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A lot of research studies have shown that many complex human diseases are associated not only with microRNAs (miRNAs) but
also with long noncoding RNAs (lncRNAs). However, most of the current existing studies focus on the prediction of disease-
related miRNAs or lncRNAs, and to our knowledge, until now, there are few literature studies reported to pay attention to the
study of impact of miRNA-lncRNA pairs on diseases, although more and more studies have shown that both lncRNAs and
miRNAs play important roles in cell proliferation and differentiation during the recent years. .e identification of disease-related
genes provides great insight into the underlying pathogenesis of diseases at a system level. In this study, a novel model called
PADLMHOOI was proposed to predict potential associations between diseases and lncRNA-miRNA pairs based on the higher-
order orthogonal iteration, and in order to evaluate its prediction performance, the global and local LOOCV were implemented,
respectively, and simulation results demonstrated that PADLMHOOI could achieve reliable AUCs of 0.9545 and 0.8874 in global
and local LOOCV separately. Moreover, case studies further demonstrated the effectiveness of PADLMHOOI to infer unknown
disease-related lncRNA-miRNA pairs.

1. Introduction

Noncoding RNA, according to its size, can be divided into
small and long noncoding RNAs approximately. Generally,
small RNAs include tRNAs, miRNAs, piRNAs, and snoR-
NAs [1–4], and miRNAs are widely present in the cytoplasm
of eukaryotic cells and are approximately 18–22 nucleotides
in length, which can bind to 3′-untranslated region of
mRNA (3′-UTR) to inhibit the translation process of mRNA
or to degrade mRNA, thereby affecting the expression of
related genes [5–7]. miRNAs play important roles in a series
of life activities such as cell differentiation of living body [8],
growth and development [9], and apoptosis [10]. Compared
to small-molecule ncRNA, lncRNA has a longer nucleotide
chain with more than 200 nucleotides and has a specific and

complex secondary space structure inside the molecule and
can provide multiple sites for protein binding [11]. In ad-
dition, both lncRNAs and miRNAs are key members of
noncoding RNAs and play important roles in coding and
regulation of many complex human diseases [12–16].

Up to now, there have been many studies on re-
lationships between diseases and miRNAs. For example,
some important methods proposed by Xing Chen et al.
[17–20] and Zou et al. [21–24]. In terms of prediction of
potential associations between lncRNAs and diseases, Yu
et al. [25] and Xing et al. [26] proposed two kinds of
computational models called NBCLAD and LRLSLDA,
respectively. Moreover, studies have also shown that there
exist relationships between lncRNAs and miRNAs. For
example, Gernapudi et al. demonstrated that miRNA 140
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can induce the expression of lncRNA NEAT1 [27]. Dey
et al. showed that the silencing of lncRNA H19 and
knockout of H19 gene in myoblasts significantly decreased
skeletal muscle differentiation [28]. Yilong et al. discovered
that, after low XIST expression in gliomas, XIST could
regulate miR-152 glioma stem cells to inhibit cell pro-
liferation, migration, and invasion [29]. Xinyu et al.
demonstrated that lncRNA MALAT1 could achieve post-
transcriptional regulation of esophageal squamous cell
carcinoma cells through miR-101 and miR-217 [30]. Er-bao
et al. proposed that lncRNA ANRIL interacted with miR-
99a/miR449a to regulate cell proliferation during gastric
cancer formation [31]. You et al. found that the expression
of miR-449a and the expression of lncRNA NEAT1 in lung
cancer cell L9981 inhibited each other. WhenmiR-449a was
overexpressed, NEAT1 expression was decreased, cell
proliferation was inhibited, and apoptosis was increased,
and vice versa [32]. Emmrich et al. found that the ex-
pression of lncRNA MONC and MIR100HG was closely
related to the miRNA groups of miR-99a∼125b-2 and miR-
100∼125b-1. After silencing of lncRNA MONC and
MIR100HG, acute megakaryocytes in the early stage of the
disease, the tumor cells of leukemia patients, were severely
inhibited [33]. Amy et al. found that lncRNA Ang362 was
the host transcriptor of miR-211 and miR-222, and their
interactions regulated Ang II and induced proliferation of
vascular smooth muscle cells [34]. Miaojun et al. found that
the interactions between lncRNA H19 and miRNA-675
play an important role in the metastasis of prostate cancer
[35]. Obviously, the exploration of these relationships was
conducive to the construction of gene regulatory networks
and the identification of the mechanisms of complex hu-
man diseases [36–38].

From the above description, it is easy to see that more
and more studies have shown that lncRNA-miRNA in-
teractions are involved in the development of complex
diseases. However, to the best of our knowledge, so far, in
addition to the model of PADLMP proposed by Zhou et al.
[39], few models have been proposed for large-scale pre-
diction of potential associations between diseases and
lncRNA-miRNA interactions. Hence, inspired by state-of-
the-art methods [40–44], which show that the miRNA-
miRNA pairs can work cooperatively to regulate a single
gene or gene clusters being involved in similar processes
[45], and simultaneously, based on the reasonable as-
sumption that functionally similar lncRNA-miRNA pairs
tend to be associated with similar diseases, in this paper,
a new prediction model called PADLMHOOI was proposed
to infer potential associations between diseases and the
lncRNA-miRNA pairs. And, as illustrated in Figure 1, our
newly proposed prediction model PADLMHOOI consists of
the following four major steps:

Step 1 (Data Integration and Network Construction). In
this step, first of all, we downloaded known disease-
lncRNA associations from three different disease-
lncRNA databases such as disease-lncRNA [46],
MNDR [47, 48], and lnc2cancer [49], respectively, and
then, based on these datasets, we constructed a bipartite

network of disease-lncRNA. Next, we downloaded
known disease-miRNA associations from three dif-
ferent databases such as miR2Disease [50], HMDD
[51], and miRCancer [52] separately, and then, based
on these datasets, we constructed a bipartite network of
disease-miRNA. Moreover, we downloaded the 2015
and 2017 versions of known lncRNA-miRNA associ-
ations from the starBasev2.0 database [53] (http://
starbase.sysu.edu.cn/) on Feb 2, 2017, and based on
these datasets, we constructed a bipartite network of
lncRNA-miRNA. Finally, based on these three kinds of
bipartite networks, we constructed an integrated tri-
partite network of disease-lncRNA-miRNA, which
could be denoted as a tensor T.
Step 2 (Similarity Calculation). In this step, we would
integrate the disease semantic similarity and Gaussian
Interaction Profile Kernel similarity firstly to measure
the similarity of diseases. Next, we would integrate the
lncRNA functional similarity and miRNA functional
similarity in three different ways to measure the
functional similarity of lncRNA-miRNA pairs.
Step 3 (Weighted K-Nearest Neighbor Profile). Con-
sidering that there may be diseases that are unrelated to
all lncRNA-miRNA pairs, which may lead to un-
satisfactory prediction results while implementing
PADLMHOOI to infer potential associations between
diseases and lncRNA-miRNA pairs. Hence, in this step,
we would introduce the weighted K-nearest neighbor
profile (WKNNP) to add more interaction information
between diseases, lncRNAs, and miRNAs to improve
the prediction performance of PADLMHOOI.
Step 4 (Tensor Decomposition). In this step, we would
perform tensor decomposition on the newly constructed
disease-lncRNA-miRNA tensor T. Since the results of
tensor decomposition include a core tensor and three
matrices, we can define the final predicted association
tensor as the modal product between the core tensor and
these three matrices. .ereafter, we would sort scores of
the lncRNA-miRNA pairs associated with each disease
in the descending order in the final predicted association
tensor, and it is obvious that the higher the ranking of
the score, the bigger the possibility that there may exist
potential association between the disease and the
lncRNA-miRNA pair would be.

2. Materials and Methods

2.1. Construction of the Bipartite Network of Disease-lncRNA.
In order to construct the bipartite network of disease-
lncRNA, firstly, known associations between diseases and
lncRNAs were downloaded from three different databases
such as the LncRNADisease, MNDR, and Lnc2Cancer, re-
spectively, and then, after feature processing (including
feature cleaning and data imbalance processing etc.), 2048
different disease-lncRNA associations were finally obtained
(Supplementary Table 1). .ereafter, based on these newly
obtained 2048 known disease-lncRNA associations, we can
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construct a disease-lncRNA bipartite network G1 � (V1, E1)
according to the following steps:

Step 1. Let Vl1
� li|i ∈ [1, nl1

]􏽮 􏽯 be the set of all dif-
ferent lncRNAs in these 2048 known disease-lncRNA
associations and Vd1

� di|i ∈ [1, nd1
]􏽮 􏽯 be the set of all

different diseases in these 2048 known disease-lncRNA

associations, then we define V1 � Vl1
∪Vd1

as the vertex
set in G1.

Step 2. ∀li ∈ Vl1
, dj ∈ Vd1

, if (li, dj) belongs to these
2048 downloaded known disease-lncRNA associations,
then we define that there is an edge between li and dj
in G1; thereafter, we can obtain the edge set E1 in G1.
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Figure 1: Flow chart of PADLMHOOI for predicting potential associations between diseases and lncRNA-miRNA pairs.
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2.2. Construction of the Bipartite Network of Disease-miRNA.
In order to construct the bipartite network of disease-miRNA,
at first, known disease-miRNA associations were downloaded
from three different databases such as the miR2Disease,
HMDD, and miRCancer separately, and then, after these
newly acquired miRNAs and diseases being mapped to the
database miRBase v21 [54] and disease ontology (DO) [55],
respectively, 4041 different disease-miRNA associations were
finally obtained (Supplementary Table 2). Hence, based on
these newly obtained 4041 known disease-miRNA associa-
tions, we can construct a disease-miRNA bipartite network
G2 � (V2, E2) according to the following steps:

Step 1. Let Vm1
� mi|i ∈ [1, nm1

]􏽮 􏽯 be the set of all
different miRNAs in these 4041 known disease-miRNA
associations and Vd2

� di|i ∈ [1, nd2
]􏽮 􏽯 be the set of all

different diseases in these 4041 known disease-miRNA
associations, then we define V2 � Vm1

∪Vd2
as the

vertex set in G2.
Step 2. ∀mi ∈ Vm1

, dj ∈ Vd2
, if (mi, dj) belongs to

these 4041 known disease-miRNA associations, then
we define that there is an edge betweenmi and dj in G2;
thereafter, we can obtain the edge set E2 in G2.

2.3. Construction of the Bipartite Network of lncRNA-miRNA.
In order to construct the bipartite network of lncRNA-
miRNA, at first, two different versions (2015 and 2017) of
lncRNA-miRNA dataset were downloaded from the starBa-
sev2.0 database separately, and then, after feature processing
(including feature cleaning and data imbalance processing),
20324 different lncRNA-miRNA interactions were finally
obtained (Supplementary Table 3). .ereafter, based on these
newly obtained 20324 known lncRNA-miRNA associations,
we can construct a lncRNA-miRNA bipartite network
G3 � (V3, E3) according to the following steps:

Step 1. Let Vl2
� li|i ∈ [1, nl2

]􏽮 􏽯 denote the set of all
different lncRNAs in these 20324 known lncRNA-
miRNA associations and Vm2

� mi|i ∈ [1, nm2
]􏽮 􏽯 de-

note the set of all different miRNAs in these 20324
known lncRNA-miRNA associations, then we define
V3 � Vm2

∪Vl2
as the vertex set in G3.

