gene expression matrices,
undergoes several preprocessing steps. The first step includes removing Beads with low UMI counts (Less
than 600 for the mouse aging dataset). The second step includes dividing the data set according to the
anatomical sections by which tissue sections were cryosectioned. LIGER objects are constructed by first
normalizing the number of UMIs (23). Then 2000 highest variable features are selected for each tissue section,
followed by scaling of gene expression features. After data normalization and processing, each anatomical
data set with associated individual tissue sections is integrated by LIGER’s non-negative matrix factorization
(iNMF) approach, followed by UMAP mapping. Louvain clustering is then performed on the normalized NMF
factor loadings. Clusters with low UMI and non-specific gene features were iteratively removed to ensure data
quality, followed by LIGER iNMF workflow to recluster and run UMAP again until no low-quality clusters were
formed.

Brain region identification was performed based on NMF factors gene markers, and also performing Wilcoxon
differential expression analysis for each identified cluster. A similar analysis scheme and data processing were
performed for IRISeq and 10X Visium integration analysis, and 10X Visium aging validation analysis. Similar
normalization and scaling were done for IRISeq high-resolution data analysis.

Large-area dataset analysis (see in Figure 1) was performed utilizing Scanpy(56) for principal component
analysis (PCA) followed by UMAP. Leiden clustering was implemented using Scanpy(56) to group beads with
similar gene expression profiles. Additionally, beads within each cluster are annotated by utilizing differential
gene expression analysis for each cluster, and associated cluster-specific genes to known cell type and/or
brain regions, along with utilizing genes and/or cluster mapping onto spatial anatomical location.

Differential Expression Analysis

In our differential expression (DE) gene analysis, we employed the likelihood ratio test to identify aging
differential expression for specific regions using Monocle2(57). DE genes were filtered based on the following
cutoffs: q-value < 0.05, with fold change (FC) > 3 between the maximum and second expressed condition, and
with transcripts per million (TPM) > 50 in the highest expressed condition.

Cell Type Deconvolution

To perform cell type deconvolution, we applied robust cell type decomposition (RCTD) (25), a computational
method that uses cell type profiles from single-cell RNA-seq to decompose cell-type mixtures while accounting
for differences across sequencing technologies. We integrated IRISeq spatial expression data with a single-cell
transcriptome dataset from an earlier study (20) following parameters suited for ~50 µm-sized spots and
excluded cell types not present in the microdissected sections.

Differential Abundance Analysis
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To perform cell abundance analysis across different regions, first, RTCD maximum-likelihood cell type
proportions are binarized by assigning them into one of five categories: values less than 0.05 were categorized
as 0, values between 0.05 and 0.2 as 1, values between 0.2 and 0.6 as 2, values between 0.6 and 0.8 as 3,
and values greater than 0.8 as 4. This method allowed for the transformation of continuous proportion data into
discrete categories, facilitating subsequent analysis and visualization. After this, a count matrix of receiver
bead by cell subtypes is obtained. We later counted the number of cells for each cell subtype and normalized
these counts against the total cell number. For differential abundance analysis of cell subtypes, we used the
negative binomial model, a common approach for differential gene expression analysis that is well-suited for
count data and large-scale datasets. We used a likelihood-ratio test to identify differentially abundant cell
subtypes, employing the differentialGeneTest() function of Monocle2 (version 2.28.0) (57).

For fold change calculations, we first normalized the cell counts for each cell subtype relative to the total cell
count in each condition. We then compared these normalized values between case and control conditions,
adding a small numerical value (10^-6) to reduce noise from very small clusters. To classify a cell subtype as a
"significantly changed cell subtype," we set criteria of a maximum false discovery rate of 1e-5 and a fold
change greater than 1.5 between conditions. We quantified the abundance of aging-associated cell subtypes in
the different annotated brain regions by performing differential abundance tests comparing adult and aged
samples. Recognizing that variations in one cell subtype can influence the relative proportions of others,
particularly static cell subtypes, our analysis focused on cell subtypes exhibiting significant changes—more
than a 1.5 shift in population during aging. This approach is based on the observation that many significantly
changed cell clusters correspond to rare cell states and represent a small portion of the global cell population.
Consequently, even if these changing cell subtypes have a substantial impact on others, we expect the overall
relative proportion shifts to remain within a two-fold range.

