
OR I G I N A L A R T I C L E

A risk score including body mass index, glycated haemoglobin
and triglycerides predicts future glycaemic control in people
with type 2 diabetes

Dorijn F. L. Hertroijs MSc1 | Arianne M. J. Elissen PhD1 | Martijn C. G. J. Brouwers MD2 |

Nicolaas C. Schaper MD2 | Sebastian Köhler PhD3 | Mirela C. Popa PhD4 |

Stylianos Asteriadis PhD4 | Steven H. Hendriks PhD5 | Henk J. Bilo MD5,6 |

Dirk Ruwaard MD1

1Department of Health Services Research,

Care and Public Health Research Institute,

Faculty of Health, Medicine and Life Sciences,

Maastricht University, Maastricht, The

Netherlands

2Department of Internal Medicine, Division of

Endocrinology and Metabolic Diseases,

Maastricht University Medical Centre,

Maastricht, The Netherlands

3Department of Psychiatry and

Neuropsychology, School for Mental Health

and Neuroscience, Maastricht University,

Maastricht, The Netherlands

4Department of Data Science and Knowledge

Engineering, Faculty of Humanities and

Sciences, Maastricht University, Maastricht,

The Netherlands

5Diabetes Centre, Isala, Zwolle, The

Netherlands

6Department of Internal Medicine, University

Medical Centre Groningen and University of

Groningen, Groningen, The Netherlands

Correspondence

Dorijn F. L. Hertroijs MSc, Department of

Health Services Research, Maastricht

University, Duboisdomein 30, 6229 GT

Maastricht, The Netherlands.

Email: d.hertroijs@maastrichtuniversity.nl

Funding information

Novo Nordisk B.V.

Aim: To identify, predict and validate distinct glycaemic trajectories among patients with newly

diagnosed type 2 diabetes treated in primary care, as a first step towards more effective

patient-centred care.

Methods: We conducted a retrospective study in two cohorts, using routinely collected individ-

ual patient data from primary care practices obtained from two large Dutch diabetes patient

registries. Participants included adult patients newly diagnosed with type 2 diabetes between

January 2006 and December 2014 (development cohort, n = 10 528; validation cohort,

n = 3777). Latent growth mixture modelling identified distinct glycaemic 5-year trajectories.

Machine learning models were built to predict the trajectories using easily obtainable patient

characteristics in daily clinical practice.

Results: Three different glycaemic trajectories were identified: (1) stable, adequate glycaemic

control (76.5% of patients); (2) improved glycaemic control (21.3% of patients); and (3) deterio-

rated glycaemic control (2.2% of patients). Similar trajectories could be discerned in the valida-

tion cohort. Body mass index and glycated haemoglobin and triglyceride levels were the most

important predictors of trajectory membership. The predictive model, trained on the develop-

ment cohort, had a receiver-operating characteristic area under the curve of 0.96 in the valida-

tion cohort, indicating excellent accuracy.

Conclusions: The developed model can effectively explain heterogeneity in future glycaemic

response of patients with type 2 diabetes. It can therefore be used in clinical practice as a quick

and easy tool to provide tailored diabetes care.
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1 | INTRODUCTION

Archibold Garrod is considered the founding father of precision medi-

cine. In 1931, he was the first to recognize interpersonal variation in

disease development and impact. Garrod noted that “individual cases

of any particular disease are not exactly alike; they resemble rather

the drawings made from the same model by individual members of a

drawing class.”1 Nowadays, precision medicine is becoming more
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popular because of an increase in electronic clinical data and a decline

in genome sequencing costs.2,3 In 2012, former UK Prime Minister

David Cameron initiated the 100 000 Genomes Project and in 2015

former US president Barack Obama launched the Precision Medicine

Initiative.4,5 The aim of both initiatives was to predict the process of

disease and to create personalized patient care by gaining more

knowledge on genetic variation in disease.

