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Abstract

Yellow fever virus (YFV) has a long history of impacting human health in South America.

Mayaro virus (MAYV) is an emerging arbovirus of public health concern in the Neotropics

and its full impact is yet unknown. Both YFV and MAYV are primarily maintained via a syl-

vatic transmission cycle but can be opportunistically transmitted to humans by the bites of

infected forest dwelling Haemagogus janthinomys Dyar, 1921. To better understand the

potential risk of YFV and MAYV transmission to humans, a more detailed understanding of

this vector species’ distribution is critical. This study compiled a comprehensive database of

177 unique Hg. janthinomys collection sites retrieved from the published literature, digitized

museum specimens and publicly accessible mosquito surveillance data. Covariate analysis

was performed to optimize a selection of environmental (topographic and bioclimatic) vari-

ables associated with predicting habitat suitability, and species distributions modelled

across South America using a maximum entropy (MaxEnt) approach. Our results indicate

that suitable habitat for Hg. janthinomys can be found across forested regions of South

America including the Atlantic forests and interior Amazon.

Author summary

Mayaro virus is a neglected tropical disease and there is insufficient evidence to define its

geographic range. The mosquito Haemagogus janthinomys is a primary vector of Mayaro

and its distribution is largely unknown at a sub-country scale. Building compendiums of

collection data and creating ecological niche models provides a more precise estimation of

vector species potential habitat. Our dataset stands as one of the most expansive existing

PLOS NEGLECTED TROPICAL DISEASES

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0010564 July 8, 2022 1 / 21

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Celone M, Pecor DB, Potter A, Richardson

A, Dunford J, Pollett S (2022) An ecological niche

model to predict the geographic distribution of

Haemagogus janthinomys, Dyar, 1921 a yellow

fever and Mayaro virus vector, in South America.

PLoS Negl Trop Dis 16(7): e0010564. https://doi.

org/10.1371/journal.pntd.0010564

Editor: Eric HY Lau, The University of Hong Kong,

CHINA

Received: April 9, 2021

Accepted: June 6, 2022

Published: July 8, 2022

Copyright: This is an open access article, free of all

copyright, and may be freely reproduced,

distributed, transmitted, modified, built upon, or

otherwise used by anyone for any lawful purpose.

The work is made available under the Creative

Commons CC0 public domain dedication.

Data Availability Statement: All relevant data are

made available within the manuscript and its

Supporting Information files.

Funding: This research was supported in part by

an appointment to the Research Participation

Program at the Walter Reed Army Institute of

Research by the Oak Ridge Institute for Science

and Education (ORISE) through an interagency

agreement between the U.S. Department of Energy

and USAMRMC (https://orise.orau.gov/internships-

https://orcid.org/0000-0002-8900-3392
https://orcid.org/0000-0003-3039-623X
https://orcid.org/0000-0002-7287-4722
https://doi.org/10.1371/journal.pntd.0010564
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pntd.0010564&domain=pdf&date_stamp=2022-07-20
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pntd.0010564&domain=pdf&date_stamp=2022-07-20
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pntd.0010564&domain=pdf&date_stamp=2022-07-20
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pntd.0010564&domain=pdf&date_stamp=2022-07-20
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pntd.0010564&domain=pdf&date_stamp=2022-07-20
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pntd.0010564&domain=pdf&date_stamp=2022-07-20
https://doi.org/10.1371/journal.pntd.0010564
https://doi.org/10.1371/journal.pntd.0010564
https://creativecommons.org/publicdomain/zero/1.0/
https://creativecommons.org/publicdomain/zero/1.0/
https://orise.orau.gov/internships-fellowships/index.html


for collection data of this species combining data published in literature, publicly available

data repositories and digitized museum specimen records. Comparing results of niche

models with near real time environmental data can give even better predictions of areas

where Mayaro virus exposure could occur. The methods and results of this study can be

replicated for any disease/vector of interest so long as there is data discoverable through

the scientific literature, public repositories, or other civilian and governmental agencies

willing to share.

Introduction

Yellow Fever virus (YFV) is a mosquito-borne flavivirus that causes symptoms including fever,

muscle pain, nausea, and fatigue. Although many people recover from initial symptoms of yel-

low fever, approximately 15 percent of infected patients experience more severe infections

including hemorrhage, jaundice, and damage to multiple organ systems [1], with case fatality

rates exceeding 40% [2]. Globally, approximately 400 million people are estimated to be at risk

of YFV [3]. Although widespread vaccination campaigns have reduced the burden of YFV cir-

culation, several epidemics and epizootics have occurred in South America during the last two

decades, primarily in Brazil [4]. In the Americas, YFV predominantly circulates in a sylvatic

transmission cycle involving non-human primates and canopy-dwelling mosquitoes of the

Haemagogus (Hg.) subgenus Haemagogus [5]. During recent YFV outbreaks in Brazil, Hg.

janthinomys and Haemagogus (Conopostegus) leucocelaenus (Dyar & Shannon, 1924) were

implicated as the primary vectors [5]. Contemporary human YFV outbreaks represent spill-

over events from this sylvatic cycle into the human population [6].

