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Apelin signaling dependent endocardial 
protrusions promote cardiac 
trabeculation in zebrafish
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Didier YR Stainier*, Christian SM Helker*

Department of Developmental Genetics, Max Planck Institute for Heart and Lung 
Research, Bad Nauheim, Germany

Abstract During cardiac development, endocardial cells (EdCs) produce growth factors to 
promote myocardial morphogenesis and growth. In particular, EdCs produce neuregulin which is 
required for ventricular cardiomyocytes (CMs) to seed the multicellular ridges known as trabeculae. 
Defects in neuregulin signaling, or in endocardial sprouting toward CMs, cause hypotrabeculation. 
However, the mechanisms underlying endocardial sprouting remain largely unknown. Here, we first 
show by live imaging in zebrafish embryos that EdCs interact with CMs via dynamic membrane 
protrusions. After touching CMs, these protrusions remain in close contact with their target 
despite the vigorous cardiac contractions. Loss of the CM-derived peptide Apelin, or of the Apelin 
receptor, which is expressed in EdCs, leads to reduced endocardial sprouting and hypotrabecula-
tion. Mechanistically, neuregulin signaling requires endocardial protrusions to induce extracellular 
signal-regulated kinase (Erk) activity in CMs and trigger their delamination. Altogether, these data 
show that Apelin signaling-dependent endocardial protrusions modulate CM behavior during 
trabeculation.

Editor's evaluation
This first formal dissection of endocardial protrusions in zebrafish hearts describes how they anchor 
to cardiomyocytes, and how they participate in signaling pathways involved in trabeculation. The 
work combines elegant zebrafish reporters and high-quality imaging, as well as mutant lines and 
pathway inhibitors to provide key findings of how mutual regulation between the myocardium and 
the endocardium contribute to understanding of mechanisms underlying organ development. This 
manuscript is of broad interest to readers who study cardiogenesis and developmental biology.

Introduction
To meet the needs of the growing embryo, the vertebrate heart has to undergo a series of complex 
morphogenetic events to transform from a linear tube into a mature organ. During cardiac trabec-
ulation, CMs in the outer curvature of the ventricles delaminate toward the lumen to form multicel-
lular sponge-like projections, called trabeculae (Sedmera and Thomas, 1996; Sedmera et al., 2000; 
Stankunas et al., 2008; Liu et al., 2010; Peshkovsky et al., 2011; Staudt et al., 2014). Cardiac 
trabeculae are crucial to achieve increased contractility as well as for the formation of the conduc-
tion system. Trabeculation defects are often associated with left ventricular noncompaction (Oechslin 
et  al., 2000; Stöllberger and Finsterer, 2004), embryonic heart failure, and lethality (Gassmann 
et al., 1995; Lee et al., 1995; Lai et al., 2010; Liu et al., 2010; Rasouli and Stainier, 2017).
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In zebrafish, as in other vertebrates, the early embryonic heart consists of two cell layers, the 
myocardium and the endocardium, separated by a specialized extracellular matrix called the cardiac 
jelly (CJ) (Stainier and Fishman, 1992; Brutsaert et al., 1996). Recently, it has been shown that endo-
cardial cells (EdCs), similar to blood endothelial cells (ECs), form sprouts, and that these sprouts are 
mostly oriented toward the myocardium (Del Monte-Nieto et al., 2018). During sprouting angiogen-
esis, ECs first extend filopodia to sense the microenvironment for growth factors, then they migrate 
into avascular areas and form new blood vessels (Gerhardt et  al., 2003). Due to its similarity to 
sprouting angiogenesis, the sprouting of EdCs has been termed endocardial sprouting. However, 
whether endocardial sprouting is regulated by the same signaling pathways as sprouting angiogenesis 
is not known.

Multiple signaling pathways have been implicated in cardiac trabeculation, including neuregulin 
(Nrg)/ErbB signaling. Mouse and zebrafish embryos lacking the endocardium-derived ligand Nrg or 
the ErbB receptor, which is expressed by the myocardium, fail to form trabeculae (Gassmann et al., 
1995; Lee et al., 1995; Meyer and Birchmeier, 1995; Lai et al., 2010; Liu et al., 2010; Rasouli 
and Stainier, 2017). Furthermore, endocardial Notch signaling (Grego-Bessa et al., 2007; D’Amato 
et al., 2016; Del Monte-Nieto et al., 2018), angiopoietin 1/Tie2 signaling (Suri et al., 1996; Tachi-
bana et al., 2005; Qu et al., 2019), and semaphorin 3E/plexinD1 signaling (Sandireddy et al., 2019) 
are required for cardiac trabeculation in mouse. Of note, genetic deletion of the relevant receptors 
in the endocardium results in attenuated endocardial sprouting (Qu et al., 2019) and trabeculation 
defects (Grego-Bessa et al., 2007; D’Amato et al., 2016; Del Monte-Nieto et al., 2018; Qu et al., 
2019; Sandireddy et al., 2019).

Cells communicate by a variety of mechanisms including paracrine and contact-dependent 
signaling. More recently, a novel mechanism of cell communication by active transport of signaling 
molecules through filopodia-like actin-rich membrane protrusions, also known as cytonemes, has 
been shown in different models including Drosophila (Ramírez-Weber and Kornberg, 1999; Roy 
et al., 2011; Huang et al., 2019), chick (Sanders et al., 2013), zebrafish (Stanganello et al., 2015), 
and mouse (Fierro-González et al., 2013). Like filopodia, cytonemes depend on actin polymerization 
by various effector proteins including formins, profilin, and IRSp53, a substrate for the insulin receptor 
(Rottner et al., 2017).

In this study, we take advantage of the zebrafish model, as its transparency allows single-cell resolu-
tion and high-speed imaging of the beating heart, to analyze endocardial-myocardial communication 
during embryogenesis. By investigating apelin (apln) mutants, we found that endocardial protrusion 
formation is controlled by Apln signaling. We also observed by in vivo imaging that endocardial 
protrusions promote cardiac trabeculation by modulating Nrg/ErbB/Erk signaling. Altogether, our 
results provide new insights into the role of endocardial protrusions during cardiac trabeculation.

