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Abstract
Credit value adjustment (CVA) is an adjustment to an existing trading price based on
the counterparty-risk premium. Currently, CVA is computed with an implicit
assumption that the replacement contract is default-free after the original counterparty
defaults, with the assumption that those trades will not re-assigned. In the actual
counterparty default settlement, it is the norm that trades will be re-assigned,
especially on the buy side. Since the counterparty of the replacement contract could
also default within the lifetime of an existing contract, ignoring the possibility of
counterparty defaults of replacement contracts will either under or over estimate the
cost of the risk. An important practical question is, therefore, how to estimate
under/over pricing of CVA under current practice.
In this paper, we considered the pricing of credit contingent interest rate swap (CCIRS)
or credit contingent default swap (CCDS), which is considered the CVA hedge for
interest rate swaps (IRS). We derived partial differential Eqs. (PDEs) satisfied by the
approximated CVA with the assumption that the replacement contracts do not default.
For comparison purposes, we also derived the PDEs for the cost of CVA by relaxing the
assumption of default-free replacement contracts with a finite number of counterparty
defaults. It shows that the no-default and two default cases can be derived within the
same analytical solution framework, similar to the Funding Valuation Adjustment (FVA)
problem where continuous funding is a reasonable assumption. The finite number of
default case is non-trivial. The PDE for the two default case is derived in this paper.
We calibrate our model based on market data and carry out extensive computations for
the purpose of comparing these three CVAs. Our basic finding is that the values of the
two CVAs are close for top rated counterparties. On the other hand, for counterparties
with lower credit ratings, the difference among the two CVAs can be significant.

Keywords: Credit value adjustment (CVA), Credit contingent interest rate swap
(CCIRS), Counter-party risk, Partial differential equations

Introduction
Counterparty Credit Valuation Adjustment(CVA) is defined as an adjustment to the
price when counterparty risk is considered. In recent years, CVA and other valuation
adjustments such as Debt Valuation Adjustment (DVA), Funding Valuation Adjustment
(FVA), Capital Valuation Adjustment (KVA),and Margin Valuation Adjustment (MVA),
have been driving credit trading and counterparty credit risk, funding and capital cost
management of financial institutes. As an overhaul of financial reform to address the
financial crisis, counterparty risk related regulations such as counterparty credit risk
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(CCR)/CVA regulatory capital, central clearing, and initial margin have been applied by
the regulators, fundamentally changing the financial risk management landscape of the
financial industry.
For an over-the-counter (OTC) derivative, the counterparty risk always exists.

In some of the earlier pricing literature for credit swaps, counterparty and investor
are considered to be default free as in Duffie [1] and Hull et al. [2]. Counterparty
default risk is considered in some studies, cf. Hull et al. [3] while the volatility of
the credit spread is neglected (the hazard rate is assumed to be a constant). In other
studies, volatility of the credit spread is included but the interest rate of the under-
lying asset is assumed to be a constant as in Brigo et al. [4] and Sorensen [5].
In more recent work Brigo et al. [6–8], both stochastic interest rate and hazard rate mod-
els are used. In Brigo et al. [6, 8], both investor and counterparty defaults, or “bilateral
counterparty risk", are included in the models. However, a possible correlation between
credit spread volatility and interest rate is not considered. In Assefa et al. [9], Crepey [10]
and Crepey [11], applications of bilateral counterparty risk have been discussed and
analyzed.
Currently, CVA is usually computed with an implicit assumption that the contract

will stop and exposure at default is computed without counterparty risk considered.
This assumes that the exposure is computed with a default free assumption. How-
ever, in the actual counterparty default settlement, it is the norm that trades will be
re-assigned, especially on the buy side. Even though CVA will be computed when the
trade is actually re-assigned and managed as the new counterparty exposure, the impli-
cation of trade re-assignment is not considered when the initial contract is signed.
A few studies have covered a substitution closeout which has taken into account the risk
of default of the survived party in bilateral CVA calculation, such as in Brigo et al. [12]
and also Brigo et al. [13]. On the other hand, in the FVA calculation it is the norm to
assume that the funding cost of the exposure is considered in the exposure calculation as
in Anderson et al. [14], Burgard et al. [15] and Piterbarg [16].
In this paper, we considered the pricing of credit contingent interest rate swap

(CCIRS) or credit contingent default swap (CCDS). When the reference entity defaults,
the CCIRS has the right to settle into the underlying swap. It serves as the hedg-
ing trade of counterparty risk and valued very similarly to the CVA of an IRS.
Following recent literature, we assume that both the hazard rate and the interest rate
are stochastic with a possible correlation for tractability. Our main objective is to derive
partial differential equations based model and investigate the effect of a possible second
default of the replaced counterparty, which have been neglected in the existing literature.
The basic question we addressed was whether it is justified to ignore the cost associ-
ated with defaultable replacement contract of the original CCIRS under normal market
conditions. To do so, we first solved the pricing problem of CCIRS without the possibil-
ity of a second default. We also find the price of a CVA by allowing a second default, and
compare the prices using reasonable parameter values for the interest rate and the hazard
rate. For simplicity, we restrict the number of defaults to two in this paper and the more
general case will be considered in a follow up paper.
The rest of this paper is arranged as follows. In “Credit contingent interest rate swap”

section, we establish that the pricing problem of CCIRS is equivalent to a CVA prob-
lem for interest rate swap. In “CCIRS with default-free replacement contracts” section,
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the pricing problem for CCIRS is formulated with the assumption of a default-free
replacement contract. In “CCIRS with defaultable replacement contract” section, pricing
of a CCIRS that allows a second default is considered and comparisons with the one-
default price is given. Numerical results are given in “Numerical results” section. We
conclude this paper in “Conclusion” section with a discussion of the limitations of our
method and possible directions for future research.