Mayaro virus (MAYV) is a recently emerging arbovirus with a sylvatic transmission cycle

throughout Central and South America that occasionally spills over into human populations

in Brazil, Bolivia, and Venezuela [7]. While MAYV is not known to be fatal, it can cause non-

specific febrile symptoms, and occasionally results in debilitating polyarthritis or polyarthral-

gia [8]. Although the precise burden of MAYV is unknown, human seroprevalence surveys

have detected MAYV circulation in many countries including Peru [9], Suriname [10], Mexico

[11], Colombia [12], French Guiana [13], and Haiti [14]. Canopy-dwelling, Haemagogus
janthinomys Dyar, 1921 is among several mosquito species that are considered important vec-

tors of both YFV and MAYV [15].

Haemagogus janthinomys is typically collected in primary rainforest habitats and larvae are

typically found in tree holes [15,16]. Adults typically do not fly far from breeding sites in tree

canopies where they will feed on non-human primates and other mammals [16]. This species

has also been observed to take bloodmeals from up to three different host species in a single

ovicycle [17]. Plasticity in host selection, particularly within a single ovicycle could increase

chances for zoonotic spill over. Haemagogus janthinomys will also descend to the forest floor

to feed opportunistically on hosts such as humans [16]. Other Haemagogus spp. are known

vectors of sylvatic yellow fever, however Hg. janthinomys appears to have the widest geo-

graphic range across central and South America [18]. There does appear to be some plasticity

in the feeding behaviors and geographic distribution across central and South America which

may indicate this species is actually a complex with cryptic taxa confusing biological observa-

tions [19].

A comprehensive understanding of the geographic distribution of Hg. janthinomys mosqui-

toes is essential to predicting areas at risk of MAYV and YFV outbreaks. However, it is infeasi-

ble to exhaustively survey this species across its entire range, due to site inaccessibility and
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extensive resource allocation requirements of time, labor, and surveillance equipment. Knowl-

edge of the ecological niche preferences of this species can guide disease surveillance efforts

and aid public health authorities in allocating resources for vector control measures. Ecological

niche modeling (ENM) techniques have been used extensively to predict the potential range of

disease vectors [20], including vectors of Rift Valley fever virus, Trypanosoma cruzi [21] and

Japanese encephalitis virus [22], among others. Although several modeling studies have used

ENM frameworks such as the maximum entropy (MaxEnt) approach to predict the geographic

range of the Mayaro [23] and yellow fever viruses [24] and an important YFV vector, Hg. leu-
cocelaenus [25], there have been very few recent attempts to model the habitat suitability of

one of the major vectors, Hg. janthinomys. This study aims to develop a robust species distri-

bution model of Hg. janthinomys using a comprehensive dataset of collection records com-

piled from publicly accessible databases and peer-reviewed literature.

Methods

Occurrence and background points

Distribution data for Hg. janthinomys were compiled from publicly available specimen collec-

tion records, archive specimens in the United States National Museum (USNM) mosquito col-

lection, and records reported in peer-reviewed scientific literature. A search of the VectorMap

data repository (vectormap.si.edu) yielded both collection locations from USNM specimen

records and mosquito surveillance data. Additional collection events were identified from the

Global Biodiversity Information Facility (GBIF) database [26] and the NCBI GenBank data-

base [27].

A literature search was conducted using PubMed, Web of Science and Google Scholar.

Searches were executed using the keywords “Haemagogus janthinomys” combined with each

country in South America, including Trinidad and Tobago, for all articles published between

1901 and December 20, 2020. Trinidad and Tobago was included as it is listed as the type local-

ity of Hg. janthinomys. The search scope was modified to exclude Central American countries

after initial searches yielded very few collection records from the literature.

Articles were considered for eligibility based on the following criteria: (i) original research

studies on arthropod vectors in South America that described field-collected Hg. janthinomys
adult mosquitoes, larvae, or pupae or original research studies that described the bionomics of

Hg. janthinomys; and (ii) studies that included mappable collection sites (either GPS coordi-

nates or specific named places that can be georeferenced). Articles were not included if they

met any of the following exclusion criteria: (i) studies involving only humans; (ii) studies not

reporting original data (e.g., review articles, perspective pieces, editorials, recommendations,

and guidelines); (iii) duplicate studies; (iv) laboratory-based vector competence studies or

studies involving laboratory-reared mosquitoes; (v) studies that did not provide exact collec-

tion site locations; (vi) studies that did not provide information on mosquito identification

methods.

All articles were organized using EndNote, and data was abstracted into a Microsoft Excel

table. A primary reviewer (MC) independently screened all titles and abstracts to determine

articles that could immediately be discarded and articles to be included in the second stage of

review. During this second stage of review, full text articles were reviewed to identify candi-

dates for inclusion in the study. A secondary reviewer (AP) examined the screening results to

verify the final list of eligible articles. From those studies that met our inclusion criteria, collec-

tion data were extracted focusing on all information relevant to preserving the collection event

[28]. Locality data for each collection event was georeferenced using the point-radius method

[29] and data was standardized using the WRBU/VectorMap Best Practices Guide to Data
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Management and Reporting [30]. All duplicate coordinates were removed from the dataset. In

addition, the spThin package in the R statistical software was used to reduce clustering of pres-

ence records [31]. A 1-km distance threshold was used to ensure that no more than one pres-

ence point occurred within each pixel of the environmental rasters. See the S1 Table for a full

list of sources, collection dates, and coordinates for each collection location.