Step 2. ∀li ∈ Vl2
, mj ∈ Vm2

, if (li, mj) belongs to these
20324 known lncRNA-miRNA associations, then we
define that there is an edge between li and mj in G3;
thereafter, we can obtain the edge set E3 in G3.

2.4.Constructionof theTripartiteNetworkofDisease-lncRNA-
miRNA. Based on the above newly obtained networks such
as G1, G2, and G3, we can construct a tripartite network
G4 � (V4, E4) according to the following steps:

Step 1. Let Vd � Vd1
∪Vd2

, Vm � Vm1
∪Vm2

, Vl � Vl1
∪Vl2

, V4 � {}, E4 � {}, and Vd′ � {}.
Step 2. While Vd is not null, Repeat:
∀di ∈ Vd,
If ∃lj ∈ Vl and mk ∈ Vm satisfyies the following three
kinds of conditions simultaneously:

(a) (di, lj) ∈ E1
(b) (di, mk) ∈ E2
(c) (lj, mk) ∈ E3

.en (di, lj), (di, mk), and (lj, mk) will be added into E4
firstly, and then, di will be added into Vd′

and removed
from Vd. Finally, lj andmk will be added into V4 if lj and
mk are not inV4.
Else, di will be removed from Vd.
Step 3. Let V4 � V4 + Vd′ .

According to above steps, a tripartite disease-lncRNA-
miRNA association network can be obtained finally. And, it
is obvious that, in the tripartite network, there are three
kinds of different nodes such as disease nodes, lncRNA
nodes, and miRNA nodes; moreover, the number of disease
nodes, lncRNA nodes, and miRNA nodes is 68, 44, and 211,
respectively, and the number of associations between dis-
eases and lncRNA-miRNA pairs is 3,047.

2.5. Construction of the Disease-lncRNA-miRNA Tensor.
Based on the newly constructed tripartite network, for any
given disease node di, lncRNA node lj, and miRNA node mk
in G4, we can define a tensor T as follows:

T(i, j, k) �
1, di, lj􏼐 􏼑, di, mk( 􏼁, lj, mk􏼐 􏼑 ∈ E4,􏽨 􏽩,

0, otherwise.

⎧⎨

⎩ (1)

2.6. Calculation of the Similarity of Disease Pairs

2.6.1. Calculation of the Disease Semantic Similarity
(DisSemSim). In order to estimate the semantic similarity
between diseases, we first downloaded the MeSH descriptor
from theNationalMedical Library (http://www.nlm.nih.gov/)
and selected the standard MeSH disease terminology. And
then, for each disease d, we can construct a Directed Acyclic
Graph (DAG) such as DAG(d) � (T(d), E(d)), where T(d)

denotes the set of nodes containing the node d itself and its
ancestors and E(d) denotes the set of edges of the respective
direct links from parent to child nodes [56]. .ereafter, based
on the newly constructed directed acyclic graph DAG(d), the
semantic contribution of an ancestor node ds to the disease
d can be calculated as follows:

Dd ds( 􏼁 �
1, if ds � d,

max Δ∗Dd d′( 􏼁 ∣ d′ ∈ children of ds􏼈 􏼉, otherwise,
􏼨

DV(d) � 􏽘
di∈T(d)

Dd di( 􏼁,

(2)

where Δ is the semantic contribution decay factor with value
between 0 and 1. And, in addition, according to the ex-
perimental results of some previous state-of-the-art methods
[57, 58], the most appropriate value for Δ will be 0.5. Hence,
based on the assumption that two diseases with more
common ancestor nodes in their DAGs shall have higher
semantic similarity, the semantic similarity between two
diseases di and dj can be defined as follows:
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DisSemSim(i, j) �
􏽐

t∈T di( )∩T dj( 􏼁
Ddi

(t) + Ddj
(t)􏼒 􏼓

DV di( 􏼁 + DV dj􏼐 􏼑
.

(3)

2.6.2. Calculation of the Gaussian Interaction Profile Kernel
Similarity for Diseases (GIPSim). Based on the hypothesis
that functionally similar genes are often associated with
similar diseases, in this section, we will adopt the Gaussian
Interaction Profile Kernel to calculate the similarity of
diseases according to the following steps:

Firstly, based on the networks G1 and G2 constructed
above, for any given lncRNA li and disease dj, we define that

Y1(i, j) �
1, if li, dj􏼐 􏼑 ∈ G1,

0, otherwise.

⎧⎨

⎩ (4)

Next, for any given miRNA mi and disease dj, we define
that

Y2(i, j) �
1, if mi, dj􏼐 􏼑 ∈ G2,

0, otherwise.

⎧⎨

⎩ (5)

Hence, let IPl(di) denote the ith column of the matrix Y1,
then we can calculate the Gaussian Kernel Similarity between
diseases di and dj based on their interaction profiles as follows:

GIPLDSIM(i, j) � exp −cd1 IPl di( 􏼁− IPl dj􏼐 􏼑
�����

�����
2

􏼒 􏼓, (6)

cd1 �
1

1/nd1( 􏼁􏽐
nd1
i�1 IP dl(i)( 􏼁

2
�����

�����
, (7)

where the parameter nd1 denotes the number of different
diseases in G1.