Credit contingent interest rate swap
An interest-rate swap is a contract between two parties where one party (e.g.
the bank) receives a fixed amount periodically in exchange for the London
Interbank Offered Rate (LIBOR) linked floating payments to the counterparty.
When a counterparty defaults, a replacement contract is established and there is a prob-
ability that the cost of the replacement contract is significantly higher than that of the
original one.
Its credit value adjustment (CVA) is the expected cost due to interest rate changes as

well as the replacement costs in the cases of defaults of both parties. In Brigo et al. [6, 8],
a general formula for pricing CVA was introduced using the following notations:

τI : default time of investor,

τC : default time of counterparty,

T : maturity of the underlying,

A = {τI ≤ τC ≤ T}, B = {τI ≤ T ≤ τC},
C = {τC ≤ τI ≤ T}, D = {τC ≤ T ≤ τI},
E = {T ≤ τI ≤ τC}, F = {T ≤ τC ≤ τI},

�(t,T) : default - free trade value at time t with maturity T ,

�D(t,T) : trade value after adjustment at time t with maturity T ,

LGDI : loss given default ratio of investor,

LGDC : loss given default ratio of counterparty,

The new price with CVA under these notations is given as:

E
{
�D(t,T)|Ft

} = E{�(t,T)|Ft}
+ E{LGDI · I(A ∪ B) · P(t, τI) · [−NPV(τI)]+ |Ft}
− E{LGDC · I(C ∪ D) · P(t, τC) · [NPV(τC)]+ |Ft},

where the first term E{�(t,T)|Ft} is the price under the assumption that both the investor
and counterparty are default-free, and the second and third terms are the replacement
costs. Ft contains the full information before time t, LGD = (1 − RecoverRate) is the
loss given default, NPV(t) is net present value of the residual payoff for the investor until
maturity from time t, P(t1, t2) is the price at t1 of a zero coupon bond matured at time t2,
i.e. the discount rate from time t1 to t2.
In this case, CVA is E{�(t,T)|Ft} − E

{
�D(t,T)|Ft

}
.
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If only counterparty risk is considered from the viewpoint of the bank (investor), the
new price due to counterparty default is:

E
{
�D(t,T)|Ft

} = E {�(t,T)|Ft}
− E

{
LGDC · I(τC < T) · P(t, τC)·[ NPV(τC)]+ |Ft

}
. (1)

Again, CVA is E{�(t,T)|Ft} − E{�D(t,T)|Ft}. Notice that CVA is always non-negative
when only the counterparty risk is taken in to account. But if the bilateral counterparty
risk exists, CVA also can be negative. More importantly, the above formulas are cor-
rect only when the swap expires at the defaults, or the counterparty of the replacement
contract is default-free.
CCIRS is a contract which can cover the loss due to the counterparty default in an

interest rate swap. Suppose the bank enters an interest-rate swap with a counterparty so
that the bank receives from the counterparty a fixed amount periodically in exchange for
the LIBOR linked floating payment from the bank. If the counterparty defaults, the bank
needs to enter another swap agreement. However, the fixed rate will likely be different
from the original one since the interest rate environment and number of remaining pay-
ments have changed. Thus, the bank bears the risk of making higher payment due to the
possibility of default of the counterparty. There is also the possibility that in case of a
default, the new rate is lower, but this scenario is of no concern to the bank from a risk
management point of view. The purchase of a CCIRS eliminates that risk, and the fair
price of CCIRS should be the expectation of the possible loss at the time when CCIRS is
issued. Therefore, the pricing problem of CCIRS is equivalent to that of a CVA problem
for interest rate swap when only counterparty risk is considered as in formula (1), under
the assumption that the replacement contract is default-free. When the counterparty
of the replacement contract is not default-free, the pricing formulae (1) underestimates
the risk.

CCIRS with default-free replacement contracts
To price a CCIRS, we first describe how an interest rate swap works and the relation-
ship between the fixed and floating legs of the swap. A swap is a derivative contract in
finance in which two counterparties enter an agreement to exchange certain benefits of
one party’s financial instrument to another. The benefits in question depend on the type
of financial instruments involved. Specifically, if the two counterparties agree to exchange
one stream of interest rate payments against another stream of payments, the derivative
is an interest rate swap. If the two counterparties sign an interest rate swap contract, then
one counterparty agrees to make fixed payments at specified times. Normally the pay-
ment is the product of the notional value, the time interval between payments and the
agreed fixed rate , i.e. Nol × �t × Rfixed. In return, it will receive a stream of payments
based on the floating rate. Similarly, the payment is normally the product of notional
value Nol, the time between payments �t and the current floating rate Rfloating(t) (take
in-arrears swap for example), which is usually an indexed reference rate (such as LIBOR)
with a fixed spread Sp (can be 0). i.e. Nol × �t × (Rfloating(t) + Sp). For example, a com-
pany signs an interest rate swap contract with a bank. The swap requires the company
to pay a fixed rate at 5% in each payment time and the company receives a payment at
the LIBOR rate in return. The notional value is $1,000,000. The maturity of the swap
is five years and payment is made semi-annually. Every half a year, the company pays
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1, 000, 000× 0.5× 5% = $25, 000 and receives 1, 000, 000× 0.5×LIBOR(t), where t is the
time when payment is made.

CCIRS pricing

In an interest rate swap, one party is required to make payments during each �t period,
from t1 to tn. Let t be the current time, the (random) default time for the counterparty
is τ , the next payment time is tk , the last payment time is tn and T is the expiry time for
the swap. K is the initial fixed rate on the fixed swap leg. If the default does not occur, the
present value of the remaining payments at time τ is Nol · Aτ (τ ,T)K , where Aτ (τ ,T) =
�ti

∑n
i=k P(τ , ti) is the remaining annuity after time τ and P(τ , ti) is the ti-maturity zero

coupon bond price at time τ . When the counterparty defaults at time τ , the payment
of the replacement contract is Nol · �tRτ (τ ,T), where Rτ (τ ,T) is the new fixed swap-
rate calculated at time τ . The present value of the remaining payments (assuming no
additional defaults) at time τ is Nol ·Aτ (τ ,T)Rτ (τ ,T). Normally a fraction of the present
value Rec can be recovered at default. Therefore, only the portion 1 − Rec needs to be
covered by CCIRS.
When the counterparty of the replacement contract is default-free, we can now write

down the cost of replacing the swap. For the counterparty paying the fixed rate, the
possible loss when τ < T is

v(τ ) = (1 − Rec) (Nol · Aτ (τ ,T)Rτ (τ ,T) − Nol · Aτ (τ ,T)K)+

= Nol · (1 − Rec)Aτ (τ ,T)(Rτ (τ ,T) − K)+;

while for the counterparty receiving the fixed rate, the possible loss is

v(τ ) = (1 − Rec) (Nol · Aτ (τ ,T)K − Nol · Aτ (τ ,T)Rτ (τ ,T))+

= Nol · (1 − Rec)Aτ (τ ,T)(K − Rτ (τ ,T))+.