A fundamental assumption of ENMs is that species occurrence records are collected

through systematic or random sampling (i.e., unbiased samples) [32], but this assumption is

often violated when certain areas are oversampled because they are more easily accessible [33].

This spatial bias can reduce model accuracy because environmental features of these more

accessible areas are overrepresented in the model, leading to issues like artificial clustering due

to the uneven sampling effort [34] and errors of omission or commission [35]. One solution to

correct for sampling bias is the selection of background points with the same selection bias as

the presence points [33]. MaxEnt’s default procedure is to select background points at random

from the study extent [32]. However, we generated a ‘bias file’ using the MASS package in the

R statistical software to ensure that the background sampling represented the record density of

the occurrence points. As a result, background points were chosen preferentially from areas

with a high density of presences. We used MaxEnt’s default setting to select 10,000 background

points during the modeling process.

Variable selection

A total of 32 topographic, climate, and landscape variables were considered for inclusion in

the model. The 19 bioclimatic variables from the WorldClim version 2 website were down-

loaded at a 30 arc-second (~1km) spatial resolution [36]. The Global Multi-resolution Terrain

Elevation Data (GMTED) slope and elevation datasets were downloaded from the ESRI Living

Atlas of the World database at a 7.5 arc-second (~250m) spatial resolution [37]. The Food and

Agricultural Organization’s Digital Soil Map of the World was downloaded at a spatial resolu-

tion of 5 arc-minutes (~8km) [38]. Three additional raster layers were created from the initial

elevation raster using the flow direction, flow accumulation, and aspect tools from the ESRI

ArcGIS Pro Spatial Analyst toolbox [39]. Aspect was transformed to Northness (calculated as

cos(Aspect)) using Raster Calculator in ArcGIS Pro [34].

Several variables derived from NASA’s Moderate Resolution Imaging Spectroradiometer

(MODIS) remote sensing platform [40] were also considered for our model. This data was pro-

vided by the Malaria Atlas Project (https://malariaatlas.org/). Enhanced Vegetation Index

(EVI) data and landcover classification data at 2.5 arc-minute (~5km) resolution were accessed

from MODIS MCD43D62-68 and MCD12Q1 products, respectively [41,42]. The annual, gap-

filled [43] EVI raster layers spanning the years 2000–2020 were used to calculate two synoptic

raster layers representing the EVI mean and standard deviation over this time period. In addi-

tion, we considered proportional land cover variables for four land cover types that may influ-

ence the Hg. janthinomys distribution: evergreen broadleaf forest, savannas, grasslands, and

urban/built up. Annual land cover layers spanning the years 2000–2020 were used to calculate

synoptic raster layers representing the mean proportional land cover for each land cover class.

Finally, we considered a categorical land cover raster representing the dominant land cover

class within each raster grid cell. Land cover classes were based on the International Geo-

sphere–Biosphere Programme (IGBP) classification scheme.

A complete list of the raster layers considered for the model is included in the S2 Table. All

raster layers were clipped to the extent of South America (15.925˚N, 55.983˚S, 109.458˚W,

28.841˚E), re-sampled to a 1000m resolution using bilinear interpolation, and transformed to

the WGS 1984 World Mercator projected coordinate system using the Extract by Mask
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function in ArcGIS Pro. However, it is important to note that resampling of coarser spatial res-

olution data to the final 1000m spatial resolution did increase the spatial resolution of the vari-

ables but did not increase the precision of the data [44]. Country shapefiles were accessed

through the geoBoundaries Global Administrative Database [45].

Covariate significance assessment

A covariate significance assessment was conducted on the sample record collection dataset in

order to develop a more refined, statistically robust ENM [46]. Covariate significance was

assessed via the t-test and r2-maximization criteria at the 95% confidence level (α = 0.05).

Number density was used as the dependent variable, and three multiple least-squares regres-

sion models were developed and tested to evaluate the linear and quadratic terms of each

covariate: 1) a linear-only (LO) model using the linear terms of each covariate; 2) a quadratic-

only (QO) model using the quadratic terms of each covariate; and 3) a linear-quadratic (LQ)

model that incorporates both the linear and quadratic terms of each covariate. Covariates were

tested for correlation/collinearity as part of the covariate significance assessment. Covariates

that are directly correlated with other covariates were removed prior to the covariate analysis.