Cell-cell interaction analysis

To assess whether the increased spatial interaction of specific cell subtypes is due to their expansion, we
performed a hypergeometric test. This test compared the observed number of beads with colocalized cell types
against a null model that assumes a random distribution of cell subtypes colocalization within the region. Prior
to conducting the hypergeometric test, we created a new receiver bead by cell-cell interaction matrix. We
generated this matrix by first filtering out low RTCD likelihood probability values (< 0.05) for subtype
deconvolutions. Next, we conducted a pairwise analysis of cell subtype co-existence on the same bead. If two
cell subtypes had a positive value after filtering out low RTCD likelihood probability values, we added a count
of 1 to the corresponding cell-cell interaction column. Using the hypergeometric test we defined the total
number of beads within the region (N), the number of beads with a specific cell subtype-subtype interaction (k),
the number of beads where colocalization is observed (n), and the number of beads with the other interacting
cell subtype (x). The hypergeometric probability 𝑃 ( 𝑋 = 𝑥 ) was calculated as:

This formula determined the likelihood of observing the number of colocalized cell subtypes under the null
hypothesis.
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Supplementary Text
Fig. S1 to S9

Fig. S1. Bead Generation and Barcoding in IRISeq. (A) Schematic illustrating the generation of barcoded
hydrogel beads (‘sender beads’ and ‘receiver beads’) through combinatorial indexing. (B) Diagram showing the
dual interaction between sender and receiver beads for capturing RNA from tissue samples and indexing
spatial locations on the array.
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Fig. S2. IRISeq computational pipeline. Customized computational pipeline outlining the derivation of two
matrices from each IRISeq experiment. The gene count matrix captures gene expression for each bead, while
the bead-bead connection counts matrix infers bead locations for image reconstruction.
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Fig. S3. IRISeq quality control and performance comparison. (A) The top panel displays the distribution of
unique bead-bead interactions per receiver bead. The bottom panel shows the distribution of connected sender
beads per receiver bead, with the median indicated by a dashed line in both panels. (B) UMAP plots compare
the spatial distribution of receiver beads from a small-scale IRISeq experiment (left) with 10x Visium data
(right), colored by the expression of region-specific markers Ttr (ventricle region, top) and Hpca (hippocampus
region, bottom). (C) UMAP plot showing the integrated gene expression profiles from IRISeq receiver beads
and 10x Visium spots, colored by assay type. (D) UMAP plot illustrating spatial distribution colored by
annotated brain regions, similar to Figure 1G. (E) UMAP plot showing the reconstructed spatial distribution of
receiver beads from IRISeq, with beads colored according to the number of unique interaction oligos with a
selected sender bead, validating the spatial reconstruction pipeline. (F) Histograms depicting Euclidean
distances (in Figure S3E) between pairs of receiver beads connected to the same sender bead (left) versus
distances between randomly selected receiver beads (right). (G) UMAP plot visualizing the spatial distribution
of 5 µm receiver beads in a high-resolution IRISeq experiment, colored by the number of unique transcripts per
bead. (H) Boxplot comparing the number of unique transcripts per bead in IRISeq (based on 5 µm beads)
versus Slide-seqV2 data (based on 10 µm beads).
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Fig. S4. IRISeq region annotation and published datasets comparison. (A) UMAPs by gene expression
comparing IRISeq data with published spatial transcriptomics datasets (24). The left panels show the gene
expression profiles colored by techniques (IRISeq, ‘ST’ for spatial transcriptomics, ‘Visium’ for 10X Visium),
while the right panels color the beads by gene expression clusters specific to each brain region. (B) The left
panels depict UMAPs showing the reconstructed spatial distribution of receiver beads from IRISeq, colored by
gene expression clusters. The right panels display the spatial distribution of transcriptome profiles from
published datasets (20, 24) (‘ST’ for spatial transcriptomics, ‘Visium’ for 10X Visium), with coloring
corresponding to the annotated brain regions as identified in the gene expression clustering in (A).
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Fig. S5. Comparison of cell subtype distributions between IRISeq and 10X Visium. (A) UMAP plots
showing the reconstructed spatial distribution of receiver beads from IRISeq, colored by cell type weight. Each
plot highlights specific cell types, including Choroid Plexus Epithelial Cells (Subtype 2), Striatal Neuron 1
(Subtype 6), and Oligodendrocytes (Subtype 10), indicating the abundance of these cell types as determined
by RTCD analysis(25). (B) Corresponding UMAP plots showing the spatial distribution of transcriptomes
generated using 10X Visium (20), also colored by cell type weight for the same cell types as in panel (A).
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Fig. S6: Region-specific gene expression changes in aging. (A) Bar plots displaying the scaled expression
and standard error of selected genes (Sult1c1, Clec18a, Hcrt) across brain regions, comparing adult (blue) and
aged (red) conditions. The expression values are normalized by the total UMI count per bead and
log-transformed. (B) Spatial distribution of transcriptomes from published 10x Visium data(20), depicting gene
expression in adult (top) and aged (bottom) brain sections. Maps are colored by the normalized expression of
genes selected in (A), highlighting areas of interest where these genes are predominantly expressed.
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Fig. S7. Downregulated and upregulated gene modules exhibiting consistent aging-associated
changes across multiple brain regions (A) Bar plots display the scaled expression and standard error for
gene modules associated with the neuronal modulation and signaling, tissue structural integrity, and antigen
processing pathways across various brain regions in adult (blue) and aged (red) conditions. Specific genes
within each module include Neuronal modulation and signaling -[Sez6, Nts, Asic2, Pdyn, Npy, Cck, Rab37,
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Lrrc7, Slc32a1, Tac2, Gng13, Npy, Syt17, Hcrt], Tissue structural integrity -[Col6a1, Col6a2, Col9a2, Vim,
Hapln2], and Antigen Processing -[Psmb8, Psmb9, Ctss, H2-K1, H2-Q7, H2-D1, H2-Eb1, B2m, Cd74, Tap1,
Tap2]. (B) Similar bar plots show expression levels derived from published 10x Visium data (20), comparing
adult (blue) and aged (red) samples across corresponding brain regions. For both (A) and (B), expression
values were aggregated from pathway-related genes, normalized, log-transformed, and scaled to facilitate
direct comparison across conditions and regions.