Results
Endocardial-myocardial interactions in zebrafish
The early embryonic heart in vertebrates is composed of two cell types: EdCs and myocardial cells 
(Figure  1A–D). In order to analyze possible interactions between the endocardial and myocardial 
cells in zebrafish, we genetically labeled the actin cytoskeleton of the EdCs using the TgBAC(c-
dh5:Gal4ff) and Tg(UAS:LIFEACT-GFP) lines, and the membrane of myocardial cells with mCherry 
using the Tg(myl7:mCherry-CAAX) line. We observed endocardial protrusions extending toward the 
myocardium at 24 (Figure 1A–A’’) and 48 (Figure 1B–B’’, Figure 1—figure supplement 1A) hours 
post-fertilization (hpf). Of note, we observed more endocardial protrusions in the ventricle than in 
the atrium at 48, 60, and 72 hpf (Figure 1—figure supplement 1B). Subsequently, these ventric-
ular endocardial protrusions formed anchor points with the myocardium, and to be consistent with 
similar observations in mouse (Del Monte-Nieto et al., 2018) we will refer to them as touchdowns 
(Figure 1B–B’’). Notably, these touchdowns are stable even during cardiac contractions (Figure 1E–H, 
Figure 1—video 1). Starting at around 60 hpf, cardiomyocytes (CMs) delaminate from the compact 
layer toward the lumen to seed the trabecular layer (Figure 1C, C’ and C’’’’), as reported before (Liu 
et al., 2010; Peshkovsky et al., 2011; Staudt et al., 2014; Priya et al., 2020). At this stage, we 
observed that endocardial protrusions appear to extend along, and sometimes around, the delam-
inating CMs (Figure 1C’’ and C’’’, Figure 1—video 2). Next, trabecular CMs start to assemble into 

https://doi.org/10.7554/eLife.73231
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Figure 1. Stages of endocardial-myocardial interactions during zebrafish heart development. (A-D) Confocal projection images of the heart of 
Tg(myl7:mCherry-CAAX); Tg(cdh5:Gal4ff); Tg(UAS:LIFEACT-GFP) zebrafish at 24 (A), 48 (B), 60 (C) and 72 (D) hpf. (A-A’’) Endocardial protrusions 
(arrows) towards the myocardium at 24 hpf. (B-B’’) Endocardial protrusions (arrows) and touchdowns (asterisks) with the myocardium at 48 hpf. (C-C’’’) 
Endocardial protrusions (arrows) during CM delamination (arrowheads) at 60 hpf. (C’’’) 3D surface rendering of the area in the yellow box in C’. (D-D’’’) 

Figure 1 continued on next page
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trabeculae, ‘finger-like’ multicellular projections, starting at 72 hpf (Figure 1D, D’ and D’’’’). At this 
stage, we observed that endocardial protrusions can also be detected in close proximity to trabecular 
CMs (Figure 1D’’ and D’’’, Figure 1—video 3). Cardiac trabeculae are mostly present in the outer 
curvature of the ventricle at early developmental stages in zebrafish (Liu et al., 2010). Interestingly, 
we observed a spatial correlation between endocardial protrusions and trabeculation. At 48 hpf, 
endocardial protrusions are mostly located in the outer curvature of the ventricle (Figure 1—figure 
supplement 1C, F). At 60 and 72 hpf, respectively, 79% and 83% of all endocardial protrusions in the 
ventricle are located in the outer curvature (Figure 1—figure supplement 1D-F); 69% of all endo-
cardial protrusions in the outer curvature are close to delaminating CMs at 60 hpf, and 91% of all 
endocardial protrusions in the outer curvature are close to trabecular CMs at 72 hpf (Figure 1—figure 
supplement 1D, E, G). Moreover, 98% of delaminating CMs and 93% of trabecular CMs are in close 
proximity to endocardial protrusions at 60 and 72 hpf, respectively (Figure 1—figure supplement 
1D, E, H). Together these data lead us to speculate that endocardial protrusions play a role during 
endocardium-myocardium interactions.

Genetically blocking endocardial protrusion formation reduces 
myocardial trabeculation
Since we observed a correlation between the presence of endocardial protrusions and myocardial 
trabeculation, we next aimed to examine the function of endocardial protrusions during cardiac 
morphogenesis. To this aim, we generated a transgenic line, Tg(UAS: irsp53dn-p2a-RFP), to specifically 
block protrusion formation in the endothelium. IRSp53 regulates the actin cytoskeleton to enable cells 
to form different types of membrane extensions (Nakagawa et al., 2003; Millard et al., 2005; Scita 
et al., 2008). By crossing the Tg(UAS: irsp53dn-p2a-RFP) line to the TgBAC(cdh5:Gal4ff) line to over-
express Irsp53dn specifically in ECs, we observed a 70% reduction in the number of endocardial protru-
sions at 48 hpf (Figure 2A, B and E), while their distribution appeared mostly unaffected (Figure 2A, 
B and F). To test the hypothesis that endocardial protrusions modulate myocardial trabeculation, we 
analyzed embryos overexpressing irsp53dn in their ECs in a CM membrane line (Tg(myl7:BFP-CAAX)). 
Upon irsp53dn overexpression in ECs, we detected fewer endocardial touchdowns (Figure 2A and B), 
as well as a reduction in cardiac trabeculation (Figure 2C, D, G and G’). In order to identify a possible 
effect of endocardial protrusions on CM proliferation, we overexpressed irsp53dn in the endothe-
lium in the context of the Tg(myl7:mVenus-gmnn) reporter to visualize cycling CMs. Compared with 
controls, endothelial overexpression of irsp53dn led to significantly fewer mVenus-Gmnn+ CMs in the 
ventricle (Figure 2H and I).

Apelin signaling positively regulates endocardial protrusion formation 
and myocardial trabeculation
We have recently found that Apelin signaling regulates endothelial filopodia formation during angio-
genesis in the zebrafish trunk (Helker et al., 2020). Therefore, we hypothesized that Apelin signaling 

Endocardial protrusions (arrows) during trabecular assembly and expansion (arrowheads) at 72 hpf. (D’’’) 3D surface rendering of the area in the yellow 
box in D’. (A’’’’-D’’’’) Schematics of endocardial protrusions, endocardial touchdowns, CM delamination, and trabecular expansion. Black asterisks 
indicate delaminating CMs; purple asterisks indicate trabeculae. (E-H) Still images from a spinning disc time-lapse movie of a 48 hpf Tg(myl7:mCherry-
CAAX); Tg(cdh5:Gal4ff); Tg(UAS:LIFEACT-GFP) heart; white asterisks indicate endocardial touchdowns; numbers in the bottom right corner refer to 
seconds. All images are ventral views, anterior to the top. V, ventricle; A, atrium.

The online version of this article includes the following video and figure supplement(s) for figure 1:

Figure supplement 1. Endocardial protrusions in the ventricle are mostly located in the outer curvature and are close to delaminating or trabecular 
cardiomyocytes (CMs).