For example, bioclim7 was removed due to correlation/collinearity with bioclim5 and bio-

clim6 (Table 1). As part of the multiple linear and quadratic regression analysis, the correlation

coefficient (r) was calculated between each pairwise combination of covariates as an indicator

of their degree of correlation (e.g., -1 = high negative correlation; +1 = high positive correla-

tion; 0 = no correlation); and 2-D covariate and correlation matrices were generated that sum-

marize these r values. In addition, a Comparison of Regressions analysis was conducted to

assess for significant differences among the correlation coefficient (r), regression slopes (of

each covariate in the regression equation), elevation (or regression intercept), and coincidental

regression among the regression equations, for each of the regression models (LO, QO, LQ).

The Multiple Addition (MA) and Multiple Removal (MR) methods were used to sequen-

tially add and remove, respectively, one covariate at a time to and from the developing regres-

sion model, and to assess the statistical significance of the covariate addition/removal at each

successive step. In the MA process, covariates were sequentially added in the order of highest

to lowest significance until all significant (P< 0.05) covariates were added. In the MR process,

covariates were sequentially removed in the order of lowest to highest significance until all

insignificant (P> 0.05) covariates were removed [46]. A total of six optimal model runs were

conducted: three models (LO, QO, LQ) by two sequential methods (MA, MR). A covariate was

Table 1. Summary of Hg. janthinomys presence locations compiled during this study and those incorporated into the model.

Country Total (n) Total (%) Modeled (n) Modeled (%)

Brazil 122 68.9% 93 65%

French Guiana 20 11.3% 15 10.5%

Colombia 11 6.2% 11 7.6%

Trinidad & Tobago 9 5.1% 9 6.3%

Venezuela 8 4.5% 7 5%

Ecuador 2 1.1% 2 1.4%

Suriname 2 1.1% 2 1.4%

Argentina 1 0.6% 1 0.7%

Bolivia 1 0.6% 1 0.7%

Guyana 1 0.6% 1 0.7%

Peru 1 0.6% 1 0.7%

Total 177 100% 143 100%

https://doi.org/10.1371/journal.pntd.0010564.t001
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labeled as significant if at least one of its terms (linear or quadratic) was retained in at least one

of the six optimal models (to establish consensus among models).

To assess model variance, the r2 and adjusted r2 values were calculated at each sequential

step to generate plots of these variance measures as a function of the number of covariates

terms (N) in the given regression model. Generally, r2 increases with an increase in the num-

ber of covariate terms (N) in the model, whereas the adjusted r2 either increases or decreases.

A decrease in adjusted r2 with an increase in N reflects the importance of the penalty function

(a warning indicator of over-parameterization) offsetting any increase in explained variance

obtained by adding the additional covariate term. In any model adjustment, in which covariate

terms are added to or removed from the model, tradeoffs exist between r2-maximization and

covariate significance (ability to explain a significant proportion of variance source, as quanti-

fied by r2, the correlation coefficient “r”, and P-value). The model exhibiting maximum r2 (typ-

ically the model with the most covariate terms) is not necessarily the optimal model, especially

in cases with relatively small sample sizes, since there’s a potential risk of over-parameteriza-

tion (low degrees of freedom or difference between sample size and number of model adjust-

able parameters). Furthermore, in over-parameterized models, adding additional covariate

terms does not significantly improve model fit (increase r2), and the average variance source

explained by each covariate term in the model is usually relatively low, compared to models

with fewer but more significant covariate terms.

Bilinear interpolation was used to estimate covariate values at each sample record collection

data point by overlaying the covariate raster grids on the sample data points, identifying the

1-km resolution grid-box that each sample data point resides in, converting the geographic

coordinates of the sample data point and four corner points of the grid-box to easting-north-

ing, and calculating spatial distances as the basis for interpolation.

Model settings and performance

The MaxEnt approach to developing ENMs has emerged as one of the most popular tech-

niques for species distribution modeling due to its high predictive accuracy [47] and low sensi-

tivity to sample size [48]. MaxEnt is widely used due to its ability to model complex

relationships and interactions between predictors and to avoid overfitting using regularization

[48,49]. The MaxEnt technique uses presence-only collection data and a suite of relevant

covariates, contrasting environmental conditions at presence points against randomly selected

background points [32]. Comparative modeling studies have demonstrated strong perfor-

mance of the MaxEnt algorithm [50,51]. MaxEnt has also performed well even with a limited

sample size [48].

MaxEnt version 3.4.1 was used to generate a distribution map of Hg. janthinomys habitat

suitability using topographic, landscape, and climate variables. An output format of cloglog
was selected, which returns an estimate between 0 and 1 that represents the habitat suitability

within each pixel [52]. The model was run using the k-fold cross validation replicated run type

with 20 replicates. For this validation procedure, the data set is split into k independent subsets

(i.e., folds), and the model is trained on k-1 subsets and validated using the kth subset [32].

Therefore, each replicate in our model was trained on approximately 90% of the occurrence

records and validated using approximately 10% of the occurrence data. In addition, the maxi-

mum iterations were set to 10,000 and all other settings were left as their defaults. Features

were selected automatically based on the findings of a similar study that reported improved

model performance with automatic feature selection versus manual selection [53]. The jack-

knife test as well as the percent contribution and permutation importance were used to assess

the relative importance of each variable in the model. The permutation importance is
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calculated by randomly permuting the values of each variable on training presence and back-

ground data and then reevaluating the model on the permuted data. The resulting drop in

training AUC is calculated for each variable, with a greater decrease indicating greater impor-

tance of that variable. In order to perform the jackknife procedure, the MaxEnt program runs

several models where each variable is omitted in turn, followed by additional models where

each variable is used in isolation to predict the species distribution.