Fig. S8. Region-specific alterations of cellular abundance in brain aging. (A) Representative spatial maps
depicting white matter regions in Section 3 of both adult and aged brains (Left). The right panels display beads
colored by cell type-specific weight from RTCD analysis, which integrates IRISeq data with a single-cell
transcriptome atlas. From left to right, the maps show overall white matter localization and distributions of
disease-associated microglia (‘DAM’), reactive oligodendrocytes (‘Reactive Oligo’), and activated astrocytes
(‘Activated Astro’) in adult (top row) and aged (bottom row) conditions. (B) The left panel illustrates the spatial
distribution of transcriptomes across various brain regions in the adult and aged brain, color-coded by region.
The right series of panels display the distribution of DAM, reactive oligodendrocytes, and activated astrocytes,
colored by their relative abundance from RTCD analysis that integrates Visium data (20) with the single-cell
transcriptome atlas, shown for both adult and aged samples.
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Fig. S9. Region-specific alterations of cell-cell interactions in aging. (A) Histograms illustrating the
number of cell-cell interactions that significantly increased (Top) or decreased (Bottom) across different brain
regions. The x-axis represents the number of brain regions, while the y-axis shows the count of cell-cell
interactions. (B) Heatmap displays the number of brain regions where each cell-cell interaction either expands
(x-axis) or depletes (y-axis) with aging. The color gradient from light to dark red indicates the number of
cell-cell interactions, with darker shades representing higher numbers. (C) Heatmap showing the normalized
gene expression in DAM, reactive oligodendrocytes, activated astrocytes, and the corresponding main cell
types. (D) The left panel illustrates the spatial distribution of transcriptomes across various brain regions in the
adult and aged brain, color-coded by region. The right series of panels display the distribution of beads
indicating colocalization of reactive oligodendrocytes and DAM, colocalization of reactive oligodendrocytes and
activated astrocytes, and colocalization of DAM and activated astrocytes, shown for both adult and aged
samples. (E) Histogram illustrating the null distribution of beads with both reactive oligodendrocytes and
activated astrocytes assuming random distribution, with a dashed line marking the observed number.
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Tables S1 to S7