The derivative price at time t is simply the discounted expected value of v(τ ) at time t
under the risk-neutral measure, i.e., v(t) = E

[
Iτ<Texp

(− ∫ τ

t r(s)ds
)
v(τ )|Ft

]
. In our case,

we only considered the price of CCIRS when the investor is paying the fixed rate. The
price at default time τ is

v(τ ) = Nol · (1 − Rec)Aτ (τ ,T)(Rτ (τ ,T) − K)+. (2)

The derivative price at time t is

v(t) = Nol·(1−Rec)·E
[
Iτ<Texp

(
−
∫ τ

t
r(s)ds

)
Aτ (τ ,T) (Rτ (τ ,T) − K)+

∣∣∣∣Ft

]
. (3)

Since both Nol and Rec are constants, we only need to compute the scaled price

E
[
Iτ<Texp

(
−
∫ τ

t
r(s)ds

)
Aτ (τ ,T) (Rτ (τ ,T) − K)+

∣∣∣∣Ft

]
. (4)

The final price can be obtained by multiplying Nol × (1 − Rec).

Model selection

Since the default time τ involves a hazard rate process, a proper model of this process
needs to be chosen. On top of that, we need to choose a proper model for the interest rate
as well. In our research, we assume the hazard rate process is the same for all counterpar-
ties with the same credit rating. Then we assume that both the interest rate and hazard
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rate follow the mean reverting Cox-Ingersoll-Ross (CIR) model (introduced in Cox et al.
(1985) [17]), a widely used model in industry. CIR model is given by

dr = a1 (b1 − r(t)) dt + σ1
√
r(t)dB1

t (5)

dλ = a2 (b2 − λ(t)) dt + σ2
√

λ(t)dB2
t (6)

where B1
t and B2

t are Brownian motions and they are correlated as d
[
B1
t ,B2

t
] = ρdt, i.e.,

the hazard and interest rates are correlated with coefficient ρ. When 2a1b1 > σ 2
1 and

2a2b2 > σ 2
2 , this model ensures the interest rate and hazard rate are always positive and

will never touch zero.

Bond pricer under stochastic short rate

Denoting the price of zero coupon bond at time t1 which matures at time t2 is P(t1, t2),
we expect

P (t1, t2) = E
[
exp

(
−
∫ t2

t1
r(s)ds

)∣∣∣∣Ft1

]
,

where r(s) is short rate at time s and it follows:

dr = a1(b1 − r(t))dt + σ1
√
r(t)dB1

t .

Since exp
(
− ∫ t1

r r(s)ds
)
P(t1, t2) is a martingale, P(t1, t2) satisfies the partial differential

equation (PDE)

∂tP + a1(b1 − r)∂rP + 1
2
σ 2
1 r∂rrP = rP (7)

with terminal condition P(t2, t2) = 1. This PDE is solved analytically as

P(t1, t2) = 	(t1, t2) exp (−B(t1, t2)r(t)) , (8)

where

	(t1, t2) =
{

2γ exp
[ 1
2 (a1 + γ ) (t2 − t1)

]

(γ + a1) {exp [γ (t2 − t1)] − 1} + 2γ

} 2a1b1
σ21

,

B(t1, t2) = 2 {exp [γ (t2 − t1)] − 1}
(γ + a1) {exp [γ (t2 − t1)] − 1} + 2γ

with γ =
√
a21 + 2σ 2

1 .

Partial differential equations

In this subsection, we derive the partial differential equations that are needed for pricing
a CCIRS.

Lemma 3.1 Assuming τ is the first jump time of a Poisson process with the intensity
process λ(t). Define V (t) as:

V (t) = E
[
exp

(
−
∫ τ

t
r(s)ds

)
f (τ )

∣∣∣∣Ft

]

where f is a real function, Ft = Gt ∪ σ(It>τ , 0 ≤ t ≤ T). All processes relevant in deter-
mining values of the spot rate and the hazard rate of default are adapted to G. Use Et[ •]
to represent E[ •|Gt] for short.
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Then we have:

V (t) = It<τEt

[∫ T

t
f (s)λ(s)exp

(
−
∫ s

t
(r(u) + λ(u))du

)
ds
]

Proof See [18], Prop 3.1.

The value of CCIRS at time t can be represented as

v(t) = E
[
Iτ<Texp

(
−
∫ τ

t
r(s)ds

)
Aτ (τ ,T)(Rτ (τ ,T) − K)+

∣∣∣∣Ft

]
.

Actually the PDE of v(t) is the direct result of Feynman-Kac theorem. We decided to
elaborate the proof here to make our paper more complete.

Theorem 3.2 Define F(t) as:

F(t) = v(t)exp
(

−
∫ t

0
(r(u) + λ(u))du

)
+
∫ t

0
f (s)λ(s)exp

(
−
∫ s

0
(r(u) + λ(u))du

)
ds,

where

f (t) = It<TAt(t,T) (Rt(t,T) − K)+ .

Here Rt(t,T) is the fixed rate for an interest rate swap, signed at time t, maturing at
time T.
Then F(t) is a martingale.

Proof Use Lemma 3.1, we have

v(t) = Et

[∫ T

t
f (s)λ(s)exp

(
−
∫ s

t
(r(u) + λ(u))du

)
ds
]

, (9)

which gives

F(t) = v(t)exp
(

−
∫ t

0
(r(u) + λ(u))du

)
+
∫ t

0
f (s)λ(s)exp

(
−
∫ s

0
(r(u) + λ(u))du

)
ds

= Et

[∫ T

0
f (s)λ(s)exp

(
−
∫ s

0
(r(u) + λ(u))du

)
ds
]

.

Notice the last expression above is a martingale since the expectation does not contain t.
We denote the function inside the expectation as H. This means F(t) = Et (H). Given the
definition of a martingale, we only need to show

1. Et (|H|) < ∞;
2. Et [F(s)] = F(t), (s > t).

The first inequality is true evidently. Since

Et [F(s)] = Et [Es(H)] = Et (H) = F(t),

F(t) is a martingale.