Significant advances have been made thus far, such as the dis-

covery of certain genetic variations that are linked to the effective-

ness of a drug or specific genes that predict cancer risk.6,7

Nevertheless, the implementation of precision medicine based

solely on genomics has proven to be difficult for certain diseases,

such as type 2 diabetes. Recently, new efforts have been under-

taken to unravel the genetic background of type 2 diabetes by

studying not only common gene variants, but also infrequent and

rare variants.8 To date, only 10% of its heritability has been

unveiled, which has been referred to as a “geneticist's nightmare”

by some experts.9 Consequently, precision medicine based on a

genotyping approach is still far away for type 2 diabetes. Shifting to

a phenotyping approach of precision medicine seems a more prom-

ising alternative, in particular in the short-term, to improve patients'

health outcomes.10,11 The US National Institutes of Health defines

precision medicine as an emerging approach for disease treatment

and prevention that takes into account not only individual variability

in genes, but also a patient's environment and lifestyle.12 Currently,

such a phenotyping approach to precision medicine is only sparsely

adopted in evidence-based guidelines for diabetes treatment. Bar-

ring some exceptions for older people, these guidelines are usually

highly standardized.13,14

As a first step towards more patient-centred care, the aim of the

present study was 3-fold. It aimed: (1) to identify subgroups of people

with newly diagnosed type 2 diabetes with distinct glycaemic trajec-

tories; (2) to predict trajectory membership using patient characteris-

tics that are commonly assessed in diabetes primary care; and (3) to

validate these findings in a different cohort of patients with type

2 diabetes.

2 | RESEARCH DESIGN AND METHODS

2.1 | Study design and patients

In this retrospective cohort study, patients were selected using the

electronic health records (EHRs) of two large Dutch diabetes care

networks (DCNs) that routinely collect individual patient data and

have been frequently used for research.15–19 General practitioners

and practice nurses from the participating practices recorded these

data in the EHRs from the start of diabetes diagnosis. They use the

information in the EHRs for the treatment and follow-up of their

patients and as proof that they provided the care as agreed upon

with health insurers for declaration purposes; therefore, it can be

considered accurate. Patients from both DCNs received managed dia-

betes primary care based on the Netherlands Diabetes Federation

Care Standard,13 which describes the norm for generic multidisciplin-

ary diabetes care.

The first DCN, the Zwolle Outpatient Diabetes project Inte-

grating Available Care (ZODIAC),20 was used for the development

cohort and contained the anonymous longitudinal health records of

93 981 adult patients (age ≥ 18 years) with type 2 diabetes from

731 primary care practices in the city of Rotterdam, and in north-

ern, north-western and eastern parts of the Netherlands. The data

in the present study were collected during the yearly visits

between January 1, 2006 and December 31, 2013. Those patients

with a new diagnosis of type 2 diabetes during the study period

and with at least one glycated haemoglobin (HbA1c) value, mea-

sured �3 months from diagnosis (baseline), were selected for fur-

ther analysis.

The second DCN, the regional care group ZIO,18 was used as the

validation cohort. The ZIO database contains the anonymous longitu-

dinal health records of 11 833 adult patients (age ≥ 18 years) with

type 2 diabetes from 95 primary care practices in Maastricht, in the

south of the Netherlands. Data were collected and registered in the

EHRs between January 1, 2009 and December 31, 2014. The inclu-

sion criteria were the same as for the development cohort.

Both cohorts were open and dynamic, and patients were fol-

lowed from diagnosis until the end of the study period or until cen-

soring because no more HbA1c measurements were available

(because of death, no show or change of practice). Patients' date of

entry into the study (baseline) was fixed at their registered date of

diagnosis of type 2 diabetes.

No ethical approval was needed for the study; as the data used

were already available and patients were not physically involved in

the research, the study was not subject to the Dutch Medical

Research (Human Subjects) Act.

2.2 | Outcome

The outcome of interest was glycaemic control trajectories, based on

HbA1c values during a maximum of 4 years (development cohort) or

5 years (validation cohort). Baseline HbA1c values were included if

measured �3 months from diagnosis. Follow-up HbA1c values were

included if measured 1 year from the previous HbA1c measurement

with a deviation of �3 months.

