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ABSTRACT: Coeluting peptides are still a major challenge for the
identification and validation of MS/MS spectra, but carry great
potential. To tackle these problems, we have developed the here
presented CharmeRT workflow, combining a chimeric spectra
identification strategy implemented as part of the MS Amanda
algorithm with the validation system Elutator, which incorporates a
highly accurate retention time prediction algorithm. For high-
resolution data sets this workflow identifies 38−64% chimeric spectra,
which results in up to 63% more unique peptides compared to a
conventional single search strategy.
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■ INTRODUCTION

Advancements in mass spectrometer instrument precision and
acquisition time1,2 made mass spectrometry the primary
instrument in proteomics analyses. The interpretation of the
measured spectra is often performed using a database search
algorithm.3−6 Most database search algorithms stick to the
“one-spectrum-one-peptide” paradigm, although the occurrence
of coeluting peptides and the accompanied challenges of
chimeric spectra have been widely studied.7−9 Even though
several solutions for processing chimeric spectra already
exist,10−14 they are still often not used in an everyday
proteomics workflow. In addition, the validation of more than
one peptide match per spectrum (here called mPSM) is an
important task,15 as the confidence score for the most abundant
peptide in a spectrum is not easily comparable to the score of a
second coeluting peptide also present in the spectrum.
However, through ignoring this valuable information a large
amount of unique peptides remains unidentified, as recent
studies show that about 50% of all spectra contain more than
one peptide.7,15

In general, the dynamic range of proteins is a big challenge in
proteomics experiments.16 Detecting highly abundant proteins
is a lot simpler than identifying the least abundant part of the
proteome.16,17 Many approaches have been conducted to
increase proteome coverage and enable deep proteome
analysis,18−25 being more or less straightforward and affordable
techniques for an everyday proteomics workflow.

We here propose a combination of identifying chimeric
spectra and validating detected mPSMs using retention time
prediction, jointly leading to a significant increase in validated
unique peptides for each data set accompanied by higher
coverage of low abundant proteins: the CharmeRT workflow.

■ METHODS

CharmeRT Workflow

The first part of the CharmeRT workflow identifies chimeric
spectra using a second search approach in our database search
engine MS Amanda.26 The second part of CharmeRT validates
the identified PSMs of first and second searches using Elutator,
a newly developed tool based on the principles of Percolator,27

featuring a new approach for retention time prediction. An
overview of the workflow can be seen in Figure 1.

Chimeric Spectra Search in MS Amanda

To identify multiple peptides per spectrum, a second search
approach was implemented in the database search engine MS
Amanda. For each spectrum, all peaks of the highest scoring
peptide identified in the first search are removed. Basis of this
removal are the selected fragment ions in the search,
additionally neutral loss ions can be removed as well. As
interfering peptides may have the same c- or n-terminal amino
acid due to the used enzyme, leading to a shared y1/b1 ion in a
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mixed spectrum, y1 ions can optionally be kept, and b1 ions are
not considered at all by MS Amanda. Tests showed that all
other potentially shared peaks can be neglected, as they are very
unlikely. We identified an average overlap of 0.7%, see
Supplemental Table S2. Corresponding MS1 spectra are
investigated and potential interfering precursors are deter-
mined, optionally performing a preceding deisotoping of the
MS1 spectrum. There are several ways to treat precursor peaks
where the charge state cannot be determined: not considering
them, testing various selectable charge states, or only testing the
most abundant ones of them at different charge states. All
spectra are submitted to a further search lap testing each of the
identified precursors with the option to research the original
precursor. For each spectrum, multiple second search hits, i.e.,
the best n PSMs for the top m precursors, are reported.
mPSM Validation in Elutator

The second part of the CharmeRT workflow is realized by
Elutator, a new tool for validating identified mPSMs. Elutator is
based on the principles of Percolator27 and validates mPSMs
using a set of features optimized for the analysis of MS Amanda
results. A complete list of all used features is given in the
supplemental data (Supplemental Table S1), including the
deviation of an estimated peptide elution retention time (RT)
from the actual value, as well as recalibrated masses for

precursor and fragment ions. The most important features are
explained in the next sections.