Table S1. Oligo sequences applied in the IRISeq protocol. The 96-well plates contain oligonucleotide
sequences for bead barcoding, designated for receiver and sender beads. The oligonucleotide sheets for
receiver beads include: Ligation_1_Receiver_bead, Ligation_SP, Ligation_2, Ligation_2_SP, Ligation_3,
Ligation_3_SP, and Ligation_4_Receiver_bead. The oligonucleotide sequences for sender beads are similar to
those for receiver beads, with two exceptions. Firstly, during the initial round of barcoding, TruSeq Read2 is
used in Ligation_1, and its sequences are found in the Ligation_1_Receiver_bead sheet. Secondly, Ligation_4
for sender beads differs by containing PolyA sequences instead of PolyT, with these sequences listed in the
Ligation_4_Sender sheet. The SP sequences for the first round of ligation are identical for both sender and
receiver beads. SP sequences for the fourth round of ligations, and PN2 for receiver and sender beads are
included in Supplementary Note 1.

Table S2. Metadata for mouse individuals included in the study. For each animal and tissue section, this
table describes the individual ID in the (“ID”) column, the section IDs associated with each individual in the
(“section”) column, the date of birth (“DOB”) for each animal, the (“Gender”), the date of brain tissue harvested
in (“Date harvested”), and date of library preparation in (“Date of Reverse Transcription”).

Table S3. Region-specific gene features for reconstructed brain regions. The Wilcoxon Rank Sum test in
Seurat was used to analyze region-specific gene features by comparing each annotated brain region's receiver
beads to those of all other regions(58) ("avg_log2FC") represents the log2 fold change of the average
expression between the two groups, with positive values indicating higher gene expression in the first group.
("pct.1") indicates the percentage of beads where the gene is detected in the region of interest, while ("pct.2")
indicates the percentage in the rest of the brain regions. ("p_val_adj") denotes the Bonferroni-corrected p-value
("p_val") for all genes in the dataset. "Region" refers to the brain region annotations, and "gene" shows the
gene annotations and their reported values for each specific brain region.

Table S4. Region-specific cell types for reconstructed brain regions. For each annotated brain region, it
was subsetted and binarized summed counts of cell subtype deconvolution values (as described in methods)
were aggregated and each subtype proportion across the aggregated counts is calculated and reported as a
percentage in the table. A minimum of 3% cutoff was used to generate subtype contributions to each region for
this table. (“Brain_region”) highlights the annotated brain regions, (“Cell_Subtype”) highlights the subtype ID,
and (“Percentage_contribution”) highlights (“Cell_Subtype”) contribution to the specific (“Brain_region”).

Table S5. Aging-associated differentially expressed genes across brain regions. For each gene, the
“max.condition” is the condition with the highest expression (“max.expr”). The “second.condition” is the
condition with the second highest expression (“second.expr”). The “fold.change” is the fold change between
the max expression and second max expression. The “qval” is the false detection rate (one-sided likelihood
ratio test with adjustment for multiple comparisons) for the gene differential expression test across different
brain regions.

Table S6. Aging-associated differentially abundant cell types across brain regions. For each cell state
(“cell_name”), the “max.condition” is the condition with the highest fraction of cellular abundance, calculated as
the fraction of cells multiplied by 1 million to yield the "max.TPM" (Total Part per Million). The
“second.condition” is the condition with the second highest fraction of cellular abundance (“second.TPM”). The
“fold.change” is the fold change between the max and second max fraction. The “qval” is the false detection
rate (one-sided likelihood ratio test with adjustment for multiple comparisons) for the differential abundance test
across different regions.
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Table S7. Aging-associated cell-cell interactions across brain regions. This table presents the differential
abundance analysis results of cell-cell interactions similar to the cellular abundance analysis in Table S6.
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