2.3 | Predictors

The baseline patients' characteristics were used as potential predic-

tors for an individual's glycaemic trajectory membership. Characteris-

tics included baseline age, sex, and race, which was categorized into a

binary variable of white or non-white because participants were

mainly white. Non-white included Moroccan, Turkish, black-African,

Indian, Indonesian and non-Indian in the development cohort, and

black, Indian and other Asian in the validation cohort. HbA1c, systolic

blood pressure (SBP), diastolic blood pressure (DBP), lipid profile (LDL

cholesterol, HDL cholesterol, total cholesterol and triglycerides), and

body mass index (BMI) were also included as baseline characteristics

if measured �3 months from diagnosis. Urinary albumin-to-creatinine

ratio (ACR), presence of heart failure (only reported in the develop-

ment cohort), smoking (yes/no) and alcohol consumption (≤3 glas-

ses/d or >3 glasses/d) were included as baseline characteristics if
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measured �12 months from diagnosis. Patient-reported history of

cardiovascular disease (CVD) in family members aged <60 years

(yes/no) was included in the analysis if obtained at any point before

diagnosis or a maximum 12 months after diagnosis.

Outliers, most likely attributable to errors in recording, were

removed based on cut-off points determined by diabetologists

(Martijn Brouwers and Nicolaas Schaper).

2.4 | Statistical methods

To identify systematically the latent trajectories of glycaemic control,

latent growth mixture modelling (LGMM) was used. This method

allows the clustering of patients into an optimal number of growth tra-

jectories.21 Full information maximum likelihood was used as a missing

data estimation approach.22 A protocol, as recommended

previously,23,24 was followed to identify the best LGMM model. A

series of latent class growth analysis and latent growth mixture models

were estimated. Latent class growth analysis assumes no within class

variance, whereas LGMM freely estimates the within-class variance.23

The best model was determined by comparing the model fits of a pro-

gressive number of trajectories. Fit indices included the Akaike Infor-

mation Criterion,25 Bayesian Information Criterion26 and the Lo-

Mendel-Rubin-likelihood ratio test.27 Lower values of Akaike Informa-

tion Criterion and Bayesian Information Criterion, and/or a significant

result on the the Lo-Mendel-Rubin-likelihood ratio test indicate a bet-

ter model fit in terms of the number of trajectories. To determine

model classification performance, entropy was used. Higher entropy

values indicate less ambiguity in trajectory allocation.28 The usefulness

and clinical interpretation of each trajectory model was also taken into

account. Analyses were performed using Mplus version 7.1.29 and are

reported according to the Guidelines for Reporting on Latent Trajec-

tory Studies (GRoLTS) checklist.24 Baseline characteristics were

assessed for the development and validation cohorts. Significant dif-

ferences between cohorts were determined using two-sample t-tests

and chi-squared tests. ANOVA and χ2 tests were used to identify sig-

nificant differences between glycaemic control trajectories within

each cohort. To gain insight into the influence of glucose-lowering

drugs and insulin on the patterns of the trajectories, the percentage of

patients with oral glucose-lowering drugs and/or insulin prescriptions

was compared at baseline and at each follow-up year between the tra-

jectories of the development cohort using chi-squared tests.

For the development and validation of the prediction model, only

patients with no missing baseline values were included. A 5-fold

cross-validation was performed in the development cohort. Because

there is no consensus on the best-performing classifier, several

machine learning classification methods were used.30 The correlations

between SBP and DBP, lipid profile characteristics and CVD charac-

teristics were calculated using the Spearman (for non-normally dis-

tributed variables) and Pearson (for normally distributed variables)

correlation coefficients. If there was a significant correlation coeffi-

cient ≤−0.4 or ≥0.4 between two potential predictors, only one

potential predictor was included in the analysis to avoid over-adjust-

ment. To examine the generalizability of the developed prediction

model, an external validation was computed in the validation cohort.