In a similar way, let IPm(di) denote the ith column of
matrix Y2, then we can calculate the Gaussian Kernel
Similarity between diseases di and dj based on their in-
teraction profiles as follows:

GIPMDSIM(i, j) � exp −cd2 IPm di( 􏼁− IPm dj􏼐 􏼑
�����

�����
2

􏼒 􏼓,

cd2 �
1

1/nd2( 􏼁􏽐
nd2
i�1 IPm di( 􏼁

����
����
2,

(8)

Here, the parameter nd2 denotes the number of different
diseases in G2.

.ereafter, based on these above formulas, we can cal-
culate the Gaussian Interaction Profile Kernel Similarity
between diseases di and dj as follows:

GIPSim(i, j) �
GIPLDSIM(i, j) + GIPMDSIM(i, j)

2
. (9)

2.7. Calculation of the Similarity of lncRNA Pairs (lncSim)

2.7.1. Calculation of the lncRNA Functional Similarity
(lncfunSim). For any two given lncRNAs such as li and lj, let
DT1 � dt11, dt12, . . . , dt1m􏼈 􏼉 be all the diseases related to li in
G1 and DT2 � dt21, dt22, . . . , dt2n􏼈 􏼉 be all the diseases related
to lj in G1, then we can define the functional similarity
between li and lj as follows:

lncfunSim(i, j) �
􏽐1≤k≤mSemSims dt1k,DT2( 􏼁 + 􏽐1≤k≤nSemSims dt2k,DT1( 􏼁

m + n
, (10)

where

SemSims dt1k,DT2( 􏼁 � max1≤l≤n DisSemSim dt1k, dt2l( 􏼁( 􏼁,

SemSims dt2k,DT1( 􏼁 � max1≤l≤m DisSemSim dt2k, dt1l( 􏼁( 􏼁.

(11)

2.7.2. Calculation of the Gaussian Interaction Profile Kernel
Similarity for lncRNAs (GIPlncSim). For any two given
lncRNAs such as li and lj, similar to the definition of formula
(6), let IP(li) and IP(lj) denote the ith and the jth row of the
matrix Y1, respectively, then we can calculate the Gaussian
Kernel Similarity between diseases li and lj based on their
interaction profiles as follows:

GIPlncSim(i, j) � exp −cl IP li( 􏼁− IP lj􏼐 􏼑
�����

�����
2

􏼒 􏼓,

cl �
1

1/nl( 􏼁􏽐
nl

i�1 IP li( 􏼁
����

����
2,

(12)

where nl1 denotes the number of different lncRNAs
in G1.

Hence, based on these formulas given above, we can
finally define the similarity measurement between lncRNAs
li and lj as follows:

lncSim(i, j) �
lncfunSim(i, j) + GIPlncSim(i, j)

2
. (13)

2.8. Calculation of the Similarity between
miRNAs (miRSim)

2.8.1. Calculation of the miRNA Function Similarity
(miRfunSim). For any two given miRNAs, such as mi and
mj, let DT3 � dt31, dt32, . . . , dt3p􏽮 􏽯 be all the diseases related
tomi inG2 and DT4 � dt41, dt42, . . . , dt4q􏽮 􏽯 be all the diseases
related to mj in G2, then we can define the functional
similarity between mi and mj as follows:
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miRfunSim(i, j) �
􏽐1≤k≤pSemSims dt1k,DT3( 􏼁 + 􏽐1≤k≤pSemSims dt2k,DT4( 􏼁

p + q
. (14)

2.8.2. Calculation of the Gaussian Interaction Profile Kernel
Similarity for miRNAs (GIPmiRSim). For any two given
miRNAs, such as mi and mj, in a similar way, let IP(mi) and
IP(mj) represent the ith and jth row in matrix Y2, respectively,
then we can calculate the Gaussian Kernel Similarity between
diseasesmi andmj based on their interaction profiles as follows:

GIPmiRSim(i, j) � exp −cm IP mi( 􏼁− IP mj􏼐 􏼑
�����

�����
2

􏼒 􏼓,

cm �
1

1/nm( 􏼁􏽐
nm

i�1 IP mi( 􏼁
����

����
2,

(15)

where nm2 denotes the number of miRNAs in G2.
Hence, based on these formulas presented above, we can

finally define the similarity measurement between miRNAs
mi and mj as follows:

miRSim(i, j) �
miRfunSim(i, j) + GIPmiRSim(i, j)

2
. (16)

2.9. Weighted K Nearest Neighbor Profiles for Diseases,
lncRNAs, andmiRNAs (WKNNP). Let D � d1, d2, . . . , dm􏼈 􏼉,
L � l1, l2, . . . , ln􏼈 􏼉, and M � m1, m2, . . . , mk􏼈 􏼉 denote the set
of m diseases, n lncRNAs, and k miRNAs, respectively. Let
T(di) � T(i, :, :) denote the ith horizontal slice matrix in
disease axis of the tensor T, hence, T(di) also represents the
interaction profile for the disease di. Let T(lj) � T(:, j, :)

denote the jth lateral slice matrix in lncRNA axis of the tensor
T, hence, T(lj) also represents the interaction profile for
lncRNA lj. Let T(mp) � T(:, :, p) denote the pth frontal slice
matrix in miRNA axis of the tensor T, hence, T(mp) also
denotes the interaction profile for miRNA mp. .en, it is
obvious that the values in these three kinds of interaction
profiles of any novel diseases, lncRNAs, or miRNAs are all
zeros, which may lead to unsatisfactory prediction perfor-
mance during inferring potential associations between diseases
and lncRNA-miRNA pairs. Hence, in this section, we will
perform a procedure for the construction of new interaction
profiles to address the problem mentioned above. And, in this
procedure, for each disease di, its association with other K
nearest known diseases (including at least one experimentally
verified association) and corresponding K interaction profiles
will be utilized to obtain the following interaction profile:

TD di( 􏼁 �
1

Qd

􏽘

K

t�1
wtT dt, :, :( 􏼁, (17)

where, d1, d2, . . . , dK􏼈 􏼉 are the diseases sorted in descending
order based on their similarity to di, wt is the weight co-
efficient, and wt � αt−1 ∗ disSim(dt, di), which means that
a higher weight will be assigned if dt is more similar to di..e
parameter α is a decay term with values between 0 and 1..e
parameter Qd is a normalization term, and there is
Qd � 􏽐

K
t�1disSim(dt, di).