The model was run with the significant variables identified from the covariate analysis. The

area under the receiver-operating curve (AUC) was used to assess model performance, based

on the average AUC across the 20 model replicates. An AUC of 1 suggests that the model per-

fectly predicts the distribution of the vector while an AUC of 0.5 suggests that the model is not

able to predict the distribution better than random chance. We used the AUC of test data

(AUCTEST) to assess model performance instead of the AUC of training data (AUCTRAIN) due

to the problems of overfitting associated with the AUCTRAIN statistic [54].

Results

Haemagogus janthinomys collection data

Overall, 177 unique geolocations of verified Hg. janthinomys presence from 11 countries in

South America (including Trinidad and Tobago) were documented, with most records from

Brazil (n = 122), French Guiana (n = 20), and Colombia (n = 11) (see Fig 1 and Table 1).

Within Brazil, the majority of collection events were recorded in the states of Amazonas

(n = 20), Rio de Janeiro (n = 16) and Para (n = 14). Overall, the dates of collection ranged from

1935–36 to 2019–2020. The majority of collection events (n = 127) occurred since the year

2000. After thinning the collection events to ensure that no more than one record coincided

with each 1-km pixel in the environmental rasters, 34 records were dropped. Therefore, 143

presence points and 10,000 background points were used to develop the ENM. A complete list

of collection events is included in the S1 Table.

Covariate selection

Nine continuous covariates were selected for inclusion in the final ENM based on the covariate

significance analysis: BIO1 (annual mean temperature), BIO2 (mean diurnal range), BIO5

(maximum temperature of warmest month), BIO6 (minimum temperature of coldest month),

BIO9 (mean temperature of driest quarter), BIO14 (precipitation of driest month), BIO15

(precipitation seasonality), BIO19 (precipitation of coldest quarter), and the categorical land

cover class (See Table 2 for variable descriptions). These nine variables were labeled as signifi-

cant because at least one of their terms (linear or quadratic) were retained in at least one of the

six optimal regression models. The BIO15 and land cover variables were retained in four of the

optimal models while BIO14 and BIO19 were retained in three of the optimal models. BIO5

was retained in two of the optimal models while BIO1, BIO2, BIO6, and BIO9 were each

retained in one optimal model. In addition, a tenth variable, EVI, was included in the model

due to the influence of vegetation on the mosquito’s abundance [55–58]. Although this vari-

able was initially discarded based on the results of the covariate significance assessment, we felt

that the inclusion of EVI would improve the accuracy of the final model.

The minimum, maximum, and average values of the nine continuous variables were

extracted at each Hg. janthinomys collection point. The results are presented in Table 2 along

with the percent contribution and permutation importance of each variable according to the

MaxEnt model. The average value for the five temperature variables at the Hg. janthinomys
collection points were: 24.3˚C (average annual temperature), 9.5˚C (mean diurnal range),

30.8˚C (max. temperature of warmest month), 17.4˚C (min. temperature of coldest month),
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Fig 1. Geographic coordinates of Hg. janthinomys presence locations compiled during this study�. Base map sourced from Global

Administrative Areas (GADM) version 4.0: https://gadm.org/download_country.html.� The Dataset compiled during the study underwent

spatial thinning and remaining records were divided into training and testing datasets.

https://doi.org/10.1371/journal.pntd.0010564.g001
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and 23.5˚C (mean temperature of driest quarter). The average value for the three precipitation

variables at the Hg. janthinomys collection points were 55.3mm (precipitation of driest

month), 56.6% (precipitation seasonality), and 475.5mm (precipitation of coldest quarter)

while the average EVI value was 0.4. Finally, the most common land cover class across the col-

lection points was evergreen broadleaf forest (n = 55).

Ecological niche model

The habitat suitability map for Hg. janthinomys is presented in Fig 2 and a map of the model

uncertainty (i.e., standard deviation) for the 20 replicate runs is presented in Fig 3. The suit-

ability map represents the average of the 20 replicate runs incorporating the nine most signifi-

cant variables identified by the covariate significance assessment and the additional EVI

variable that was included in the model. The average area under the receiver operating charac-

teristic curve for testing data (AUCTEST) across the 20 model replicates was 0.84 (SD±0.07).

The analysis of variable contribution (see Table 2) demonstrated that the mean diurnal range

contributed the greatest amount of information to the model (41%), followed by land cover

(32.1%), and the maximum temperature of the warmest month (15.8%). Similarly, the jack-

knife tests of both training gain and test gain revealed that these same three variables were the

most important variables for developing the ENM. In other words, these variables increased

the training/test gain most substantially when used in isolation and decreased the training/test

gain most substantially when omitted from the model. In addition, the permutation impor-

tance was greatest for average annual temperature (34.8%) followed by mean diurnal range

(31.6%).