Receiver-operating characteristic (ROC) curves were generated to

show the discrimination of the models. To examine the agreement

between predicted and observed trajectory membership, calibration

slopes were produced. Diagnostic values (sensitivities and specific-

ities) and prognostic values (positive predictive values [PPVs] and

negative predictive values [NPVs]) were also calculated.

For further details regarding the analyses see File S1.

3 | RESULTS

3.1 | Development and validation cohorts

The initial development cohort included 20 414 patients who were

diagnosed with type 2 diabetes between January 1, 2006 and

December 31, 2013. Of these, 10 528 patients had a baseline HbA1c

measurement and were included in the analysis. The group of patients

without a baseline HbA1c measurement had significantly higher LDL

cholesterol levels (3.0 vs 2.9 mmol/L, 95% confidence interval

[CI] 0.05–0.14; P < .001) and included a lower percentage of women

(46.9% vs 48.4%, 95% CI 0.2–3.0; P = .031). Other characteristics did

not differ. The mean (SD) age of the included patients in the develop-

ment cohort was 62.9 (12.7) years and 51.6% were men (Table 1).

The initial validation cohort included 4164 patients who were

diagnosed with type 2 diabetes between January 1, 2009 and

December 31, 2014. Of these, 3337 adult patients had a baseline

HbA1c measurement and were therefore selected for inclusion in the

analysis. The group of patients without a baseline HbA1c measure-

ment was significantly older (64.9 vs 63.7 years, 95% CI 0.3–2.1,

P = .009) and had a lower percentage of CVD in the family (19% vs

24.2%, 95% CI 1.4–8.0; P = .008). Other characteristics did not differ.

The mean (SD) age of the included patients in the validation cohort

was 63.7 (12.2) years and 52.3% were men (Table 1).

In both the development and validation cohort, date of diagnosis

(and inclusion into the study) differed considerably between patients:

some patients were, for example, diagnosed in 2009 and others in

2013, resulting in a variable follow-up. Because of this variable

follow-up, 78.7% of the patients in the development cohort did not

have an HbA1c measurement after 4 years of follow-up and 72.9%

did not have an HbA1c measurement after 5 years of follow-up in

the validation cohort (Table S1). It was therefore decided to restrict

follow-up in the development cohort to 4 years and in the validation

cohort to 5 years. The median (interquartile range) number of HbA1c

measurements during the research period was 2 (2) in the develop-

ment cohort and 3 (3) in the validation cohort.

3.2 | Latent growth mixture modelling

The model with the strongest fit in the development cohort was the

3-trajectory LGMM (Table S2). The largest (76.5%) and most stable

trajectory showed a pattern of good glycaemic control (HbA1c ≤7%

[53 mmol/mol]) over time (Figure 1). This trajectory was named “sta-

ble, adequate glycaemic control.” The middle trajectory, including

21.3% of the population, was named “improved glycaemic control,”

because patients in this trajectory adequately responded to glycaemic

treatment and subsequently remained stable at a HbA1c level just
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TABLE 1 Baseline patient characteristics of the development cohort and the validation cohort

Development cohort Validation cohort P

N 10 528 3337

Mean (SD) age, years 62.9 (12.7) 63.7 (12.2) .001

Not recorded, n 0 0

Men, n (%) 5433 (51.6) 1744 (52.3) <.001

Not recorded 0 0

Ethnic groupa, n (%) .797

White 6669 (95.3) 2913 (95.5)

Non-white 330 (4.7) 137 (4.5)

Not recorded 3529 287

Smoking statusa, n (%) <.001

Non-smoker 7748 (80.1) 2065 (74.8)

Current smoker 1928 (19.9) 695 (25.2)

Not recorded 852 577

Mean (SD) BMI, kg/m2 30.4 (5.5) 30.6 (6.1) .073

Not recorded, n 4443 595

Alcohol consumptiona, n (%) .308

<3 glasses/d 6029 (76.3) 3147 (94.6)

≥3 glasses/d 1876 (23.7) 178 (5.4)