In the same manner, the new interaction profile for each
lk can be determined as follows:

TL lk( 􏼁 �
1
Ql

􏽘

K

t�1
wtT :, lt, :( 􏼁, (18)

where l1, l2, . . . , lK􏼈 􏼉 are the lncRNAs sorted in the
descending order based on their similarity to lk, wt is the
weight coefficient, and wt � αt−1 ∗ lncSim(lt, lk), which
means that a higher weight will be assigned if lt is more
similar to lk. .e parameter Ql is a normalization term, and
there is Ql � 􏽐

K
t�1lncSim(lt, lk).

Similarly, the new interaction profile for each mp can be
determined as follows:

TM mp􏼐 􏼑 �
1

Qm

􏽘

K

t�1
wtT :, :, mp􏼐 􏼑, (19)

where m1, m2, . . . , mK􏼈 􏼉 are the miRNAs sorted in the
descending order based on their similarity to mp, wt is the
weight coefficient, and wt � αt−1 ∗miRSim(mt, mp), which
means that a higher weight is assigned if mt is more similar
to mp. .e parameter Qm is a normalization term, and
there is Qm � 􏽐

K
t�1miRSim(mt, mp).

.ereafter, after combining the above three kinds of
tensors TD, TL, and TM obtained from different data spaces
and replacing T(i, j, k) � 0 with an associated likelihood
score, we can update the original adjacency matrix T as
follows:

T � max T, TDLM( 􏼁, (20)

where TDLM � (a1TD + a2TL + a3TM/􏽐 ai), (i � 1, 2, 3).

2.10. PADLMHOOI. Inspired by the successful application
of tensor decomposition in the field of link prediction and
the application of nonnegative matrix decomposition
methods in inferring disease-miRNA associations, in this
section, we proposed a novel model called PADLMHOOI to
predict new associations between diseases and miRNA-
lncRNA pairs. From above descriptions, it is easy to know
that a tensor is a multidimensional array. Currently, the
most commonly used tensor decomposition techniques
include Tucker decomposition [59], HOSVD [60], and
HOOI [61]. In this section, we will perform Tucker de-
composition on above constructed tensor T. Assuming
T ∈ Rn1×n2×n3 , the tucker decomposition aims at finding
Zα(α ∈ (1, 2, 3)) and core tensor G ∈ RR1×R2×R3 that can
solve the following optimization problem:

minimize
������T− 􏽢T

������

2

F
,

s.t. 􏽢T
i,j,k

� 􏽘
r1 ,r2 ,r3

Z
i,r1
1 Z

j,r2
2 Z

k,r3
3 Gr1 ,r2 ,r3 , ∀ i, j, k.

(21)
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Hence, based on formula (21), we can further transform
this equation to following simple form:

minimize ‖T− 􏽢T‖
2
F,

s.t. 􏽢T � GX1Z1X2Z2X3Z3 �⟦G; Z1, Z2, Z3⟧,
(22)

Z1 ∈ Rn1×R1 , Z2 ∈ Rn2×R2 , and Z3 ∈ Rn3×R3 are the factor
matrices, which are usually orthogonal and can be considered
as the main component of each mode. R1, R2, and R3 are the
number of columns (max(R1, R2, R3)≪min(n1, n2, n3))
in the factor matrices Z1, Z2, and Z3 respectively. .e
notation Xn denotes n-mode product; ⟦G; Z1, Z2, Z3⟧ is the
shorthand introduced by Kolda and Gibson [62] (Supple-
mentary File A).

Based on equation (22), the above optimization problem
can be solved according to the following steps:

Considering that the derivation forms of Z1, Z2, and Z3
are similar, we will only derive the iterative formula of Z1 as
an example. Firstly, as illustrated in formula (23), the ob-
jective function given in formula (22) can be rewritten as
a matrix form of T along the first dimension:

T(1) −Z1⟦G; Z2, Z3⟧(1)

����
����
2
F
, (23)

where T(1) ∈ Rn1×(n2 ∗ n3) is the unfolding of T along the first
dimension (Supplementary File A). Assuming that the op-
timal solution Z1 satisfies all the constraints in equation (22),
we have

T(1) � Z1⟦G; Z2, Z3⟧(1) � Z1G(1) Z2 ⊗Z3( 􏼁
T
, (24)

where ⊗ denotes the Kronecker product, and moreover, we
have

S1 � G(1) Z2 ⊗Z3( 􏼁
T
. (25)

Hence, formula (24) can be regarded as a nonnegative
matrix factorization (NMF) form [63]. .en, we can fi-
nally obtain the solution of Z1 by updating NMF as
follows:

Z1⟵Z1 ∗
T(1)S

T
(1)

Z1S(1)S
T
(1)

. (26)

Hence, we can finally obtain the factor matrices Z2 and
Z3 in a similar way. .ereafter, while fixing the factor
matrices Z1, Z2, and Z3, the objective function in formula
(22) can be converted to the following form:

������T− 􏽢T

������

2

F
� vec(T)− Z3 ⊗Z2 ⊗Z1( 􏼁vec(G)