The response curves for each covariate are presented in Fig 4. These curves represent the

dependence of the predicted suitability on each variable, based on a MaxEnt model created

using only the corresponding variable. The response of Hg. janthinomys to the variable with

the greatest percent contribution (mean diurnal range) demonstrated optimal conditions at a

lower temperature range, followed by a steep decline as the range increased. The response to

the maximum temperature of the warmest month showed an increase in suitability as temper-

ature increased with a peak at 31˚C followed by a steep decrease. In addition, the response to

the categorical land cover variable demonstrated that the urban/built-up land cover class was

highly suitable for Hg. janthinomys presence. Finally, the response to annual average

Table 2. Minimum, maximum, average values, percent contribution, and permutation importance of variables in the Hg. janthinomys model.

Variable Description Min. Max. Avg. Contribution (%) Permutation (%)

BIO1 Average annual temperature, ˚C 16.8 27.2 24.3 1.4 34.8

BIO2 Mean Diurnal Range (Mean of monthly (max temp—min temp)), ˚C 6.3 14.0 9.5 41 31.6

BIO5 Max Temperature of Warmest Month, ˚C 25.2 34.2 30.8 15.8 10.4

BIO6 Min Temperature of Coldest Month, ˚C 2.9 23.1 17.4 1.1 9.3

BIO9 Mean Temperature of Driest Quarter, ˚C 11.4 28.1 23.5 0.2 0.1

BIO14 Precipitation of Driest Month, mm 1.0 231.0 55.3 1.1 1.7

BIO15 Precipitation Seasonality (Coefficient of Variation), % 9.9 115.3 56.6 0.4 0.9

BIO19 Precipitation of Coldest Quarter, mm 6.0 1312.0 475.5 1.3 2.3

Enhanced vegetation index A measure of canopy greenness 0.2 0.6 0.4 5.7 6.1

Land cover Categorical variable with 17 land cover classes N/Aa N/A N/A 32.1 2.8

a The most common land cover types at the occurrence points were evergreen broadleaf forest (n = 59), savanna (n = 31), grasslands (n = 19), and urban/built-up

(n = 17).

https://doi.org/10.1371/journal.pntd.0010564.t002
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Fig 2. Estimated distribution of the Hg. janthinomys habitat suitability according to the MaxEnt models. Red represents areas of highest

suitability for Hg. janthinomys while blue represents areas of low suitability. Base map sourced from Global Administrative Areas (GADM)

version 4.0: https://gadm.org/download_country.html.

https://doi.org/10.1371/journal.pntd.0010564.g002
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Fig 3. Map of model uncertainty. Estimated uncertainty in spatial prediction of Hg. janthinomys habitat suitability based on standard

deviation for each pixel across the 20 model replicates. Base map sourced from Global Administrative Areas (GADM) version 4.0: https://

gadm.org/download_country.html.

https://doi.org/10.1371/journal.pntd.0010564.g003
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temperature revealed a steady increase across values that peaked around 24˚C, followed by a

steep decline. The response curves for the remaining variables are presented in Fig 4.

The ENM suggested that the regions with greatest Hg. janthinomys habitat suitability can be

found in the coastal states of Brazil, including Rio Grande do Sul, Santa Catarina, Sao Paulo,

etc. High suitability for Hg. janthinomys presence was also apparent on the Western coast of

Colombia (especially in the departments of Choco and Narino) and in several states of Ecua-

dor and Venezuela. The majority of Trinidad and Tobago was found to be highly suitable in

addition to the coastal regions of Guyana and French Guiana.

Discussion

This study has produced a comprehensive database of Hg. janthinomys collection events as

well as a predicted distribution of Hg. janthinomys habitat suitability. Using the MaxEnt

modeling software, we successfully developed a distribution map which provides a contempo-

rary prediction of the mosquito’s potential ecological niche, incorporating the publicly avail-

able records of Hg. janthinomys presence. As an important vector of YF and MAY viruses, it is

crucial for health planners to be informed of where this species may contribute to human

infections across South America. The model may guide surveillance activities for Hg. janthi-
nomys by identifying high suitability regions for vector presence.

MaxEnt provides the opportunity to develop ENMs using a relatively small number of col-

lection records. However, the paucity of high-resolution geographical distribution data for Hg.

janthinomys is important to consider when evaluating this model. Our model predicted the

potential ecological niche of the Hg. janthinomys mosquito with an AUC of 0.84, demonstrat-

ing several regions of high suitability throughout South America. These findings are consistent

with an ecological niche model published in 2010, which found optimal conditions for Hg.

Fig 4. Response curves for the Hg. janthinomys model. Each curve represents a Maxent model created using only the corresponding variable. The red lines

represent the mean response of 20 Maxent runs while blue represents the mean ± 1 standard deviation.

https://doi.org/10.1371/journal.pntd.0010564.g004
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janthinomys along the coast of northeast Brazil and northern Venezuela, based on 78 presence

records [18]. Our model included several important variables related to the mosquito’s distri-

bution (e.g., EVI and categorical land cover) that were not included in the previous model

[18]. Furthermore, we have included a bias layer to account for sampling bias during the selec-

tion of background points. Although our expanded distribution dataset provides a more con-

temporary prediction of Hg. janthinomys niche, additional collection data from a wider

geographic range is greatly needed.