Figure 1—video 1. Endocardial touchdowns during cardiac contraction.

https://elifesciences.org/articles/73231/figures#fig1video1

Figure 1—video 2. Endocardial protrusions extend along delaminating cardiomyocytes (CMs) at 60 hours post-fertilization (hpf).

https://elifesciences.org/articles/73231/figures#fig1video2

Figure 1—video 3. Endocardial protrusions are in close proximity to trabecular cardiomyocytes (CMs) at 72 hours post-fertilization (hpf).

https://elifesciences.org/articles/73231/figures#fig1video3

Figure 1 continued

https://doi.org/10.7554/eLife.73231
https://elifesciences.org/articles/73231/figures#fig1video1
https://elifesciences.org/articles/73231/figures#fig1video2
https://elifesciences.org/articles/73231/figures#fig1video3
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Figure 2. Blocking endocardial protrusion formation reduces cardiac trabeculation. (A–D) Confocal projection images of the heart of Tg(myl7:BFP-
CAAX); Tg(cdh5:Gal4ff); Tg(UAS:LIFEACT-GFP);±Tg(UAS:irsp53dn-p2a-tagRFP) zebrafish at 48 (A–B) and 72 (C–D) hours post-fertilization (hpf). (A–B) 
Endocardial protrusions (white arrows) and touchdowns (white asterisks) are reduced in embryos with endothelial overexpression of irsp53dn. (C–D) 
Cardiac trabeculation (arrowheads) is reduced in larvae with endothelial overexpression of irsp53dn; (C’–D) 3D rendering. (E) Quantification of the 
number of endocardial protrusions in wild-type and in embryos with endothelial overexpression of irsp53dn at 48 hpf. (F-F’) Illustration of the division 
of the 48 hpf ventricle into four regions (F). Distribution and average number of endocardial protrusions in different regions of mid-sagittal sections of 

Figure 2 continued on next page
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also regulates endocardial protrusion formation. In order to visualize the expression of apln and aplnrb 
at single-cell resolution in the heart, we examined the TgBAC(apln:EGFP) reporter line (Helker et al., 
2020) and generated a novel Tg(aplnrb:VenusPEST) reporter line. We detected apln:EGFP expression 
in the myocardium at 48 and 72 hpf (Figure 3A and B). Furthermore, we detected aplnrb:VenusPEST 
expression in the endocardium at 48 and 72 hpf (Figure 3C and D). These results suggest that apln is 
expressed in the myocardium while aplnrb is expressed in EdCs. Based on these results, we hypothe-
sized that Apelin signaling plays a role during endocardium-myocardium interactions.

To test this hypothesis, we used mutants for aplnra (Helker et al., 2015), aplnrb (Helker et al., 
2015), apln (Helker et al., 2015), and apela (Chng et al., 2013). Since apela mutants fail to form a 
heart (Chng et al., 2013), we did not analyze them. While most aplnrb mutants fail to form a heart 
(D’Amico et al., 2007; Zeng et al., 2007), a low number of them do. By analyzing aplnrb mutants that 
do form a heart, we observed that they exhibit a reduced number of endocardial protrusions at 48 
hpf (Figure 4—figure supplement 1A, B) and a reduced number of trabeculae at 72 hpf (Figure 4—
figure supplement 1C, D). In wild-type embryos, the CJ between the endocardium and myocardium 
in the outer curvature of the ventricle appears to be mostly degraded at 72 hpf (Figure 4—figure 
supplement 1C); however, the CJ in aplnrb mutants appears to be thicker at this stage (Figure 4—
figure supplement 1D). In addition, aplnra mutants also exhibit a reduced number of trabeculae at 
72 hpf (Figure 4—figure supplement 1E and F). We further observed that apln mutants exhibit a 
significantly lower number of endocardial protrusions at 24 and 48 hpf (Figure 4A–D–). In line with 
fewer endocardial protrusions, apln mutants also exhibit a reduced number of endocardial touch-
downs at 48 hpf (Figure 4C and D), and a reduced number of trabeculae at 72 hpf (Figure 4E, F and 
J). Altogether, these results indicate that Apelin signaling regulates endocardial protrusion formation 
and myocardial trabeculation.

To further examine the function of Apelin-dependent endocardial protrusions during cardiac 
trabeculation, we next analyzed CM proliferation in apln mutants using EdU labeling. Homozygous 
apln mutants exhibit a significantly decreased number of EdU+ CMs in their ventricle compared with 
apln+/+ siblings (Figure 4—figure supplement 2). In addition, apln mutants also display a significantly 
thicker CJ compared with apln+/+ siblings at 72 hpf (Figure 4C–F, K and L). However, we did not 
observe any obvious defects in sarcomere formation (Figure 4—figure supplement 3A and B), heart 
rate, ejection fraction, or blood circulation in apln mutants (Figure 4—figure supplement 3C and 
D; Figure 4—videos 1–2), indicating that the myocardial trabeculation phenotype is caused by the 
endocardial protrusion defect and is not secondary to cardiac dysfunction.

Notch signaling negatively regulates endothelial sprouting and protrusion formation in several 
vascular beds (Hellström et al., 2007; Leslie et al., 2007; Siekmann and Lawson, 2007; Suchting 
et al., 2007). In order to determine whether Notch signaling also regulates endocardial protrusion 
formation, we treated embryos with the γ-secretase inhibitor RO4929097 and observed a decrease 
in Notch reporter expression in the endocardium (Figure 4—figure supplement 4A and B) as well as 
an increased number of endocardial protrusions in the ventricle (Figure 4—figure supplement 4E, 
F, and H). However, and in line with the touchdown reduction phenotype in Notch-deficient mice, we 
observed a reduction in endocardial touchdowns in Notch inhibitor treated zebrafish larvae at 48 hpf 
(Figure 4—figure supplement 4C, D, and G).

Altogether, these results indicate that myocardial derived Apelin promotes endocardial protru-
sion formation while Notch signaling inhibits it. Furthermore, Apelin signaling is required for cardiac 
trabeculation, possibly via the formation of endocardial protrusions.

the ventricle from 48 hpf wild-type and irsp53dn embryos (F’). (G–G’) Illustration of the division of the 72 hpf ventricle into the outer and inner curvature 
(G). Quantification of the percentage of trabecular cardiomyocytes (CMs) in the outer curvature of wild-type and irsp53dn larvae at 72 hpf (G’).  (H–H’) 
72 hpf larvae with endothelial overexpression of irsp53dn display a reduced number of myl7:mVenus-Gmnn+ CMs (yellow arrows) in their ventricle. (I) 
Quantification of the number of mVenus-Gmnn+ CMs in the ventricle of wild-type and irsp53dn larvae at 72 hpf. All images are ventral views, anterior to 
the top. V, ventricle; A, atrium. Data in graphs expressed as mean ± SEM.