Theorem 3.3 The PDE satisfied by v(t, r, λ) is

(∂t + L) v + λ(f − v) − rv = 0 (10)
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with terminal condition v(T , r, λ) = 0, where

L = a1(b1 − r)∂r + 1
2
σ 2
1 r∂rr + a2(b2 − λ)∂λ + 1

2
σ 2
2 λ∂λλ + ρσ1σ2

√
rλ∂rλ,

f = At(t,T)(Rt(t,T) − K)+

Proof To simplify notation, we denote

D̂(t) = exp
(

−
∫ t

0
(r(u) + λ(u))du

)
, M(t) =

∫ t

0
f (s)λ(s)exp

(
−
∫ s

0
(r(u) + λ(u))du

)
ds

and F(t) = v(t)D̂(t) + M(t). Recall the models for r and λ

dr = a1(b1 − r(t))dt + σ1
√
r(t)dB1

t , dλ = a2(b2 − λ(t))dt + σ2
√

λ(t)dB2
t .

Applying Ito’s lemma

dD̂(t) = −D̂(t)(r(t) + λ(t))dt, dM(t) = f (t)λ(t)D̂(t)dt,

and

dv = vtdt + vrdr + vλdλ + 1
2
vrrdrdr + vrλdrdλ + 1

2
vλλdλdλ,

= vtdt + vr
(
a1(b1 − r)dt + σ1

√
rdB1

t
) + vλ

(
a2(b2 − λ)dt + σ2

√
λdB2

t

)

+ 1
2
vrrσ 2

1 rdt + ρσ1σ2
√
rλvrλdt + 1

2
vλλσ

2
2 dt

= (∂t + L)vdt + vrσ1
√
rdB1

t + vλσ2
√

λdB2
t .

This leads to

dF(t) = v(t)dD̂(t) + D̂(t)dv + dM(t)

= −v(t)D̂(t)(r(t) + λ(t))dt

+ D̂(t)
(
(∂t + L) vdt + vrσ1

√
rdB1

t + vλσ2
√

λdB2
t

)
+ f (t)λ(t)D̂(t)dt

= D̂(t)
[
(∂t + L) v − v (r + λ) + f λ

]
dt + D̂(t)vrσ1

√
rdB1

t + D̂(t)vλσ2
√

λdB2
t .

From Theorem 3.2, we know F(t) is a martingale. Therefore the coefficient of the dt
term in dF(t) must vanish, which gives

(∂t + L) v − v(r + λ) + f λ = 0,

which can be rearranged to

(∂t + L) v + λ(f − v) − rv = 0.

If the counterparty defaults at or after the maturity T, there is no need to replace
the original swap. In this case, the price of CCIRS is zero. This gives us the terminal
condition as

v(T , λ, r) = 0. (11)

In order to solve v(t, r, λ), the remaining task is to find the associated boundary con-
ditions. With the terminal condition we know this PDE can be solved backward as long
as we find the proper boundary condition, which we can achieve by looking at the
characteristic function of r and λ.
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For the lower boundary of r, ie., r = 0, we have dr
dt = a1b1 > 0. For the upper boundary

of r, ie., r = ∞, we have dr
dt = a1(b1 − r) + σ1

√
rdB1

t /dt. The term σ1
√
rdB1

t /dt can be
ignored because its order is

√
r and a1(b1 − r) has the order r. So dr

dt ≈ a1(b1 − r) < 0.
These two characteristic function values on the boundary line ensure that when time
decreases from the terminal line (t = T), the value of r(t) goes towards the boundary lines
when r(t) is close to them. Similarly, the behavior of the value respect to λ(t) is the same
near its boundary lines λ = 0 and λ = ∞. By looking at these characteristic function
values of r and λ close to the boundary lines, we know it will be a good approximation
to replace the derivative on the boundary lines with the derivative of the inside point
beside the boundary lines. Then with this boundary condition, the PDE (10) can be solved
numerically.

CCIRS with defaultable replacement contract
In the previous section, when the counterparty defaults and a new replacement swap con-
tract is signed, it was assumed that the counterparty of the new contract is default-free.
Therefore, the CCIRS price obtained in the previous section is only an approximation,
which may underestimate the real price. This is justified for a counterparty with a high
credit rating when the time to maturity is short. In practice, however, the time to maturity
of these contracts is relatively long (e.g., 10 years). Therefore, it will be of practical interest
to investigate the effect of the default-free assumption, which is the focus of this section.
We assume that the replacement contract could also default but its replacement is

default-free. In the rest of the paper, this is called “two-default” problem, which is a
more accurate approximation of the time cost than the default-free replacement con-
tract model, or the “one-default" problem discussed previously. In addition we make two
more assumptions: first, the hazard rate process is for a certain credit rating; second, the
replacement has to have the same credit ratings as the original contract when it defaults.
Under those two assumptions, the “second" default problem is actually conditional on the
occurrence of the first default in the same Poisson process. Let τ1 and τ2 (τ2 > τ1) be the
default times of the original and replacement counterparties, respectively. They are the
first and the second jumps time of the Cox process with hazard rate λ given by (6). Recall
that the price of CCIRS with a default-free replacement contractor is given by (4) as

V (t) = Nol·(1−Rec)E
[
Iτ<T exp

(
−
∫ τ1

t
r(s)ds

)
Aτ1 (τ1,T)

(
Rτ1 (τ1,T) − K

)+
∣∣∣∣Ft

]
.

We can rewrite this equation as:

V (t) = Nol · (1 − Rec)E
[
D (t, τ1) f (τ1)

∣∣Ft
]
, (12)

where

f (τ1) =
{
Aτ1 (τ1,T)

(
Rτ1 (τ1,T) − K

)+ , τ1 < T ;
0, τ1 ≥ T ,

and

D (t, τ1) = exp
[
−
∫ τ1

t
r(s)ds

]
.

Again, Nol · (1 − Rec) is a constant which we will drop in the following discussion
knowing that the final price can be obtained by multiplying our numerical solution with
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this constant. When the counterparty of the replacement contractor is allowed to default,
there are three scenarios.

(i). Only one default occurs before maturity. Based on Equation (2), the loss at the first
default τ1 is

v(τ1) = Aτ1(τ1,T)
(
Rτ1(τ1,T) − K

)+

(ii). Both defaults occur before maturity. The fixed rate for a new swap at τ2 is
Rτ2(τ2,T). The fixed rate payment of the replacement swap between τ1 and τ2 is
�tRτ1(τ1,T) and the fixed rate payment of the second replacement swap between
τ2 and T is �tRτ2(τ2,T). The discounted value of all the payments between τ1 and
τ2 is Aτ1(τ1, τ2)Rτ1(τ1,T). The discounted value of all the payments between τ2 and
T is D(τ1, τ2)NAτ2(τ2,T)Rτ2(τ2,T). The value of CCIRS at time τ1 is the sum

v(τ1) = Aτ1 (τ1, τ2)
(
Rτ1 (τ1,T) − K

)+ +Aτ2 (τ2,T)
(
Rτ2 (τ2,T) − K

)+ D (τ1, τ2) .