����
����
2
F
, (27)

where vec(·) denotes the vectorization of the tensor. And
moreover, based on formula (27), the following linear
equation can be obtained:

vec(X) � Z3 ⊗Z2 ⊗Z1( 􏼁vec(G). (28)

Let Q � Z3 ⊗Z2 ⊗Z1, then obviously, formula (28) can
also be regarded as a NMF, and thereafter, the core tensor in
formula (28) can be obtained as follows [63]:

vec(G)⟵ vec(G)∗
QTvec(T)

QTQvec(G)

� vec G∗
⟦T; ZT

1 , ZT
2 , ZT

3 ⟧
⟦G; ZT

1 , ZT
2 , ZT

3 ⟧
􏼠 􏼡,

(29)

G⟵G∗
⟦T; ZT

1 , ZT
2 , ZT

3 ⟧
⟦G; ZT

1 , ZT
2 , ZT

3 ⟧
. (30)

Based on above formulas, the pseudocode of our pre-
diction model PADLMHOOI based on tensor decomposi-
tion can be described as follows:

Step 1. Input: T, R1, R2, R3, Z1, Z2, Z3, G, and the
convergence threshold ε.
Step 2. Repeat

For i� 1 to 3:
Update Zi according to formula (26)

End For
Update G according to formula (30)

Until ‖T− [[G; Z1, Z2, Z3]]‖
2
F < ε

Step 3. Return Z1, Z2, Z3, G

According to above steps, we can obtain the final pre-
dicted disease-lncRNA-miRNA association tensor T∗ �

GX1Z1X2Z2X3Z3, and after prioritizing the disease-related
lncRNA-miRNA pairs based on the entities in the tensorT∗ ,
obviously, the top-ranked lncRNA-miRNA pairs can be
regarded as more likely to be related to the corresponding
disease.

3. Results and Analysis

3.1. Leave-One-Out Cross-Validation (LOOCV). In order to
estimate the prediction performance of our newly proposed
prediction model, the global leave-one-out cross-validation
(LOOCV), 2-fold cross-validation (2-fold CV), and 10-fold
cross-validation (10-fold CV) were implemented on PAD-
LMHOOI, respectively. In the K-fold cross-validation, the
initial sample will be divided intoK subsample sets, and a single
subsample set is retained as the data for the validation model,
while the other K− 1 samples are used to train the model.
During simulation, the cross-validation will be performed K
times, and each subsampling set will be verified once, and the
average results of K times will be utilized to obtain a single
estimation. Moreover, in order to reduce the performance
deviation caused by the random sample partitioning, we divide
the partition 100 times and then obtain the ROC curve and the
AUC value in the same way as the LOOCV. And, as a result,
from the following Table 1, it is easy to see that PADLMHOOI
can achieve reliable AUCs of 0.9545, 0.9730± 0.0119, and
0.9626± 0.0150 in the frameworks of global LOOCV, 2-fold
CV, and 10-fold CV, respectively. Additionally, in order to
further estimate the prediction performance of PADLMHOOI,
we implemented it under the framework of local LOOCV, and
the simulation results of 50 predicted related diseases were
illustrated in Supplementary Table 4.
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3.2. Performance Comparison with Other Methods. To the
best of our knowledge, up to now, PADLMP [39] is the
unique model having been proposed for predicting potential
associations between disease and lncRNA-miRNA pairs, in
which, these three kinds of nodes such as disease nodes,
lncRNA nodes, and miRNA nodes are considered simul-
taneously to construct a triple network. And, the major
difference between PADLMP and our model PADLMHOOI
is that PADLMP is based on the method of link prediction.
.erefore, in order to compare PADLMP with our model
PADLMHOOI, we implemented LOOCV to verify the
prediction performance of these two models based on the
3047 known disease-lncRNA-miRNA associations down-
loaded above. In the first experiment, we set the parameters
in PADLMP to their best values; specifically, the step sizeK is
set to 2 and the attenuation coefficient c is set to 0.01.
Meanwhile, for convenience, we set the parameters in
PADLMHOOI as follows: the parameters a1, a2, and a3 in
formula (20) are all set to 1, the parameters r1, r2, and r3 in
formula (21) are all set to 5, and the parameters K and α in
formulas (17)–(19) are all set to 3 and 0.1 separately. And, as
illustrated in Figure 2, it is easy to see that PADLMHOOI
and PADLMP can achieve the AUCs of 0.9545 and 0.9318
separately, which demonstrate that the prediction perfor-
mance of PADLMHOOI is superior to that of PADLMP.

As time went by, we found that some databases have been
updated. Hence, in order to further demonstrate the ad-
vancement of PADLMHOOI, we once again collected the
latest disease-lncRNA correlations from the databases
lnc2cancer v2.0, lncRNADisease 2.0 [64], and MNDR v2.0
[48], collected the latest disease-miRNA associations from the
databaseHMDDv3.0, and collected the latest lncRNA-miRNA
associations from the database RAID v2.0 [65] separately. And
thereafter, we reconstructed the triple network based on these
newly collected latest datasets. In the newly constructed triple
network, the numbers of disease nodes, lncRNA nodes, and
miRNA nodes are 42, 234, and 251 respectively; the number of
known associations between diseases and lncRNA-miRNA
pairs is 3,768; the number of known associations between
diseases and lncRNAs is 733; and the number of known as-
sociations between diseases and miRNAs is 674. .en, based
on the new triple network, we compared our model PAD-
LMHOOI with PADLMP once more. And, in this second
experiment, we set the parameters K and α to 10 and 0.5,
respectively, in PADLMHOOI and kept other parameters
unchanged as in the first experiment. And, as illustrated in
Figure 3, simulation results show that PADLMHOOI and
PADLMP can achieve AUCs of 0.9026 and 0.9013, re-
spectively, which demonstrate that the prediction performance
of PADLMHOOI outperforms that of PADLMP markedly.