Figure 2 continued

https://doi.org/10.7554/eLife.73231


 Research article﻿﻿﻿﻿﻿﻿ Cell Biology | Developmental Biology

Qi et al. eLife 2022;11:e73231. DOI: https://​doi.​org/​10.​7554/​eLife.​73231 � 7 of 20

apln:EGFP   myl7:MKATE-CAAX

aplnrb:VenusPEST   kdrl:HsHRAS-mCherry

48
 h

pf
72

 h
pf

A’

B’

C’

D’

C

V
A

D

V

A

A

V A

B

V
A

48
 h

pf
72

 h
pf

15 µm

15 µm

15 µm

15 µm

D’’

C’’

A’’

B’’

maximum intensity projection

maximum intensity projection

maximum intensity projection

maximum intensity projection

Figure 3. Expression pattern of Apelin signaling pathway components. (A–D) Confocal projection images of the heart of TgBAC(apln:EGFP); 
Tg(myl7:MKATE-CAAX) (A, B) and TgBAC(aplnrb:VenusPEST); Tg(kdrl:HsHRAS-mCherry) (C, D) zebrafish at 48 (A, C) and 72 (B, D) hours post-
fertilization (hpf). (A’–’D’) Maximum intensity projections. (A–B) TgBAC(apln:EGFP) expression is detectable in the myocardium at 48 (A) and 72 (B) hpf. 
(C–D) TgBAC(aplnrb:VenusPEST) expression is detectable in the endocardium with higher expression in the ventricular endocardium at 48 (C) and 72 (D) 
hpf. All images are ventral views, anterior to the top. V, ventricle; A, atrium.
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Figure 4. Loss of Apelin signaling leads to reduced endocardial protrusion and reduced myocardial trabeculation. (A–F) Confocal projection images of 
the heart of Tg(cdh5:Gal4ff); Tg(UAS:LIFEACT-GFP) zebrafish at 24 hours post-fertilization (hpf) (A–B) and of the heart of Tg(myl7:mCherry-CAAX); Tg 
(cdh5:Gal4ff); Tg(UAS:LIFEACT-GFP) (C–F) zebrafish at 48 (C–D) and 72 (E–F) hpf. Maximum intensity projections (A–B) and mid-sagittal sections (C–F). 
(A) Endocardial protrusions (arrows) in apln+/+ embryos at 24 hpf. (B) The number of endocardial protrusions (arrows) is reduced in apln-/- siblings at 24 

Figure 4 continued on next page
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The function of endocardial Nrg2a in trabeculation requires endocardial 
protrusions
Nrg-ErbB signaling is indispensable for cardiac trabeculation in mouse and zebrafish (Gassmann et al., 
1995; Lee et al., 1995; Meyer and Birchmeier, 1995; Lai et al., 2010; Liu et al., 2010; Peshkovsky 
et al., 2011; Rasouli and Stainier, 2017). To determine whether endocardial protrusions are required 
for Nrg-ErbB signaling, we first overexpressed nrg2a in the endothelium using the Tg(fli1a:nrg2a-p2a-
tdTomato) line (Rasouli and Stainier, 2017). Overexpression of nrg2a in the endothelium results in 
hypertrabeculation as well as a multilayered myocardium (Figure 5A, B and E–G; Figure 5—figure 
supplement 1A and B). Strikingly, overexpressing nrg2a in the endothelium while blocking endocar-
dial protrusion formation by endothelial overexpression of irsp53dn is not sufficient to restore cardiac 
trabeculation or induce CM multilayering (Figure 5C-C' and E-G). In line with these results, overex-
pressing nrg2a in the endothelium of homozygous apln mutants is not sufficient to restore cardiac 
trabeculation or induce CM multilayering (Figure 5D-D' and E-G). Importantly, we did not detect a 
change in the expression levels of nrg2a in apln mutant hearts at 48 hpf (Figure 5—figure supple-
ment 1C). Taken together, these data indicate that endocardial protrusions are required for Nrg-ErbB 
signaling during cardiac trabeculation.

Genetically blocking endocardial protrusion formation attenuates Erk 
signaling in cardiomyocytes
An important molecule in the Nrg/ErbB signaling pathway is the extracellular signal-regulated kinase 
Erk (Lai et  al., 2010). In order to visualize Erk activity in CMs in living zebrafish, as a readout of 
ErbB signaling, we generated novel reporter lines (Tg(myl7:ERK-KTR-Clover-p2a-H2B-tagBFP) and 
Tg(myl7:ERK-KTR-Clover-p2a-H2B-mScarlet)) that use the kinase translocation reporter (KTR) tech-
nology (Regot et  al., 2014; de la Cova et  al., 2017). When Erk is inactive, the KTR is unphos-
phorylated and Clover can be detected in the nucleus; in contrast, when Erk is active, the KTR is 
phosphorylated and Clover can be detected in the cytoplasm (de la Cova et al., 2017). We observed 
that most ventricular CMs in wild-type larvae display active Erk signaling with cytoplasmic Clover 
expression (Figure  6A). Treating embryos expressing the reporter with a MEK inhibitor led to an 
increased number of ventricular CMs with nuclear Clover expression (i.e., inactive Erk signaling) indi-
cating that the reporter is functional (Figure 6—figure supplement 1). Next, we treated embryos 
expressing the reporter with an ErbB2 inhibitor and found an increased number of ventricular CMs 
with nuclear Clover expression (Figure 6B). To determine whether endocardial protrusions modulate 
myocardial Erk signaling activity, we genetically blocked endocardial protrusion formation via endo-
thelial overexpression of irsp53dn and observed more ventricular CMs with nuclear Clover expression 

hpf. (C–D) The numbers of endocardial protrusions (arrows) and touchdowns (white asterisks) are reduced in apln-/- embryos (D) at 48 hpf compared with 
apln+/+ siblings (C). (E–F) apln-/- larvae (F) exhibit reduced trabeculation (arrowheads) and thicker cardiac jelly (CJ) (yellow asterisks) at 72 hpf compared 
with apln+/+ siblings (E). (G–H) Quantification of the number of endocardial protrusions in the ventricle of apln+/+ and apln-/- siblings at 24 (G) and 48 (H) 
hpf. (I) Distribution and average number of endocardial protrusions in different regions of mid-sagittal sections of the ventricle from 48 hpf apln+/+ and 
apln-/- siblings. (J) Quantification of the percentage of trabecular cardiomyocytes (CMs) in the outer curvature of apln+/+ and apln-/- siblings at 72 hpf. 
(K–K’) Maximum intensity projections. apln-/- larvae (K’) exhibit a thicker CJ at 72 hpf compared with apln+/+ siblings (K). (L) Quantification of the CJ 
volume in the outer curvature of apln+/+ and apln-/- siblings at 72 hpf. All images are ventral views, anterior to the top. V, ventricle; A, atrium; +/+, apln+/+; 
-/-, apln-/-. Data in graphs expressed as mean ± SEM.