Our model may serve as an important tool for public health authorities concerned with the

spread of MAYV. Although MAYV outbreaks have only occurred sporadically, the Pan Ameri-

can Health Organization (PAHO) has emphasized its growing importance and recommended

increased surveillance and enhanced diagnostic capacity [59]. Our model identified areas of

high suitability for Hg. janthinomys, the primary MAYV vector, in the urban coastal region of

French Guiana, which aligns with recent epidemiological findings. For example, the World

Health Organization (WHO) reported that 11 of 13 confirmed MAYV cases diagnosed in 2020

occurred among residents of the urban coastal areas [60]. Additional locations of MAYV out-

breaks in Para, Brazil [61,62] and Portuguesa, Venezuela [63] have also occurred in regions of

moderate-to-high suitability for the vector according to our model. During a major outbreak

of MAYV in the town of Belterra, Brazil, Hg. janthinomys mosquitoes were identified as the

principal disease vector [64], highlighting the importance of this mosquito in the MAYV trans-

mission cycle.

Haemagogus janthinomys has also been identified as an important vector during outbreaks

of sylvatic YFV in Brazil over the last several decades [5,65–67]. During the most recent out-

break (2016–18), 20 pools of Hg. janthinomys were positive for YFV out of 162 pools tested

overall and the minimum infection rate (MIR) of Hg. janthinomys was 34.48, second only to

Hg. leucocelaenus at 34.92 [5]. Therefore, these two mosquito species were identified as the

most important sylvatic vectors. The recent YFV outbreaks occurred in areas identified by our

model as moderate-to-high suitability for Hg. janthinomys presence, especially along the

coastal areas in the Brazilian states of Sao Paulo, Rio de Janeiro, Espirito Santo, and in the east-

ern portion of Mato Grosso. Haemagogus janthinomys was also implicated as the primary vec-

tor during YFV outbreaks in the Atlantic Forest region in the state of Rio de Janeiro during

the 1930s-1940s [68]. Therefore, areas predicted as highly suitable for Hg. janthinomys occur-

rence may serve as locations of potential disease spillover that could be targeted for increased

surveillance and enhanced vector control and disease mitigation efforts.

Prior research has suggested that environmental factors such as temperature and precipita-

tion contribute to Hg. janthinomys abundance [19]. Several studies have reported that Hg.

janthinomys abundance was substantially higher in the wet season than in the dry season [69–

71] and relative humidity was significantly correlated with Hg. janthinomys abundance [55].

Several variables related to precipitation (the precipitation of the driest month, the precipita-

tion seasonality, and the precipitation of the coldest quarter) were included in our model,

although none contributed a substantial amount of information. The greatest suitability for

Hg. janthinomys presence occurred between 0% and 15% precipitation seasonality, suggesting

that the mosquito is found in areas of lower variability in rainfall.

The analysis of variable contributions demonstrated that BIO2 (mean diurnal range) had

the greatest relative contribution to our model and the greatest training and test gain based on

the jackknife test. According to the response curve for BIO2, the ideal diurnal range for mos-

quito suitability peaks at 6˚C followed by a steep decline. Furthermore, the most important

variable in our model according to permutation importance was BIO1 (annual average tem-

perature), with peak suitability occurring around 25˚C. Several studies have explored the

impact of temperature fluctuations on Aedes and Anopheles mosquito dynamics [72–74],
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demonstrating that large diurnal temperature range can affect life history traits including larval

development time, adult survival, and reproductive output. Our findings also suggest that

average temperature and daily temperature fluctuations may impact habitat suitability for Hg.

janthinomys. Peak activity of Hg janthinomys has been found to occur during periods of high

temperature [69]. In addition, temperature was found to be significantly correlated with Hg.

janthinomys abundance at various canopy heights [55]. However, further research is necessary

to better understand the impact of temperature fluctuations on Hg. janthinomys activity and

its ability to transmit pathogens.

The categorical land cover variable also had a large relative contribution to our models. The

most common land cover type at the Hg. janthinomys occurrence points was evergreen broad-

leaf forest. Haemagogus janthinomys is an arboreal species that has recently been detected in

many different forest types including mangrove, semi-evergreen seasonal, evergreen seasonal,

and young secondary forest [58]. Researchers have captured Hg. janthinomys mosquitoes in

the canopy of the Brazilian rainforest, as high as 16m above the ground [55–57]. The presence

of forest cover is therefore an important predictor of the Hg. janthinomys distribution due to

the mosquito’s acrodendrophilic nature. Despite its preference for forest canopies, blood meal

analysis has demonstrated that Hg. janthinomys feeding patterns are diverse, and female mos-

quitoes may move between the canopy and ground level to collect a blood meal [75]. Although

Hg. janthinomys mosquitoes bite predominantly in the tree canopy, they have demonstrated

substantial dispersion, being detected frequently at ground level and in open fields [5,56].