(iii). The first default happens after maturity. There is no cost and the value of CCIRS is
zero.

Considering all cases above, the CCIRS price is given by

W (t) = E
[
D (t, τ1) f (τ1, τ2)

∣∣Ft
]

where

f (τ1, τ2) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 τ2 > τ1 > T ;
Aτ1 (τ1,T)

(
Rτ1 (τ1,T) − K

)+
τ2 > T > τ1;

Aτ1 (τ1, τ2)
(
Rτ1 (τ1,T) − K

)+

+Aτ2 (τ2,T)
(
Rτ2 (τ2,T) − K

)+ D (τ1, τ2) T > τ2 > τ1.

To simplify notation, let

Ã(t1, t2) =

⎧
⎪⎨

⎪⎩

At1(t1, t2) T > t2 > t1;
At1(t1,T) t2 > T > t1;
0 otherwise.

(13)

We rewrite f (τ1, τ2) as

Ã (τ1, τ2)
(
Rτ1(τ1,T) − K

)+ + Ã(τ2,T)
(
Rτ2(τ2,T) − K

)+ D(τ1, τ2)

andW (t) can be written as

W (t) = E
{
D(t, τ1)

[
Ã(τ1, τ2)(Rτ1(τ1,T) − K)+

+ Ã(τ2,T)(Rτ2(τ2,T) − K)+D(τ1, τ2)
]∣∣∣Ft

}
. (14)

To derive the PDE forW (t), we need the following theorems and corollaries.

Corollary 4.1 For any T > 0 and τ > t, let Zt be a Gt-adapted stochastic process and
Zt �≡ 0 when t ≥ T, then:

E [D(t, τ)Zτ |Ft] = Et
[∫ +∞

t
ZsλsD̂(t, s)ds

]
.
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Proof Denote ti = t + i�t, i = 0, 1, .... We have Z(i)
s = ZsIti≤s<ti+1 and Zs = ∑∞

i=0 Z
(i)
s .

It follows that

E [D(t, τ)Zτ |Ft] = E
[

D(t, τ)

∞∑

i=0
Z(i)

τ

∣∣∣∣Ft

]

(Since D(t, τ)Z(i)
τ ≥ 0, by Tonelli′s Theorem, we have)

=
∞∑

i=0
E
[
D(t, τ)Z(i)

τ

∣∣∣∣Ft

]
.

Since each Z(i)
τ = 0 when τ ≥ ti+1, Lemma 3.1 applies and

∞∑

i=0
E
[
D(t, τ)Z(i)

τ

∣∣∣∣Ft

]
=

∞∑

i=0
Iτ≥tEt

[∫ ti+1

t
Z(i)
s λsD̂(t, s)ds

]

=
∞∑

i=0
Iτ≥tEt

[∫ ti+1

t
ZsI(ti ≤ s < ti+1)λsD̂(t, s)ds

]

= Iτ≥t

∞∑

i=0
Et
[∫ ti+1

ti
ZsλsD̂(t, s)ds

]

(Since
∫ ti+1

ti
ZsλsD̂(t, s)ds ≥ 0, by Tonelli′s Theorem)

= Iτ≥tEt

[ ∞∑

i=0

∫ ti+1

ti
ZsλsD̂(t, s)ds

]

= Iτ≥tEt
[∫ +∞

t
ZsλsD̂(t, s)ds

]
. (15)

This proves the corollary.

Corollary 4.2 From Corollary 4.1, let rt ≡ 0, for any τ > t we have

E [Zτ |Ft] = Et
[∫ +∞

t
Zsλsexp

[
−
∫ s

t
λ(k)dk

]
ds
]
.

Corollary 4.3 From Corollary 4.1, let rt ≡ 0 and Z(t) ≡ 1, for any τ > t we have

1 = Et
[∫ +∞

t
λsexp

(
−
∫ s

t
λudu

)
ds
]
.

Theorem 3.4 (This is a stronger result than Corollary 4.3.) It is a reasonable assumption
that λ(t) is always positive; then we have:

∫ ∞

t
λsexp

(
−
∫ s

t
λudu

)
ds = 1.

Proof From the proof of Proposition 3.1 in [18], the density of the default time for s > t
is given by

∂

∂s
P (τ ≤ s|τ > t,GT ) = λsexp

(
−
∫ s

t
λudu

)
.

We know the integration of density function is 1, which proves Theorem 3.4.

Theorem 3.5

Au(u, s) = Au(u,T) − E[D(u, s)As(s,T)|Fu] .
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Proof First, we have

Au(u,T) − Au(u, s) = �t
n∑

i=ku

P(u, ti) − �t
js∑

i=ku

P(u, ti),= �t
n∑

i=js+1
P(u, ti).

where ku is the next payment time after time u, and js is the closest payment time which
is before or equal to s.
Since

P(u, ti) = E[D(u, s)D(s, ti)|Fu] ,

we have

�t
n∑

i=js+1
P(u, ti) = E

⎡

⎣�t
n∑

i=js+1
D(u, s)D(s, ti)

∣∣∣∣∣∣
Fu

⎤

⎦

= E

⎡

⎣D(u, s)�tEs

⎡

⎣
n∑

i=js+1
D(s, ti)

⎤

⎦

∣∣∣∣∣∣
Fu

⎤

⎦

= E

⎡

⎣D(u, s)�t
n∑

i=js+1
P(s, ti)

∣∣∣∣∣∣
Fu

⎤

⎦

= E [D(u, s)As(s,T)|Fu] .

Corollary 4.4

Ã(u, s) = Ã(u,T) − E[D(u, s)Ã(s,T)|Fu] (s > u).

Proof For s > T , the left-hand-side equals to Ã(u,T), and the right-hand-side equals to
Ã(u,T)−0. Therefore the Corollary is true. For u > T , both sides of the equation equal to
zero. Finally, for s < T , the left-hand-side equals to A(u, s) and the right-hand-side equals
to Au(u,T) − E[D(u, s)As(s,T)|Fu]. Applying Theorem 3.5 proves the Corollary.