The online version of this article includes the following video and figure supplement(s) for figure 4:

Figure supplement 1. aplnrb mutants exhibit reduced endocardial protrusion formation and reduced trabeculation, and aplnra mutant exhibit a mild 
reduction in trabeculation.

Figure supplement 2. Apelin signaling regulates cardiomyocyte (CM) proliferation in the ventricle.

Figure supplement 3. Wild-type like sarcomere structure and heart function in apln-/- larvae.

Figure supplement 4. Notch signaling represses endocardial protrusion formation.

Figure 4—video 1. apln+/+ blood circulation at 48 hours post-fertilization (hpf).

https://elifesciences.org/articles/73231/figures#fig4video1

Figure 4—video 2. apln-/- blood circulation at 48 hours post-fertilization (hpf).

https://elifesciences.org/articles/73231/figures#fig4video2

Figure 4 continued

https://doi.org/10.7554/eLife.73231
https://elifesciences.org/articles/73231/figures#fig4video1
https://elifesciences.org/articles/73231/figures#fig4video2
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Figure 5. Endocardial protrusions are necessary for nrg2a function. (A–D) Confocal projection images of the heart of Tg(myl7:HsHRAS-EGFP) larvae 
at 72 hours post-fertilization (hpf). (A–B) Overexpression of nrg2a in the endothelium (B) leads to an increased number of trabeculae (arrowheads) and 
the multilayering of cardiomyocytes (CMs) (brackets) compared with wild-type (A).  (C) Larvae with endothelial overexpression of nrg2a and irsp53dn 
exhibit a reduced number of trabeculae (arrowheads) and of multilayered CMs (brackets) compared with larvae with endothelial overexpression of nrg2a 
alone (B).  (D) apln mutant larvae with endothelial overexpression of nrg2a exhibit a reduced number of trabeculae (arrowheads) and of multilayered 
CMs (brackets) compared with wild-type larvae with endothelial overexpression of nrg2a (B).  (E) Quantification of the number of trabeculae. (F) 
Quantification of the number of trabecular CMs. (G) Quantification of the number of multilayered CMs in the ventricle. Brackets indicate multilayered 
CMs. All images are ventral views, anterior to the top. V, ventricle. Data in graphs expressed as mean ± SEM.

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. nrg2a expression does not appear to be affected in apln mutants.

https://doi.org/10.7554/eLife.73231
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Figure 6. Blocking endocardial protrusion formation reduces myocardial extracellular signal-regulated kinase 
(Erk) signaling activity. (A–D) Maximum intensity projections of confocal images of the heart of Tg(myl7:ERK-
KTR-Clover-p2a-H2B-tagBFP/mScarlet) larvae at 72 hours post-fertilization (hpf). (A) Visualization of Erk activity 
by a cardiomyocyte (CM)-specific ERK-kinase translocation reporter (KTR) reporter. Nuclear Clover expression 

Figure 6 continued on next page

https://doi.org/10.7554/eLife.73231


 Research article﻿﻿﻿﻿﻿﻿ Cell Biology | Developmental Biology

Qi et al. eLife 2022;11:e73231. DOI: https://​doi.​org/​10.​7554/​eLife.​73231 � 12 of 20

(Figure 6C and E) compared with control (Figure 6A and E), indicating more ventricular CMs with 
inactive Erk signaling. In line with these results, we observed more ventricular CMs with inactive Erk 
signaling in homozygous apln mutants (Figure 6D and E) compared with apln+/+ siblings (Figure 6A 
and E). Altogether, these observations indicate that Apelin signaling-dependent endocardial protru-
sions promote Nrg/ErbB/Erk signaling in CMs.

Discussion
Endocardial protrusions are required for trabeculation
Cardiac trabeculation is initiated, at least in zebrafish, by individual CMs delaminating from the 
myocardial monolayer and protruding into the lumen (Liu et  al., 2010; Peshkovsky et  al., 2011; 
Staudt et al., 2014; Jiménez-Amilburu et al., 2016; Priya et al., 2020). In contrast, the myocardium 
in mouse is multilayered at the onset of trabeculation. Several studies have reported that the endo-
cardium plays an important role during cardiac trabeculation (Grego-Bessa et al., 2007; Lai et al., 
2010; D’Amato et al., 2016; Rasouli and Stainier, 2017; Del Monte-Nieto et al., 2018; Qu et al., 
2019). Furthermore, it has recently been shown that EdCs, similar to ECs, undergo sprouting (Del 
Monte-Nieto et al., 2018). However, in comparison with endothelial sprouting, little is known about 
the morphogenetic events underlying endocardial sprouting and their effect on cardiac morphogen-
esis including trabeculation.

In mouse, endocardial sprouting and touchdown formation occur early during cardiac trabeculation 
(Del Monte-Nieto et al., 2018). These observations are in line with our data in zebrafish, suggesting 
that the morphogenetic events of cardiac trabeculation are evolutionarily conserved. However, endo-
cardial sprouts in mouse appear to be cellular (Del Monte-Nieto et al., 2018), whereas endocardial 
protrusions in zebrafish appear more similar to filopodia, although these differences may be due to 
the fact that fixed tissue was used for the mouse work compared with live tissue for the zebrafish work. 
CM delamination and trabeculation occur in the outer curvature of the ventricle (Liu et al., 2010; 
Jiménez-Amilburu et al., 2016; Rasouli and Stainier, 2017). Consistent with these observations, we 
find that endocardial protrusions are mostly located in the outer curvature of the ventricle and extend 
along delaminating CMs as well as trabecular CMs. The temporal and spatial correlation between the 
emergence and location of endocardial protrusions and CM delamination therefore suggests a role 
for endocardial protrusions in cardiac trabeculation.

Molecular regulators of endocardial sprouting
During sprouting angiogenesis, so-called tip cells lead the new sprouts (Gerhardt, 2008). Tip cells 
dynamically extend filopodia to identify growth factors in their environment (Gerhardt, 2008). Apelin 
and Notch signaling have been previously identified as regulators of endothelial filopodia formation 
(Hellström et al., 2007; Suchting et al., 2007; Helker et al., 2020). In contrast, the pathways regu-
lating endocardial sprouting are largely unknown. Only Tie2 signaling has been identified to date 
as a regulator of endocardial sprouting, and Tie2-deficient mice exhibit fewer endocardial touch-
downs (Qu et al., 2019). We have recently shown that Apelin signaling regulates filopodia formation 
during sprouting angiogenesis in the trunk (Helker et al., 2020). In line with these published observa-
tions, we now show that Apelin regulates endocardial filopodia formation and endocardial sprouting 

(arrows) indicates CMs with inactive Erk signaling. (B) Larvae treated with an ErbB2 inhibitor exhibit an increased 
number of CMs with inactive Erk signaling (arrows) compared with control larvae (A).  (C) Larvae with endothelial 
overexpression of irsp53dn exhibit an increased number of CMs with inactive Erk signaling (arrows) compared 
with control larvae (A).  (D) apln mutant larvae exhibit an increased number of CMs with inactive Erk signaling 
(arrows) compared with apln+/+ siblings. (E) Quantification of the percentage of ventricular CMs with nuclear Clover 
expression. All images are ventral views, anterior to the top. V, ventricle. Data in graphs expressed as mean ± SEM.