Additionally, the interesting point is that our model can
infer potential disease-lncRNA associations and disease-
miRNA associations incidentally, while predicting potential
associations between diseases and lncRNA-miRNA pairs.
Hence, it is reasonable as well to compare our model
PADLMHOOI with prediction models for inferring po-
tential disease-lnRNA or disease-miRNA associations.
.erefore, in this section, we would compare PADLMHOOI
with some state-of-the-art computational prediction models

such as the LRLSLDA [26], NBCLAD [25], WBSMDA [66],
and RLSMDA [67]. Among them, LRLSLDA is a semi-
supervised learning-based prediction model for inferring
potential lncRNA-disease associations; NBCLAD is

Table 1: Performance of PADLMHOOI in global LOOCV, 2-fold
cross-validation, and 10-fold cross-validation.

Global LOOCV 2-fold CV 10-fold CV
0.9545 0.9730± 0.0119 0.9626± 0.0150

PADLMP, AUC = 0.9318
PADLMHOOI, AUC = 0.9545
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Figure 2: Performance comparison between PADLMHOOI and
PADLMP in terms of ROC curves and AUCs based on the 3047
known disease-lncRNA-miRNA associations.

FPR
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

TP
R

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

PADLMHOOI, AUC = 0.9026
PADLMP, AUC = 0.9013

Figure 3: Performance comparison between PADLMHOOI and
PADLMP in terms of ROC curves andAUCs based on the latest 3678
known disease-lncRNA-miRNA associations. Here, comparing with
the AUCs in Figure 2, the reason that the AUCs of our model decline
in Figure 3 is that the values of parameters K and α are different. In
Figure 2, K� 3 and α� 0.1, while in Figure 3, K� 10 and α� 0.5.
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a probabilistic model for predicting potential associations
between diseases and lncRNAs; WBSMDA is a prediction
model for predicting potential associations between diseases
and miRNAs; and RLSMDA is a prediction model for
predicting disease-related miRNAs based on the framework
of regularized least squares. In addition, while comparing
with LRSLDA, known disease-lncRNA associations were
obtained from the triple disease-lncRNA-miRNA network;
however, the parameters in LRSLDA are set to the same
values given in the literature. Moreover, while comparing
with NBCLDA, considering that there are four kinds of
nodes such as diseases, lncRNAs, miRNAs, and genes in-
cluded in NBCLDA, there are three kinds of nodes such as
diseases, lncRNAs, and miRNAs in our model PAD-
LMHOOI. Hence, for the sake of fairness, we only compared
PADLMHOOI with the submethod NBCLDA-GN1-SD.
And, as illustrated in Figure 4, simulation results show that
PADLMHOOI, NBCLDA-G1-SD, and LRSLDA can achieve
AUCs of 0.9568, 0.7928, and 0.5924 separately, which
demonstrate that PADLMHOOI thoroughly defeats both
NBCLDA-G1-SD and LRSLDA. In addition, while com-
paring with WBSMDA and RLSMDA, 674 known disease-
miRNA associations were obtained from the triple disease-
lncRNA-miRNA network; however, the parameters in both
WBSMDA and RLSMDA are set to the same values given in
the literatures. And, as illustrated in Figure 5, simulation
results show that PADLMHOOI, WBSMDA, and RLSMDA
can achieve AUCs of 0.9157, 0.8544, and 0.8991, respectively,
which demonstrate that PADLMHOOI outperforms both
WBSMDA and RLSMDA thoroughly as well.

3.3. Recall Ratio Analysis. In this section, in order to further
evaluate the prediction performance of PADLMHOOI, we
compared the recall value of PADLMHOOI and other state-
of-the-art models. It is well known that the higher recall ratio
of all selected diseases in a top k ranking list means that the
more positive testing samples (real disease-related lncRNA-
miRNA pairs) have been identified successfully. And, as
a result, Figure 6 illustrates the recall rate of all selected
diseases in different top k ranking lists. Moreover, we further
listed the recall rate of some given diseases associated with at
least 80 verified lncRNA-miRNA associations in Supple-
mentary Table 5.

3.4. Case Studies. In this section, case studies of breast
neoplasms, colon neoplasms, and prostate neoplasms were
conducted to further verify the capability of PADLMHOOI
to detect novel associations between diseases and lncRNA-
miRNA pairs separately. And, among these three kinds of
case studies, breast cancer is the second leading cause of
female cancer death and comprises 22% of all cancers in
women [68, 69]. .e related literature has suggested that
lncRNAs and miRNAs play an important role in the for-
mation of many diseases, and the formation of breast cancer
may be more relevant to them [70, 71]. Predicting breast
cancer-associated lncRNA-miRNA pairs and identifying
lncRNAs andmiRNAs as biomarkers maymake a significant
contribution to better diagnosis and treatment of breast

cancer [71]. In Supplementary Table 6, we have listed the top
30 candidate lncRNA-miRNA pairs related to breast cancer.
And, in Supplementary Table 6, the column of lncRID and
miRID denotes lncRNA ID and miRNA ID, respectively.
Evi1 and Evi2 denote some authority database or published
literature containing verified disease-lncRNA or disease-
miRNA associations separately. “#” and “∗” stand for da-
tabases of lncRNADisease and MNDR v2.0, respectively,
which consist of known disease-lncRNA associations or
contain published literatures to support the association
between predicted lncRNAs and breast cancer. “!,” “&,” and
“+” stand for databases of HMDD, miR2Disease, and
miRCancer, respectively, which consist of known disease-