With these preparations, we are now in the position to derive the PDE for W (t). We
note that

W (t) = E
{
D(t, τ1)

[
Ã (τ1, τ2)

(
Rτ1 (τ1,T) − K

)+

+ Ã(τ2,T)
(
Rτ2(τ2,T) − K

)+ D(τ1, τ2)
]∣∣∣Ft

}

= E
{
D(t, τ1)E

[
Ã(τ1, τ2)

(
Rτ1(τ1,T) − K

)+

+ Ã(τ2,T)
(
Rτ2(τ2,T) − K

)+ D(τ1, τ2)
∣∣Fτ1

]∣∣∣Ft
}

= E
{
D(t, τ1)E

[
Ã (τ1, τ2)

(
Rτ1(τ1,T) − K

)+ ∣∣Fτ1

]∣∣∣Ft
}

+ E
{
D(t, τ1)E

[
Ã(τ2,T)(Rτ2(τ2,T) − K)+D(τ1, τ2)

∣∣∣Fτ1

]∣∣∣Ft
}
,

which can be separated into two parts as

WA(t) = E
{
D(t, τ1)E

[
Ã(τ1, τ2)(Rτ1(τ1,T) − K)+

∣∣Fτ1

]∣∣∣Ft
}
, (16)

and
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WB(t) = E
{
D(t, τ1)E

[
Ã(τ2,T)

(
Rτ2(τ2,T) − K

)+ D(τ1, τ2)
∣∣Fτ1

]∣∣∣Ft
}
. (17)

PDE forWA(t)

From the definition of Ã(t1, t2) in (13), when τ2 > T , Ã(τ1, τ2) = Aτ1(τ1,T) �≡ 0. Using
Corollary 4.2 yields

E
[
Ã(τ1, τ2)

∣∣Fτ1

] = Iτ2>τ1Eτ1

[∫ ∞

τ1
Ã(τ1, s)λ(s)exp

[
−
∫ s

τ1
λ(k)dk

]
ds
]

= Eτ1

[∫ ∞

τ1
Ã(τ1, s)λ(s)exp

[
−
∫ s

τ1
λ(k)dk

]
ds
]

since τ2 > τ1. Denote

l(u) = Eu
[∫ ∞

u
Ã(u, s)λ(s) exp

(
−
∫ s

u
λ(k)dk

)
ds
]
,

and note that l(u) = 0 when u ≥ T , due to Ã(T , s) ≡ 0 by the definition of Ã(t1, t2). With
this new notation, we have

WA(t) = E
{
D(t, τ1)(Rτ1(τ1,T) − K)+E

[
Ã(τ1, τ2)|Fτ1

]∣∣∣Ft
}

= E
[
D(t, τ1)(Rτ1(τ1,T) − K)+l(τ1)

∣∣∣Ft
]

= Et

[∫ T

t
D(t, s)λ(s)(Rs(s,T) − K)+l(s)ds

]

.

Since D(0, t)WA(t) + ∫ t
0 D(t, s)λ(s)(Rs(s,T) − K)+l(s)ds is a martingale. we obtain the

PDE forWA(t) as

(∂t + L)WA + λ(f − WA) − rWA = 0 (18)

withWA(T , r, λ) = 0, where f = l(t)(Rt(t,T) − K)+ and

L = a1(b1 − r)∂r + 1
2
σ 2
1 r∂rr + a2(b2 − λ)∂λ + 1

2
σ 2
2 λ∂λλ + ρσ1σ2

√
rλ∂rλ.

By Corollary 4.4, we have

l(u) = Eu
[∫ ∞

u
(Ã(u,T) − D(u, s)Ã(s,T))λ(s)exp

(
−
∫ s

u
λ(k)dk

)
ds
]

= Eu
[∫ ∞

u
Ã(u,T)λ(s)exp

(
−
∫ s

u
λ(k)dk

)
ds
]

− Eu
[∫ ∞

u
Ã(s,T)λ(s)D(u, s)exp

(
−
∫ s

u
λ(k)dk

)
ds
]

= Ã(u,T)Eu
[∫ ∞

u
λ(s)exp

(
−
∫ s

u
λ(k)dk

)
ds
]

− Eu
[∫ ∞

u
Ã(s,T)λ(s)D̂(u, s)ds

]
.

By Theorem 3.4, we have Eu
[∫∞

u λ(s)exp
(− ∫ s

u λ(k)dk
)
ds
] = 1, then

l(u) = Ã(u,T) − Eu
[∫ ∞

u
Ã(s,T)λ(s)D̂(u, s)ds

]
.

Denote

h(u) = Eu
[∫ ∞

u
Ã(s,T)λ(s)D̂(u, s)ds

]
.
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Since Ã(s,T) = 0 for s > T , and Ã(s,T) = As(s,T) for s < T , we have

h(u) = Eu
[∫ ∞

u
As(s,T)λ(s)D̂(u, s)ds

]
.

It can be verified that

D̂(0,u)h(u) +
∫ u

0
D̂(0, s)λ(s)As(s,T)ds

is a martingale, which yields the PDE for h(u) as

(∂t + L)h + λ(f − h) − rh = 0 (19)

with h(T , r, λ) = 0, where f = At(t,T) and

L = a1(b1 − r)∂r + 1
2
σ 2
1 r∂rr + a2(b2 − λ)∂λ + 1

2
σ 2
2 λ∂λλ + ρσ1σ2

√
rλ∂rλ.

After we obtain h(t), we can find l(t) using l(t) = Ã(t,T) − h(t) and solve the PDE for
WA(t).

PDE for ofWB(t)

From (17), we have

WB(t) = E
[
D(t, τ2)Ã(τ2,T)(Rτ2(τ2,T) − K)+

∣∣∣Ft
]

= E
[
D(t, τ1)E

[
Ã(τ2,T)(Rτ2(τ2,T) − K)+P(τ1, τ2)

∣∣∣Fτ1

] ∣∣∣Ft
]

= E
[

D(t, τ1)Eτ1

[∫ T

τ1
Ã(s,T)(Rs(s,T) − K)+λ(s)D(τ1, s)ds

] ∣∣∣Ft

]

.

Here we have used Lemma 3.1. Let p(u) = Eu
[∫ T

u Ã(s,T)(Rs(s,T) − K)+λ(s)D(u, s)ds
]
.

When s ≤ T , since Ã(s,T) = As(s,T) by definition, we can rewrite p(u) as

p(u) = Eu

[∫ T

u
As(s,T)(Rs(s,T) − K)+λ(s)D(u, s)ds

]

.