The online version of this article includes the following figure supplement(s) for figure 6:

Figure supplement 1. Validation of the extracellular signal-regulated kinase (Erk) reporter line using MEK inhibitor 
treatment.

Figure supplement 2. Schematic model.

Figure 6 continued

https://doi.org/10.7554/eLife.73231


 Research article﻿﻿﻿﻿﻿﻿ Cell Biology | Developmental Biology

Qi et al. eLife 2022;11:e73231. DOI: https://​doi.​org/​10.​7554/​eLife.​73231 � 13 of 20

(Figure 6—figure supplement 2), revealing a conserved role for Apelin signaling during endothelial 
and endocardial sprouting.

Consistent with the negative regulation of sprouting angiogenesis by Notch signaling in ECs (Hell-
ström et al., 2007; Leslie et al., 2007; Siekmann and Lawson, 2007; Suchting et al., 2007), we 
found that Notch signaling also negatively regulates endocardial protrusion formation. Interestingly, 
inhibition of Notch signaling also leads to an increased number of delaminated CMs and trabeculae, 
although Notch signaling may also affect CM behavior cell autonomously (Han et al., 2016; Priya 
et al., 2020).

Endocardium-myocardium communication is essential for trabeculation
Cell communication between the endocardial and myocardial cells is required for cardiac trabec-
ulation (Gassmann et al., 1995; Lee et al., 1995; Meyer and Birchmeier, 1995; Lai et al., 2010; 
Liu et al., 2010; Rasouli and Stainier, 2017; Gunawan et al., 2021). Several studies have shown 
that endocardial-derived Nrg is required to activate ErbB receptor complexes on CMs (Gassmann 
et al., 1995; Meyer and Birchmeier, 1995; Grego-Bessa et al., 2007; Rasouli and Stainier, 2017). 
In zebrafish, nrg2a, which is expressed in the developing endocardium, is required for trabeculation 
(Rasouli and Stainier, 2017), and nrg2a overexpression in the endothelium results in an increased 
number of trabeculae and trabecular CMs (Figure 5), indicating that endocardial nrg2a is necessary 
and sufficient for trabeculation. Notably, blocking endocardial protrusion formation compromises 
the function of endocardial nrg2a during trabeculation, suggesting that endocardial protrusions are 
required for nrg2a function during trabeculation. The membrane-bound form of Nrg2a has a molec-
ular weight of 55 kD, and after cleavage, the presumed secreted form has a molecular weight of 
22 kD. In contrast, the most active form of Apelin is 13 amino acids long, with a molecular weight of 
1.52 kD. Therefore, it is possible that due to its small size, Apelin is able to diffuse through the CJ, 
while Nrg2a needs to be transported by endocardial protrusions toward the myocardium.

Like other receptor tyrosine kinases, ErbB receptors activate multiple signaling cascades, including 
the MAPK cascade, upon ligand stimulation, leading to the phosphorylation of ERK1/2 (Sweeney 
et al., 2001; Wee and Wang, 2017). Accordingly, attenuated ERK phosphorylation is observed in 
CMs in Nrg1/ErbB signaling-deficient mice (Lai et al., 2010). By analyzing a novel reporter of Erk 
activity in CMs, we observed that the inhibition of endocardial protrusion formation, as well as the 
genetic inactivation of Apelin signaling, leads to attenuated Erk phosphorylation in CMs. Altogether, 
these data suggest that Apelin signaling-dependent endocardial protrusions modulate ErbB signaling 
in CMs (Figure 6—figure supplement 2).

It has recently been shown that EC filopodia modulate neurogenesis by affecting progenitor cell 
proliferation in the developing brain of mice and zebrafish (Di Marco et al., 2020; Taberner et al., 
2020). Of interest, ErbB signaling is also known for its function within the nervous system (Buonanno 
and Fischbach, 2001). Thus, one might speculate that Nrg/ErbB signaling also plays a role during 
the modulation of neurogenesis by endothelial filopodia. Several studies have reported cell-to-cell 
communication by cytonemes in different animal models (Ramírez-Weber and Kornberg, 1999; 
Holzer et al., 2012; Luz et al., 2014; Pröls et al., 2015). Whether endocardial protrusions qualify 
as cytonemes needs further analysis. However, our data indicate that Apelin-dependent endocardial 
protrusions are required for the communication between endocardial and myocardial cells via Nrg/
ErbB signaling (Figure 6—figure supplement 2).

In summary, our work describes how endocardial sprouting is required for Nrg/ErbB signaling 
during cardiac trabeculation. Furthermore, we identify Apelin signaling as a positive regulator of 
endocardial sprouting.

Materials and methods

 Continued on next page

Key resources table 

Reagent type (species) or 
resource Designation Source or reference Identifiers Additional information

Genetic reagent (Danio rerio) TgBAC(apln:EGFP)bns157 Helker et al., 2020 ZFIN: bns157

Genetic reagent (Danio rerio) TgBAC(cdh5:Gal4ff)mu101 Bussmann et al., 2011 ZFIN: mu101

https://doi.org/10.7554/eLife.73231
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Reagent type (species) or 
resource Designation Source or reference Identifiers Additional information

Genetic reagent (Danio rerio) Tg(UAS:LIFEACT-GFP)mu271 Helker et al., 2013 ZFIN: mu271

Genetic reagent (Danio rerio) Tg(fli1a:nrg2a-p2a-tdTomato)bns199 Rasouli and Stainier, 2017 ZFIN: bns199

Genetic reagent (Danio rerio) Tg(myl7:mCherry-CAAX)bns7 Uribe et al., 2018 ZFIN: bns7

Genetic reagent (Danio rerio) Tg(myl7:BFP-CAAX)bns193 Guerra et al., 2018 ZFIN: bns193

Genetic reagent (Danio rerio) Tg(myl7:MKATE-CAAX)sd11 Lin et al., 2012 ZFIN: sd11

Genetic reagent (Danio rerio) Tg(kdrl:HsHRAS-mCherry)s896 Chi et al., 2008 ZFIN: s896