Not recorded 2623 12

Mean (SD) HbA1c, mmol/mol 53.0 (15.3) 56.9 (18.8) <.0001

Not recorded, n 0 0

Mean (SD) HbA1c, % 7.0 (1.4) 7.4 (1.7) <.0001

Not recorded, n 0 0

Mean (SD) SBP, mm Hg 138.5 (17.6) 138.4 (18.8) .321

Not recorded, n 3762 483

Mean (SD) DBP, mm Hg 80.8 (10.0) 80.8 (10.4) .801

Not recorded, n 4014 489

Mean (SD) LDL cholesterol, mmol/mol 2.9 (1.0) 3.2 (1.1) .954

Not recorded, n 1910 663

Mean (SD) HDL cholesterol, mmol/mol 1.23 (0.4) 1.16 (0.35) <.001

Not recorded, n 1536 638

Mean (SD) total cholesterol, mmol/mol 5.0 (1.1) 5.3 (1.3) <.001

Not recorded, n 1500 628

Mean (SD) triglycerides, mmol/L 2.0 (1.2) 2.2 (1.4) <.001

Not recorded, n 1809 659

Mean (SD) ACR, mg/mmol 2.7 (9.9) 2.3 (9.8) .002

Not recorded, n 2717 812

Mean (SD) eGFR, ml/min/1.73m2 80.1 (21.6) 77.7 (24.0) .005

Not recorded 9620 454

Heart failurea, n (%) - -

Yes 437 (6.6)

No 6153 (93.4)

Not recorded 3938

CVD in familya, n (%) 0.018

Yes 2718 (37.9) 810 (24.3)

No 4457 (62.1) 2521 (75.7)

Not recorded 3353 6

Abbreviations: ACR, albumin-to-creatinine ratio; BMI, body mass index; CVD, cardiovascular disease; DBP, diastolic blood pressure; eGFR, estimated glo-
merular filtration rate; HbA1c, glycated haemoglobin; SBP, systolic blood pressure. Percentages have been rounded and might not total 100.
a Percentages are out of total with recorded values.
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above 7% (53 mmol/mol). The smallest trajectory (2.2%) showed very

high HbA1c at diagnosis of diabetes, but adequately responded to

treatment; however, 2 years after diagnosis, HbA1c started to

increase again to levels >7% (53 mmol/mol). This trajectory was

named “deteriorated glycaemic control.” The mean intercepts and

slopes for each class are presented in Table S3. All intercepts and

slope growth parameters were statistically significant. The observed

individual trajectories and estimated mean trajectory of the three-

trajectory model are shown in Figure S1.

In the validation cohort, a three-trajectory model was also identi-

fied based on model fit (Table S4) and population trajectory distribu-

tion (Figure 1). This model was similar in shape and population

distribution to the three-trajectory model of the development cohort.

All intercepts and slope growth parameters were statistically signifi-

cant (Table S3).

Figures S1–S5 show all fitted trajectory models in the develop-

ment and validation cohorts with linear and quadratic slopes, in

accordance with the GRoLTS guidelines.24

There were significant differences between trajectories at all time

points in the percentages of patients with oral glucose-lowering drugs

and insulin prescriptions (P < .0001). Figures S6 and S7 show that more

oral glucose-lowering drugs and insulin were prescribed to patients in

the deteriorated and improved glycaemic control trajectories compared

with the stable, adequate glycaemic control trajectory. Prescription of

oral glucose-lowering drugs increased over time in all trajectories.

3.3 | Classification into glycaemic control
trajectories

In both cohorts, patients in the deteriorated glycaemic control trajec-

tory were more frequently male, current smokers and younger. Their

baseline HbA1c, triglycerides and total cholesterol levels were higher

compared with the other trajectories (Table 2).