Table 1 Twelve Month LIBOR Rate and CDS spread of different ratings (from May 1, 2009 to April 30,
2014)

LIBOR CDS Spread

Date 12 Month AAA AA A BBB BB B

20140430 0.5490% 0.0938% 0.1670% 0.3881% 0.5722% 1.7952% 4.1154%

20140429 0.5490% 0.1105% 0.1679% 0.3985% 0.5913% 1.7995% 4.1502%

20140428 0.5495% 0.1113% 0.1685% 0.3992% 0.5894% 1.9206% 4.2556%

20140425 0.5495% 0.1113% 0.1673% 0.3826% 0.5697% 1.8139% 4.2349%

20140424 0.5495% 0.0968% 0.1676% 0.3807% 0.5806% 1.5016% 4.2173%

20140423 0.5483% 0.1111% 0.1686% 0.4037% 0.5774% 1.7221% 4.3761%

. . . . . . . . . . . . . . . . . . . . . . . .

20090507 1.7813% 0.3075% 0.9621% 1.6332% 3.4747% 8.4460% 28.0827%

20090506 1.8200% 0.3599% 1.1833% 1.8355% 3.6819% 8.8693% 26.2862%

20090505 1.8589% 0.3695% 1.1359% 1.8929% 3.8222% 9.1412% 26.5660%

20090504 1.8644% 0.4343% 1.2053% 2.0017% 3.8649% 9.3918% 26.4036%

20090501 1.8644% 0.4366% 1.1579% 2.0539% 3.9778% 8.8810% 26.9790%

variance 0.0007% 0.0001% 0.0005% 0.0007% 0.0032% 0.0168% 0.2053%

mean 0.909% 0.2476% 0.5264% 0.7041% 1.0387% 2.7020% 7.4352%
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Table 2 Interest rate model parameters estimations

r0 b1 σ1 a1
0.5490% 0.909% 0.038060013 1

Thus, we obtain

WB(t) = E
[
D(t, τ1)p(τ1)

∣∣Ft
]

And by Lemma 3.1, we can writeWB(t) as

WB(t) = Et

[∫ T

t
D(t, s)λ(s)p(s)ds

]

It can be verified that D(0, t)g(t) + ∫ t
0 D(t, s)λ(s)p(s)ds is a martingale, from which we

obtain the PDE forWB(t) as

(∂t + L)WB + λ(p − WB) − rWB = 0 (20)

withWB(T , r, λ) = 0, where

L = a1(b1 − r)∂r + 1
2
σ 2
1 r∂rr + a2(b2 − λ)∂λ + 1

2
σ 2
2 λ∂λλ + ρσ1σ2

√
rλ∂rλ.

Since p(u) = Eu
[∫ T

u As(s,T)(Rs(s,T) − K)+λ(s)D(u, s)ds
]
is defined similarly as the

value in Eq. (9), we can derive the PDE for p(u) in a similar way, which is given by

(∂t + L)p + λ(f − p) − rp = 0 (21)

with p(T , r, λ) = 0, where

L = a1(b1 − r)∂r + 1
2
σ 2
1 r∂rr + a2(b2 − λ)∂λ + 1

2
σ 2
2 λ∂λλ + ρσ1σ2

√
rλ∂rλ ,

f = At(t,T)(Rt(t,T) − K)+.

CCIRS priceW(t)

We solveWA(t, r, λ) using two PDEs (18)-(19) andWB(t, r, λ) using (20)-(21) numerically
with the ADI finite difference method. We can then obtain the final CCIRS price using
W (t, r, λ) = WA(t, r, λ) + WB(t, r, λ).

Numerical results
Before solving the partial differential equations, we will first estimate parameter values of
the CIR model using historic data.

Table 3 Hazard Rate Model Parameters estimations

λ0 b2 σ2 a2

AAA 0.15633% 0.4127% 0.020113992 1

AA 0.27833% 0.8774% 0.032584086 1

A 0.64683% 1.1736% 0.035502957 1

BBB 0.95367% 1.7312% 0.060824805 1

BB 2.99200% 4.5034% 0.086378396 1

B 6.85900% 12.3920% 0.182026115 1
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Table 4 Comparison of results obtained using PDE and Monte-Carlo methods for one default case
(maturity=5, K=0.00909, 1 million simulation paths)

PDE(ADI) PDE(ADI) Monte Carlo
time steps 600 time steps 2000 99.9% confidence interval

Price $ 2,236.22 $ 2,235.02 $ [2173.94, 2235.24]

Time (seconds) 1.19 3.62 648

Parameter values

For the interest rate, it is widely accepted that the risk-free rate curve is the best
approximation of short rate. Before the 2008 financial crisis, LIBOR rate curve was often
used when a risk-free curve is needed. The environment changed after the crisis and
overnight indexed swap (OIS) rate is considered as a close approximation of the risk-free
rate in many banks. However, the most appropriate estimation of the risk-free curve is
not the focus of our paper and the data of OIS curve is not published, we use the LIBOR
curve as the risk-free curve in this paper. Theoretically, if all LIBOR curves are risk-free,
they should be identical if compounded to an annual rate. Here, it is reasonable to choose
the 12 Month LIBOR curve as the approximation of the risk-free curve. The time frame
for our chosen 5-year of data starts fromMay 1, 2009 to April 30, 2014.
Partial data of 12Month LIBOR rate has been given in Table 1.We used the rate 0.5490%

on April 30, 2014 as the initial rate. The mean is used as the long term average, i.e.,

b1 = mean(data) = 0.909%

and

mean(data) =
∑N

i=1 ri
N

,

where N is the number of data in five years and ri is the 12 Month LIBOR in ith day.
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Fig. 1 CCIRS price as a function of interest and hazard rates
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Table 5 Comparison of results using PDEs and Monte-Carlo methods for the two default case

PDE(ADI) PDE(ADI) Monte Carlo 99.9% confidence interval
time steps 600 time steps 2000 time steps 2000

Price $ 2,264.26 $ 2,263.50 $ [2202.96, 2264.08]

Time (seconds) 4.07 14.68 660

(maturity=5, K=0.00909, 1 million simulation paths)

And we know the conditional variance of the interest rate at any time t is

Variance[ rt|r0]= r0
σ 2
1
a1

(
e−a1t − e−2a1t) + b1σ 2

1
2a1

(
1 − e−a1t)2 . (22)

For sufficient large t, this variance will turn into a long term variance and r0 has almost
no effect. Let t = 100. It is reasonable to assume that the long term variance equals to the
variance of the 12 month LIBOR rate. Then we can have

σ1 =
√

Variance(data)
b1
2a1 (1 − e−100a1)2

and

Variance(data) =
∑N

i=1(ri − r̄)2

N − 1
,

where r̄ = 1
N
∑N

i=1 ri. Assuming a1 = 1, we have σ1 = 0.038060013. These estimated
parameters of b1, σ1 and a1 have been given in Table 2.
For the hazard rate, a common model applied in industry is the CDS spread approach.