Genetic reagent (Danio rerio) Tg(myl7:HRAS-EGFP)s883 D’Amico et al., 2007 ZFIN: s883

Genetic reagent (Danio rerio) Tg(tp1-MmHbb:EGFP)um14 Parsons et al., 2009 ZFIN: um14

Genetic reagent (Danio rerio) Tg(myl7:mVenus-gmnn)ncv43Tg
Jiménez-Amilburu et al., 
2016 ZFIN: ncv43Tg

Genetic reagent (Danio rerio) Tg(UAS: irsp53dn-p2a-tagRFP)bns440 This paper bns440
See Materials and methods 
section

Genetic reagent (Danio rerio) TgBAC(aplnrb:VenusPEST)mr13 This paper mr13
See Materials and methods 
section

Genetic reagent (Danio rerio) Tg(–0.8myl7:ERK-KTR-Clover-p2a-Hsa.H2B-tagBFP) This paper  �
See Materials and methods 
section

Genetic reagent (Danio rerio) Tg(–0.8myl7:ERK-KTR-Clover-p2a-Hsa.H2B-mScarlet)bns565 This paper bns565
See Materials and methods 
section

Genetic reagent (Danio rerio) aplnmu267 mutant Helker et al., 2015 ZFIN: mu267

Genetic reagent (Danio rerio) aplnrbmu281 mutant Helker et al., 2015 ZFIN: mu281

Genetic reagent (Danio rerio) aplnramu296 mutant Helker et al., 2015 ZFIN: mu296

Antibody Alexa Fluor 488 anti-Chicken IgG (H + L) (goat polyclonal) Thermo Fisher Scientific Cat# A-11039 (1:500)

Antibody Alexa Fluor 568 anti-Mouse IgG (H + L) (goat polyclonal) Thermo Fisher Scientific Cat# A-11004 (1:500)

Antibody Alexa Fluor 647 anti-Rabbit IgG (H + L) (goat polyclonal) Thermo Fisher Scientific Cat# A-21244 (1:500)

Antibody Anti-GFP (chicken polyclonal) AvesLab Cat#: GFP-1020 (1:500)

Antibody Anti-mCherry (mouse monoclonal) Takara Bio Clontech Cat# 632,543 (1:500)

Chemical compound, drug Agarose, low gelling temperature Sigma A9414-25g

Chemical compound, drug EdU Thermo Fisher Scientific Cat# A10044 (1 mM)

Chemical compound, drug ErbB2 inhibitor PD168393 Sigma Cat# PZ0285 (10 µM)

Chemical compound, drug MEK inhibitor PD0325901 Sigma Cat# PZ0162 (1 µM)

Chemical compound, drug RO 4929097 MedChemExpress Cat# HY-11102 (1 µM)

Other DAPI Sigma Cat# D9542 (1 μg/ml)

Commercial assay or kit Alexa Fluor 568 Phalloidin Thermo Fisher Scientific Cat# A12380 (1:100)

Commercial assay or kit
Click-iT EdU Cell Proliferation Kit for Imaging, Alexa Fluor 
647 dye Thermo Fisher Scientific Cat# C10340

Commercial assay or kit DyNAmo ColorFlash SYBR Green qPCR Mix Thermo Fisher Scientific Cat# F416S

Commercial assay or kit In-Fusion HD Cloning Plus Takara Bio Cat# 638,910

Commercial assay or kit Maxima First Strand cDNA kit Thermo Fisher Scientific Cat# K1641

Commercial assay or kit RNA clean and concentrator-5 Zymo Research R1016

Software, algorithm Fiji Image J Schindelin et al., 2012 RRID:SCR_002285

Software, algorithm GraphPad Prism 8 GraphPad Software RRID:SCR_002798

Software, algorithm Imaris – version 9.6.0 Bitplane RRID:SCR_007370

Software, algorithm ZEN Digital Imaging Zeiss RRID:SCR_013672

 Continued
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Zebrafish lines
All zebrafish housing and husbandry were performed under standard conditions in accordance with 
institutional (Max Planck Society) and national ethical and animal welfare guidelines approved by the 
ethics committee for animal experiments at the Regierungspräsidium Darmstadt, Germany, as well as the 
FELASA guidelines (Aleström et al., 2020). Embryos were staged by hpf at 28.5°C (Kimmel et al., 1995).

Transgenic lines used in the study: TgBAC(apln:EGFP)bns157 (Helker et  al., 2020), TgBAC(c-
dh5:Gal4ff)mu101 (Bussmann et  al., 2011), Tg(UAS:LIFEACT-GFP)mu271 (Helker et  al., 2013), 
Tg(fli1a:nrg2a-p2a-tdTomato)bns199 (Rasouli and Stainier, 2017), Tg(myl7:mCherry-CAAX)bns7 (Uribe 
et al., 2018), Tg(myl7:BFP-CAAX)bns193 (Guerra et al., 2018), Tg(myl7:MKATE-CAAX)sd11 (Lin et al., 
2012), Tg(kdrl:HsHRAS-mCherry)s896 (Chi et al., 2008), Tg(myl7:HRAS-EGFP)s883 (D’Amico et al., 2007), 
Tg(tp1-MmHbb:EGFP)um14 (Parsons et  al., 2009), Tg(myl7:mVenus-gmnn)ncv43Tg (Jiménez-Amilburu 
et al., 2016), Tg(UAS:irsp53dn-p2a-tagRFP)bns440 (this study), TgBAC(aplnrb:VenusPEST)mr13 (this study), 
Tg(–0.8myl7:ERK-KTR-Clover-p2a-Hsa.H2B-tagBFP) (this study, abbreviated as Tg(myl7:ERK-KTR-
Clover-p2a-H2B-tagBFP)) and Tg(–0.8myl7:ERK-KTR-Clover-p2a-Hsa.H2B-mScarlet)bns565 (this study, 
abbreviated as Tg(myl7:ERK-KTR-Clover-p2a-H2B-mScarlet)).

Mutant lines used in the study: aplnmu267 (Helker et al., 2015), aplnrbmu281 (Helker et al., 2015), 
aplnramu296 (Helker et al., 2015).

Generation of transgenic lines
To generate the Tg(UAS:irsp53dn-p2a-tagRFP) line, a dominant negative form of irsp53 (Millard et al., 
2005; Meyen et al., 2015) was amplified by PCR using the primers: forward, 5’- ​TTCG​AATT​AGAT​
CTGT​CGAC​CGCC​ACCA​TGTC​TCGC​ACCG​ACGAGGT-3’; reverse, 5’- ​GTAG​CTCC​GCTT​CCAC​GCGT​
CTGT​GCAA​AGCC​TGCCATGC-3’. The amplification was cloned into a 5xUAS-p2a vector upstream 
of tagRFP.