After excluding significant correlations between patient charac-

teristics (Table S5), 13 baseline characteristics were retained in the

analyses as potential predictors: age; gender; race; HbA1c; SBP; LDL

cholesterol; triglycerides; ACR; BMI; smoking; alcohol; CVD; and CVD

in family members. The 5-fold cross-validation in the development

cohort showed that the K-nearest neighbour machine learning classi-

fier had the highest accuracy (92.3%; Table S6). Using this classifier,

the 13-patient feature prediction model had good-to-excellent diag-

nostic and prognostic properties, with sensitivities between 78.4%

and 98.3%, specificities between 81.2% and 99.4%, PPVs between

78.0% and 94.7% and NPVs between 93.7% and 99.5% (Table S7).

Baseline BMI, HbA1c and triglycerides were the most salient charac-

teristics for predicting trajectory membership according to their

weight (Table 3). The 13-patient feature prediction model had a ROC-

AUC of 0.95 (Figure 2). The external validity of the model with the

three most salient patient characteristics (3-patient feature prediction

model) was determined in the validation cohort. The linear discrimi-

nant classifier had the highest accuracy (92.0%; Table S8). Sensitivities

were between 67.9% and 99.1%, specificities between 85.3% and

98.6%, PPVs between 45.8 and 96.1% and NPVs between 91.9% and

99.4% (Table S9). The ROC-AUC was 0.96 (Figure 2). The calibration

plot in the validation cohort showed a good fit for all three trajectories

(Figure S8). The developed tool can be found on the webpage www.

patientprofiles.nl and provides the opportunity to fill in different BMI,

HbA1c and triglyceride values and to view the related trajectory.

4 | DISCUSSION

In the present retrospective cohort study in patients with newly diag-

nosed type 2 diabetes treated in primary care, three distinct glycaemic

trajectories were identified during the first 5 years after diagnosis:

(1) stable, adequate glycaemic control; (2) improved glycaemic control;

and (3) deteriorated glycaemic control. Our most important finding

was that trajectory membership can be predicted with good-to-

excellent accuracy using no more than three patient characteristics

(baseline BMI, HbA1c and triglycerides). The generalizability of the

model, obtained by training the model on the development cohort and

testing it on the validation cohort, was also excellent.

FIGURE 1 Latent class growth trajectories of the best-fitting models of the development and validation cohorts identified by latent growth

mixture modelling. Solid lines = development cohort; dashed lines = validation cohort
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To our knowledge, only two previous studies have examined

latent glycaemic trajectories in patients with type 2 diabetes.31,32

Both studies identified four glycaemic trajectories, which had notable

similarities to the trajectory patterns we observed in the present

study. The similarities between the previous and present studies were

most notable for the “stable, adequate glycaemic control” trajectory.

In both previous studies, this trajectory was identified and included

83% of their patients, slightly higher than the 72% we found. These

results indicate that current practice enables a majority of patients to

reach and maintain recommended glycaemic control levels. The pre-

sent study shows that this group of patients can be identified at diag-

nosis by applying a model that has a high PPV and NPV.

These findings have important implications for more precision

medicine in type 2 diabetes. The main goal of precision medicine is to

develop models that can predict disease development or disease

outcomes in order to tailor treatment.3 Our model uses three rela-

tively simple clinical characteristics, BMI, HbA1c and triglycerides, to

divide patients into three groups, each with different future glycaemic

trajectories. Predicting patients' future glycaemic control enables care

professionals to provide tailored diabetes management. For patients

classified in the stable, adequate glycaemic control group, for example,

less intensive monitoring might suffice, whereas patients classified in

the deteriorated glycaemic control group could benefit more from fre-

quent monitoring. Previous research suggests that less frequent moni-

toring of patients with stable, adequate glycaemic control – that is,

biannual instead of quarterly check-ups by a general practitioner – is

possible without negative effects on health, allowing considerable

cost reductions.33 More generally, our model enables tailoring of a

range of diabetes care components to patients' care needs, including

pharmacotherapy, lifestyle advice and self-management support.