This model assumes

λ(t) = spread(t)
1 − R

, (23)

where R is recovery rate and is normally assumed to be 0.4.
We used the USD Financial sector 12 Month CDS spread data from May 1, 2009 to

April 30, 2014. Partial data of these CDS spreads is given in Table 1. Applying the model
in (23), we used the rate on April 30, 2014 to approximate the initial hazard rate. The long
term average is estimated by

b2 = mean(data)
1 − R

where

mean(data) = 1
N

N∑

i=1
spreadi.

Table 6 Price of CCIRS on different annual node (maturity=5, K=0.00909)

Year r(t) λ(t) Price

0 0.5490% 0.6468% 2,264.26

1 0.5301% 0.5383% 1,293.70

2 0.6261% 0.6664% 705.00

3 0.7932% 1.0683% 401.82

4 0.9933% 0.8382% 146.92
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Table 7 Comparison of the one-default and two-default cases (# of time step=2000, maturity=5,
K=0.00909)

One-default Two-default

Price $ 2,235.02 $ 2,263.50

And we have the same formula for conditional variance of the hazard rate at any time t
as (22),

Variance[ λt|λ0]= λ0
σ 2
2
a2

(
e−a2t − e−2a2t) + b2σ 2

2
2a2

(
1 − e−a2t)2 . (24)

Since the relationship between the hazard rate and spread in (23) exists, it is reasonable
to assume the variance of spread equal to the variance of the hazard rate. Then we have

σ2 =
√

Variance(data)
b2
2a2 (1 − e−100a2)2

and

Variance(data) =
∑N

i=1

(
spreadi − 1

N
∑N

i=1 spreadi
)2

N − 1
.

Assume a2 = 1, we can then get σ2. All these parameters for different ratings are shown
in Table 3.
The rating A is normally used as a testing grade. So we used the parameters for rating A

here, i.e., λ0 = 0.64683%, b2 = 1.1736%, σ2 = 0.035502957, a2 = 1. The other parameters
are set as follows, maturity T is set to be 5 years. The fixed rate K for original swap is
0.909%, ρ=0.2 and the notional value is $250,000,000.

Default-free replacement contracts

We use a 100×100 grid for the interest rate and hazard rate. The number of time steps is
600 over a 5 year period. The price for CCIRS is $2,236.22. This computation takes less
than 1.9 seconds and the result is close to the result obtained by Monte Carlo simulation.
When we increase the number of time steps to 2000, which is the same as the number
of the Monte-Carlo simulations, the total computational time increases to 3.62 seconds
and the price is $2,235.02, which suggests that the time step is sufficiently acceptable for
the spatial grid chosen. We have also obtained the result by assuming a constant hazard
rate, which is obtained by solving the reduced PDE, with a 100 grid points in r and 600

Table 8 Comparison of the one-default and two-default cases under various correlation (# of time
step=600, maturity=5, K=0.01)

ρ One-default Two-default

0 2,075 2,100

0.1 2,155 2,182

0.2 2,236 2,264

0.3 2,319 2,349

0.4 2,404 2,435

0.5 2,490 2,522

0.6 2,578 2,611

0.7 2,668 2,702

0.8 2,759 2,794
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Table 9 Comparison of the one-default and two-default cases over a range of credit ratings

Rating One-default Two-default

AAA 303.76 310.24

AA 632.60 661.51

A 822.47 875.13

BBB 1,215.01 1,330.24

BB 2,548.34 3,185.29

B 4,224.85 6,964.76

(maturity=10, K=0.01)

time steps over 5 years. The price for a constant hazard rate is $1,201.53, which is quite
different from $2,235.02, obtained by solving the PDE with a stochastic hazard rate.
Table 4 shows the comparison of results obtained by using the PDE method and the

Monte Carlo simulation. The results are consistent with each other.
In addition to the savings in computational time, the PDE approach also generates the

price of CCIRS for the entire range of interest and hazard rates, as shown in Fig. 1. It can
be seen that the price is in general an increasing function of the interest and hazard rates,
since higher hazard rates mean higher probability of default.

Defautable replacement contracts

We used the same parameters given in the previous section. In the Monte-Carlo simu-
lations, we ran 1,000,000 realizations and partitioned the time to maturity (ie., 5 years)
into 2,000 equal time intervals. The computational time is 660 seconds and the price is
$2,223.51.
The PDEs are solved based on a 600×100×100 grid over the range of hazard rate. The

computational time is 4.07 seconds, due to the fact that we need to solve four PDEs. The
CCIRS price is $2,263.50. These results are consistent to the ones from the Monte-Carlo
simulation and the detail is given in Table 5.
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Fig. 2 Difference of two-default and one-default price
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The PDE technique can also provide the solution on any point of the grid. We have
chosen a simulated path for r and λ. Using the same time for calculating the price of
CCIRS with 2-default, the results are shown in Table 6. The comparisons between the
price computed based on default-free replacement contract (one-default) and defaultable
replacement contract (two-default) are presented in Tables 7,8 and 9, and illustrated in
Fig. 2. It can be seen that the difference between the two prices can be significant under
certain conditions, especially for counterparties with lower credit ratings.

Conclusion
In this paper, we have investigated a model that allows for multiple defaults of counter-
parties in Credit Valuation Adjustment, which received more attention after the 2008
financial crisis.
Previous work on CVA has not assessed the default risk by the replacement contract.

By extending the pricing model that allows a second default, we derived and numerically
solved a system of four coupled PDEs. Our PDE approach is much more efficient than the
Monte Carlo simulation. Our results suggest that subsequent defaults cannot be ignored
for firms with lower credit ratings.
In principle, the counterparty of the replacement contract can also default. By restrict-

ing to the case of two-defaults, we potentially also can overestimate or underestimate
the true risk. This paper laid the foundation for more general cases. We are currently
exploring this issue and the results will be reported in a subsequent paper.
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