To generate the aplnrb bacterial artificial chromosome (BAC) construct, we used the BAC clone 
CH211-102K containing the aplnrb locus. All recombineering steps were performed as described in 
Bussmann and Schulte-Merker, 2011, with the modifications as described in Helker et al., 2019. The 
following homology arms were used to generate the targeting PCR product of the Venus-pest_Kan 
cassette: aplnrb_HA1_GFP_fw: ​GAGC​ACAT​GACA​AACA​ACTT​CTCT​GTGA​TCAC​TTCA​AAGA​TTTT​
CTTG​AAAC​CATG​GTGA​GCAA​GGGC​GAGGAG and aplnrb_HA2_kanR_rev: ​TCGT​CGAA​GTAA​TCTG​
GGCT​ATAG​TCAG​CAGT​CATG​TTGT​CCAT​GGCA​TTTT​CCAG​AAGT​AGTG​AGGAG. The Kanamycin 
cassette was removed with a flippase.

To generate the Tg(–0.8myl7:ERK-KTR-Clover-p2a-Hsa.H2B-tagBFP) and Tg(–0.8myl7:ERK-KTR-
Clover-p2a-Hsa.H2B-mScarlet) lines, ERK-KTR-Clover was amplified from addgene plasmid #59150 
using forward primer: ​GCAA​AGCA​GACA​GTGA​ACAA​GCTT​GCTA​GCCC​ACCA​TGAA​GGGC​CGAA​
AGCC​TCGGG and reverse primer: ​GTTA​GTAG​CTCC​GCTT​CCGT​CGAC​GGCG​GCGG​TCAC​GAAC​
TCCA​GCAGG. The PCR product was cloned into a Tol2 enabled vector containing p2a and H2B. Of 
note, no F1 adults were recovered for the Tg(–0.8myl7:ERK-KTR-Clover-p2a-Hsa.H2B-tagBFP) line.

All constructs were injected into AB embryos at the one-cell stage (30 pg/embryo) together with 
Tol2 mRNA (25 pg/embryo) to establish the line.

Live imaging of stopped hearts
Zebrafish embryos and larvae were mounted in 1.4% low-melt agarose containing 1.6 mg/ml tric-
aine, to stop the heartbeat, on glass-bottom dishes. The samples were imaged with a Zeiss LSM800 
confocal microscope using a 40×/1.1 W objective or a Zeiss LSM880 confocal microscope using a 
20×/1.1 W objective.

Live imaging of beating hearts
Zebrafish embryos were mounted in 0.8% low-melt agarose containing 0.2 mg/ml tricaine on glass-
bottom dishes and kept in water containing 0.2 mg/ml tricaine through the experiment. Videos were 
acquired at 100 frames per second with a Hamamatsu ORCA flash 4.0 sCMOS camera and the image 
was binned 4 × 4 to achieve a calculated pixel resolution of 0.7 µm (40× objective).

https://doi.org/10.7554/eLife.73231


 Research article﻿﻿﻿﻿﻿﻿ Cell Biology | Developmental Biology

Qi et al. eLife 2022;11:e73231. DOI: https://​doi.​org/​10.​7554/​eLife.​73231 � 16 of 20

Inhibitor treatments
Zebrafish embryos were treated with 1 µM Notch inhibitor RO 4929097 for 24 hr (from 24 to 48 hpf), 
washed twice with egg water containing 0.1% (w/v) 1-phenyl-2-thiourea (PTU) and mounted in 1.4% 
low-melt agarose with 1.6 mg/ml tricaine for imaging.

Zebrafish embryos were treated with 1 µM MEK inhibitor PD 0325901 or 10 µM ErbB2 inhibitor PD 
168393 from 56 to 72 hpf, washed twice with egg water containing 0.1% (w/v) PTU and mounted in 
1.4% low-melt agarose with 1.6 mg/ml tricaine for imaging.

EdU staining
Zebrafish embryos were treated with 1 mM EdU dissolved in 1% DMSO for 24 hr (from 48 to 72 hpf) or 
44 hr (from 28 to 72 hpf) in egg water containing 0.1% (w/v) PTU. After treatment, embryos and larvae 
were washed twice with egg water containing 0.1% (w/v) PTU, anesthetized with 0.2% (w/v) tricaine 
for 5 min and fixed in 4% PFA at room temperature for 2 hr. The CLICK-IT reaction for EdU labeling 
was performed as per manufacturer’s protocol (Invitrogen). Samples were processed for immunos-
taining with anti-GFP, anti-mCherry, and DAPI using the procedure described below.

Immunostaining
Zebrafish embryos and larvae were collected at different stages and fixed in 4% FPA at room tempera-
ture for 2 hr. Next, animals were washed with PBS/1% BSA/1%DMSO/0.5% Triton X-100 (PBDT) and 
blocked with PBDT/10% goat serum for 1 hr before incubating in primary antibody at 4°C overnight. 
Samples were washed in PBDT for 30 min × four times and incubated in secondary antibody for 2 hr 
at room temperature and then incubated with 1 μg/ml DAPI for 10 min and washed with PBS/0.1% 
Tween.

Primary antibodies used were GFP and mCherry. Phalloidin Alexa Fluor 568 was used to mark 
F-actin. Secondary antibodies were goat anti-chicken Alexa Fluor 488, goat anti-mouse Alexa Fluor 
568, and goat anti-rabbit Alexa Fluor 647.

Image processing
Confocal data were processed on Imaris x64. Images were prepared using Adobe Photoshop.

Quantification and statistical analysis
The number of endocardial protrusions at 24 hpf was quantified from maximum intensity projections 
of the ventricle. The number of endocardial protrusions at 48 hpf was quantified from the mid-sagittal 
plane of the ventricle. The ratio of trabecular CMs was quantified as previously described (Jiménez-
Amilburu et al., 2016). The number of trabeculae in the outer curvature of the ventricle was quantified 
from the mid-sagittal plane, and delaminating CMs were also counted as trabeculae. The number of 
trabecular CMs in the outer curvature of the ventricle was quantified from the mid-sagittal plane. The 
number of multilayered CMs in the outer curvature of the ventricle was also quantified from the mid-
sagittal plane. EdU+ and Gmnn+ CMs were quantified in the entire ventricle. To quantify the volume 
of the CJ, the drawing tool paintbrush in Fiji was used to mark the space between the endocardium 
and myocardium in the outer curvature of the ventricle, followed by a 3D surface reconstruction by 
Imaris. Systolic and diastolic ventricular areas were measured to calculate ejection fractions. Sample 
sizes are indicated in each figure, one dot representing one sample. All quantifications were analyzed 
by the Student’s t-test (two tailed) and considered significant at p < 0.05. p-Values are indicated in 
the figures.
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