PADLMHOOI, AUC = 0.9157
RLSMDA, AUC = 0.8991
WBSMDA, AUC = 0.8544
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Figure 5: .e comparison results between PADLMHOOI and
RLSMDA and WBMDA.
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Figure 4: .e comparison results between PADLMHOOI and
LRLSLDA and NBCLAD.
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miRNA associations or contain published literature to
support the association between predicted miRNAs and
breast cancer. Particularly, “Nan” indicates that there is no
database or no published literature to support the predicted
results. From Supplementary Table 6, it is easy to see that all
candidate disease-lncRNA associations have been verified in
databases of the lncRNADisease and MNDR v2.0 or pub-
lished papers containing these databases. And, in addition,
there are 42 out of 50 candidate disease-miRNA associations
having been reported by HMDD, miR2Disease, and miR-
Cancer or published paper containing these databases.
Moreover, we discovered that those novel miRNAs with
miRID 35, 51, 73, 164, and 186 are related to some important
factors affecting the development of breast neoplasms.
Hence, it is obvious that we infer that these lncRNA-miRNA
pairs may be associated with breast cancer.

In addition, colonic tumors are a type of malignancy that
is common in the rectum and sigmoid borders [72]. Early
colon cancer is difficult to detect because of its insignificant
symptoms [73]. Unfortunately, the related literature reports
that its incidence has been on the rise in recent years [74].
.erefore, predicting potential miRNAs and lncRNAs as-
sociated with colon tumors is of great significance for the
diagnosis of early colon cancer. In Supplementary Table 7,
we have listed the top 30 candidate lncRNA-miRNA pairs
predicted to be associated with colon tumors. Moreover, all
of these candidate lncRNAs and most of these candidate
miRNAs have been verified by lncRNADisease database and
MNDR v2.0, respectively.

Moreover, prostate neoplasm is one of the most com-
mon cancers in white and African-American men, and it is
reported that there are about one in six white men and one in
five African-American men having prostate cancer in their
lifetime. Recent researches have shown that prostate neo-
plasm is caused by the malignancy of prostate epithelial cells
[75], its formation includes many factors such as age, family
history, and race [76], and particularly, some miRNAs such
as has-let-7a-5p and lncRNAs such as XIST have been found
to be involved in the formation of prostate neoplasms
successively. Hence, it is interesting to infer potential

miRNAs and lncRNAs associated with prostate neoplasms.
In Supplementary Table 8, we have listed the top 30 prostate
neoplasm-related candidate lncRNA-miRNA pairs. More-
over, all of these candidate lncRNAs and most of these
candidate miRNAs have been verified by lncRNADisease
and MNDR v2.0, respectively.

3.5. Parameter Sensitivity Analysis. Considering that there
are some key parameters such as K and α, which may be
significant to the performance of our prediction model
PADLMHOOI, in this section, we will further estimate the
effects of these key parameters to the prediction performance
of PADLMHOOI. Firstly, we varied K from 1 to 10 during
simulation. And, as a result, Table 2 illustrates the impacts of
parameter K on the performance of PADLMHOOI. By
observing Table 2, it is obvious that PADLMHOOI can
achieve the maximumAUC value of 0.9708 while K� 8. And
additionally, as for the impacts of the parameter α, con-
sidering the time costs, we set K� 3 and varied α from 0.1 to
0.9 during simulation. And as a result, Table 3 illustrates the
impacts of parameter α on the performance of PAD-
LMHOOI. By observing Table 3, it is obvious that PAD-
LMHOOI can achieve the maximum AUC value of 0.9591
while α� 0.7.

4. Discussion and Conclusion

Researches on prediction of potential associations between
lncRNA-miRNA pairs and diseases not only are helpful in
understanding the disease mechanisms on lncRNA and
miRNA levels but also play an important role in the de-
tection of disease biomarkers, diagnosis, prognosis, and
prevention. However, to our knowledge, although there are
many researches having demonstrated that lncRNA-miRNA
interactions are associated with the development of complex
diseases, up to now, there are few models having been
proposed for large-scale forecasting potential associations
between diseases and lncRNA-miRNA pairs. Since tradi-
tional biological experiments are quite expensive and time-
consuming, in this paper, based on the existing disease-
miRNA associations, disease-lncRNA associations, lncRNA-
miRNA interactions, and the assumption that genes with
similar functions are often associated with similar diseases;
we firstly constructed a three-order tensor T by adopting the
method of WKNNP, and then, based on the method of
tensor factorization, we further proposed a prediction model
called PADLMHOOI to infer potential relations between
diseases and lncRNA-miRNA pairs. And thereafter, simu-
lation results under the frameworks of global and local
LOOCV, 2-fold CV, and 10-fold CV, all confirmed the
superiority of PADLMHOOI. Moreover, case studies of
breast neoplasms, colon neoplasms, and prostate neoplasms
further demonstrate that our model PADLMHOOI is an
effective method for predicting potential disease-associated
lncRNA-miRNA pairs. Certainly, there are still some limi-
tations in PADLMHOOI. For example, although a large
number of datasets have been integrated in PADLMHOOI,
the amount of data available is still not enough; it is obvious
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Figure 6:.e recall rate of all the selected diseases in different top k
ranking lists.

10 Computational and Mathematical Methods in Medicine



that the prediction performance of PADLMHOOI will be
better if more datasets can be collected. And in addition, in
this paper, we only predicted the association between
disease and a single lncRNA-miRNA pair. In the future, we
will further modify PADLMHOOI to predict potential
associations between diseases and multiple lncRNA-
miRNA pairs.
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