TABLE 2 Baseline characteristics of the development cohort and the validation cohort according to the different trajectories of HbA1c

Latent trajectories development cohort P Latent trajectories validation cohort P

Stable, adequate
glycaemic control

Improved
glycaemic
control

Deteriorated
glycaemic
control

Stable, adequate
glycaemic control

Improved
glycaemic
control

Deteriorated
glycaemic
control

N (%) 8049 (76.5) 2246 (21.3) 233 (2.2) 2516 (75.4) 702 (21.0) 119 (3.6)

Mean (SD) age, years 63.8 (12.3) 60.3 (13.6) 59.3 (12.6) <.001 64.9 (11.6) 60.3 (13.5) 59.7 (12.2) <.001

Men, n (%) 4026 (50.0) 1261 (56.1) 146 (62.7) <.001 1249 (49.6) 417 (59.4) 78 (65.5) <.001

Ethnic groupa, n (%) .013 .797

White 5116 (95.7) 1415 (94.0) 138 (93.2) 2185 (95.4) 623 (96) 105 (95.5)

Non-white 230 (4.3) 90 (6.0) 10 (6.8) 106 (4.6) 26 (4.0) 5 (4.5)

Smoking statusa, n (%) <.001 <.001

Non-smoker 6008 (80.9) 1595 (77.8) 145 (71.8) 1585 (76.9) 415 (69.5) 65 (64.4)

Current smoker 1416 (19.1) 455 (22.2) 57 (28.2) 477 (23.1) 182 (30.5) 36 (35.6)

Mean (SD) BMI, kg/m2 30.3 (5.3) 30.8 (6.1) 29.2 (4.8) .103 30.4 (6.1) 31.0 (5.7) 31.1 (6.3) .073

Alcohol consumptiona, n (%) .553 .308

<3 glasses/d 4595 (76.0) 1301 (76.9) 133 (78.7) 2375 (94.8) 664 (94.7) 108 (91.5)

≥3 glasses/d 1450 (24.0) 390 (23.1) 36 (21.3) 131 (5.2) 37 (5.3) 10 (8.5)

Mean (SD) HbA1c, mmol/mol 46.5 (5.7) 70.3 (14.1) 107.2 (15.2) <.001 48.4 (5.8) 78.0 (16.9) 112.5 (16.7) <.001

Mean (SD) HbA1c, % 6.4 (0.5) 8.6 (1.3) 11.9 (1.4) <.001 6.6 (0.5) 9.3 (1.5) 12.5 (1.5) <.001

Mean (SD) SBP, mm Hg 138.5 (17.3) 138.8 (18.5) 137.2 (17.7) .460 138.2 (18.7) 139.8 (19.2) 135.3 (17.4) .321

Mean (SD) DBP, mm Hg 80.5 (9.8) 81.7 (10.6) 82.3 (10.3) .003 80.3 (10.5) 82.6 (10.3) 81.7 (9.8) .238

Mean (SD) LDL cholesterol,
mmol/mol

2.9 (1.0) 3.0 (1.0) 3.3 (1.0) <.001 3.2 (1.1) 3.3 (1.1) 3.5 (1.2) .954

Mean (SD) HDL cholesterol,
mmol/mol

1.3 (0.4) 1.1 (0.3) 1.2 (0.3) <.001 1.2 (0.4) 1.0 (0.3) 1.1 (0.3) <.001

Mean (SD) total cholesterol,
mmol/mol

4.9 (1.1) 5.1 (1.3) 5.4 (1.2) <.001 5.3 (1.2) 5.4 (1.3) 5.9 (1.7) .003

Mean (SD) triglycerides,
mmol/L

1.9 (1.1) 2.2 (1.4) 2.4 (1.8) <.001 2.1 (1.2) 2.6 (1.6) 3.6 (2.9) <.001

Mean (SD) ACR,
mg/mmol

2.4 (9.2) 3.8 (12.2) 3.4 (8.4) <.001 2.2 (10.3) 2.3 (7.1) 3.7 (12.5) .002

Heart failurea, n (%) .901 - - - -

Yes 337 (6.7) 92 (6.5) 8 (5.9)

No 4697 (93.3) 1328 (93.5) 128 (94.1)