The response of the land cover variable to Hg. janthinomys suitability identified the urban/

built-up land cover class as an important predictor of Hg. janthinomys presence. Although Hg.

janthinomys mosquitoes are primarily an arboreal mosquito, they have been detected in forest

fragments adjacent to major urban areas. For example, Hendy et al., reported the presence of

Hg. janthinomys at an urban park in Manaus, Brazil, within 100m of the forest edge [76] and at

another urban park bordering the northern edge of the city [56,76]. Similarly, de Abreu et al.,

detected Hg. janthinomys in small forest fragments close to urban areas and in urbanized set-

tlements in recently cut forests [5]. An additional study found Hg. janthinomys close to agricul-

tural communities in Trinidad [58]. It is evident that forest fragmentation may play an

important role in Hg. janthinomys presence and encourage feeding in peri-domestic or peri-

urban environments [77]. Furthermore, Hg. janthinomys mosquitoes have demonstrated the

ability to travel up to 11.5km [78,79]. These findings underscore the importance of Hg. janthi-
nomys as a potential bridge vector between sylvatic and urban transmission cycles.

Changing patterns of land use/land cover and encroachment into forested areas may

increase human exposure to Hg. janthinomys and to the pathogens they transmit. Several stud-

ies have suggested an occupational risk to MAYV infection among rainforest hunters [80] and

forest crop-plot workers [81]. In addition, high MAYV seroprevalence has been found in pop-

ulations residing close to forested areas [82,83]. Communities in close proximity to the forest

should therefore be prioritized for vector and pathogen surveillance to determine if MAYV or

YFV are circulating in local mosquito populations.

Limitations

Our study has several limitations that should be considered when interpreting the findings.

One major limitation is the sampling bias associated with mosquito collections. Areas of high

accessibility, including those in close proximity to roads, are more likely to be sampled, poten-

tially leading to inaccurate models [35]. As a result, the presence records that we have com-

piled do not represent the complete ecological niche of Hg. janthinomys but may be biased

toward accessible locations. We attempted to correct for sampling bias by including a bias
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layer during the model-building process, according to techniques proposed by Phillips et al.

[33], to ensure selection of background points with the same bias as the presence records.

However, it is likely that our results are still impacted by the sampling bias inherent in our

data set.

Another limitation inherent in the ecological niche modeling process is the use of a limited

set of environmental covariates. While the covariate significance assessment identified insig-

nificant covariates (subsequently removed from the statistically robust ENM) from the com-

plete pool of 32 topographic and bioclimatic covariates, there may be additional covariates not

included in this pool that are potentially significant and hence could be incorporated into the

ENM. Although these variables play an important role in predicting areas of high suitability

for Hg. janthinomys, other factors such as human population density, socio-economic status,

host migration patterns, presence of other mosquito species (in competitive and symbiotic

associations for available ecological niches), and intensity of mosquito control and disease mit-

igation programs can also impact the occurrence probability, habitat suitability, and geograph-

ical distributions of Hg. janthinomys.
An additional limitation is the inability to accurately assess impacts of environmental and

topographic variability on Hg. janthinomys habitat suitability in countries with few Hg. janthi-
nomys collection points (e.g., Peru). Among the 11 South American countries from which Hg.

janthinomys surveillance data were collected, six countries had two or fewer collection records

(collectively 5.6% of the total points used in model), whereas over two-thirds (65%) of the sur-

veillance data used in the model were collected from one country (Brazil), reflecting a highly

uneven country-level distribution of surveillance data (Table 1). When data is limited in a geo-

graphic area, outliers may carry more weight in the modeling process [48]. Furthermore,

model performance may be subject to regional differences, whereby algorithm performance is

superior in one region compared to another [48]. This highlights the need for further mos-

quito sampling across a wider geographic space in order to better characterize the conditions

where Hg. janthinomys occurs.

Another potential limitation is related to the marginal response curve for the land cover

variable which demonstrated very high vector habitat suitability in the urban/built-up land

cover class. This may be attributed to the relatively narrow range of low urban land cover val-

ues at the sample data points. Some inaccuracies may be expected in these predictions, since

the model is forced to extrapolate habitat suitability predictions beyond the range of urban

land cover values for which the model was calibrated. Sample size was simply insufficient in

the range of higher urban land cover for the model to be statistically robust to make realistic

predictions of habitat suitability at higher land cover values. In actuality, higher urban land

cover may signify lower habitat suitability, particularly since Hg. janthinomys is known to pre-

fer forested landscapes [58]. Therefore, the species response profile may actually decrease at

higher urban land cover values.

Recommendations for future research may include investigating additional mosquito spe-

cies, identifying under sampled regions via surveillance gap analysis, conducting follow-up

surveillance studies in these under sampled regions to reduce sampling bias, incorporating

morphological and molecular data on the MAYV and YFV disease pathogens, and running

updated models with the enhanced record collection dataset in efforts to further improve the

efficacy and statistical robustness of the ecological niche models.
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