CVD in familya, n (%) .534 .018

Yes 2072 (37.8) 591 (38.6) 55 (34.2) 603 (24.0) 189 (27.0) 18 (15.3)

No 3409 (62.2) 942 (61.4) 106 (65.8) 1909 (76.0) 512 (73.0) 100 (84.7)

Abbreviations: ACR, albumin-to-creatinine ratio; BMI, body mass index; CVD, cardiovascular disease; DBP, diastolic blood pressure; HbA1c, glycated hae-
moglobin; SBP, systolic blood pressure. Percentages have been rounded and might not total 100.
a Percentages are out of total with recorded values.
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In the present study we applied a unique approach by combining

LGMM with machine learning techniques. There were three follow-

up HbA1c measurements in the development cohort and four in the

validation cohort, allowing the identification of heterogeneity in

future glycaemic response. Prescription of glucose-lowering drugs

and insulin may have influenced the patterns of the trajectories.

HbA1c levels in the stable, adequate and improved glycaemic control

trajectories remained stable or improved, possibly because of an

increase in oral and insulin prescriptions over time. In the deterio-

rated glycaemic control trajectory, however, HbA1c increased,

despite an increase in glucose-lowering drugs and insulin prescrip-

tions. Disease progression or difficulties adhering to drug treatment

and healthy lifestyle could be explanations for this.34,35

The external validation is an important strength of the present

study, considering that many research findings are based solely on

the basis of a single study.36 A limitation was that both cohorts

consisted of a predominantly white population. When compared with

white populations, other races tend to have higher HbA1c values,37

and their inclusion might have resulted in glycaemic control trajecto-

ries that differed in size and shape. One of the previous studies that

examined latent glycaemic control trajectories31 included a mixed-

race population, with ~50% non-white participants; however, as

stated before, the identified trajectories in that study were similar to

the trajectories in the present study.

So far, predictive models and tools based on machine learning

techniques have not been widely used in clinical decision support

systems.38 One of the reasons for this could be that data obtained

from EHRs are considered a byproduct of healthcare delivery, rather

than a resource to improve its performance.39 In addition, most

machine learning models are complex and difficult to interpret

because they depend heavily on aspects related to feature distribu-

tion, data availability and data representation.40 In the present study

we built and validated a simple and interpretable algorithm with

excellent accuracy. Despite the high PPV and NPV in the stable, ade-

quate glycaemic control trajectory, the PPV in the deteriorated gly-

caemic control trajectory was only 45.8% in the validation cohort.

This implies that more than half the patients classified in this trajec-

tory do not belong there (false-positives), which is a point for further

refinement. The counterpart is that the NPV is high, implying that

membership of this trajectory can be ruled out with high certainty.

In conclusion, only three patient characteristics (BMI, HbA1c and

triglycerides) are needed to accurately predict glycaemic response of

patients with newly diagnosed type 2 diabetes. The model can be

used in practice as a quick, easy and accurate tool to determine

patients' care needs and provide tailored diabetes treatment.
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TABLE 3 Patient feature ranking of the 5-fold cross-validation as

observed in the development cohort

Ranking Patient baseline characteristics Patient feature weight

1 BMI 0.3571

2 HbA1c 0.1571

3 Triglycerides 0.1148

4 LDL 0.0754

5 Age 0.0749

6 SBP 0.0737

7 ACR 0.0618

8 Sex 0.0142

9 Alcohol consumption 0.0142

10 Smoking 0.0142

11 CVD in family 0.0142

12 Heart failure 0.0142

13 Race 0.0142

Abbreviations: ACR, albumin-to-creatinine ratio; BMI, body mass index;
CVD, cardiovascular disease; HbA1c, glycated haemoglobin; SBP, systolic
blood pressure.

FIGURE 2 Receiver-operating characteristic curve of the 13-patient

feature prediction model and the 3-patient feature prediction model.
TP, true-positive; FP, false-positive; KNN, K-nearest neighbour; LDC,
linear discriminant classifier
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