Elutator Retention Time Prediction Model. An
important factor in the context of validating mPSMs is the
difference between predicted and measured retention times.
Several approaches already exist to construct RT prediction
models.28−30 However, the use of these models for validation is
often limited due to specific requirements, such as, a significant
amount of training data and correct handling of chemical
modifications. We have therefore developed a new retention
time prediction algorithm: Elutator’s RT model is based on the
SSRCalc30 model and estimates the hydrophobicity index of
peptides based on their sequences and chemical modifications,
which can be linearly mapped to retention time. It was
significantly redesigned and extended for better performance
but preserves most of the features and ideas of the original
SSRCalc algorithm. The features used for predicting the model
include peptide length, certain properties for special amino
acids (e.g., Proline), the isoelectric charge, properties for short
peptides, or parameters for hydrophobic amino acid patterns
likely forming helices, and are similar to the features described
by Krokhin.31

An important improvement compared to the original model
of SSRCalc for retention time prediction is the consideration of
neighboring effects of amino residuals being not restricted to
nearest neighbors only. Experiments showed a statistically
significant effect of amino residual interactions even for
residuals separated by several positions in the polypeptide
chain. A detailed description on how we model these
interactions is given in the Supporting Information.
The described features are used in an optimized nonlinear

retention time model implemented in Elutator. The original
formulation of the model was given by Krokhin for SSRCalc.31

The parameters (coefficients) of the used model are optimized
using Newton’s method of minimizing the sum of squares of
retention time deviations for all peptides in the training sets. A
detailed information on the model calculation is given in the
supplemental data. The optimization procedure assumes
simultaneous training over several different data sets measured
under similar elution conditions (gradient duration, chemical
composition of eluents, column temperature, etc.). To avoid
overfitting, the retention time model has been trained using
94122 highly reliable PSMs (FDR threshold was 0.001)
corresponding to 44 271 unique sequences obtained from in-
house measured data sets of different organisms: trypsin
digested human (HeLa), mouse, yeast, B. subtilis, E. coli,
phosphorylated peptides from TiO2 enriched human cell lysate,
and chymotrypsin digested human data set. After a preliminary
optimization, we removed 0.1% of the outliers, corresponding
to the number of expected false matches, and repeated the
optimization. By considering additional peptide properties,
such as the interactions of neighboring amino residuals in the
peptide chain, we considerably increased the RT prediction
accuracy (Figure 2). A similar accuracy of retention time
prediction was achieved for phosphorylated and unmodified
peptides (see Supplemental Figure S1).
For practical usage, the applicability of the trained model on

data sets measured under a different chromatographic setup is
of high interest. Elutator maps the predicted hydrophobicity
index to the observed retention time by applying a linear fitting
for all peptides in a single HPLC run. This allows for an
application to data sets with different setups. We investigated
this using a publicly available externally measured HeLa data

Figure 1. Overview of the CharmeRT workflow. After a first search
round with MS Amanda, spectra are cleaned, potential interfering
precursors are identified, and spectra are submitted to a second search
round. Resulting PSMs of the first and the second search are validated
by Elutator using a retention time model.
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set.32 The accuracy of the retention time prediction is lower for
the external data set, as can be seen through the correlation
coefficient R2. Nevertheless, as demonstrated in Supplemental
Figure S2, using retention time prediction also here leads to a
higher number of PSMs. Smaller retention time dispersion for
the external data set can be explained by the shorter gradient
(90 min versus 180 min for the in-house data set). The smaller
gradient duration leads to a proportional decrease of retention
time deviations. Alternatively, a new model can be easily trained
for specific elution conditions using the Elutator RT Trainer
(see Availability).
Combined Retention Time Score. Besides the deviation

of the predicted RT to the measured RT, Elutator also uses the
combined retention time score as feature for mPSM validation.
It includes the PSM score of the search engine and the
retention time deviation obtained from the retention time
model. To calculate a combined score, the MS Amanda score is

recalibrated on the posterior error using linear regression to
define coefficients a and b using the model

− ≈ +f A aA b10 log( ( ))

where f(A) is the probability for a match with score A to be
false (i.e., local FDR), and A is the MS Amanda score.
After this calibration, the combined score is calculated using

the following scoring function:
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where σ is the dispersion of the predicted retention time,
calculated considering highly reliable matches (FDR = 0.001),
T is the duration of the linear part of the gradient, erf is the

Gauss error function, and ε is defined as ε =
σ

|Δ |t , where Δt is

Figure 2. Comparison of elution retention time prediction models: (a) Elutator, (b) BioLCCC,29 (c) SSRCalc,30 and (d) Elude.28 Depending upon
the model design the output is either an absolute retention time or a relative hydrophobicity index, which can be linearly mapped to the retention
time in a particular data set. We here compare the correlation of predicted and measured retention times of data set I, which is important for

validation. R2 is the coefficient of determination, and σ2 is the dispersion of the error in minutes. As Elude cannot be trained on multiple raw files,
we here used 50% randomly chosen PSMs over all raw files for training and the others for testing.
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the retention time deviation from the predicted value for the
scored peptide.
Calibration of Mass Differences. The aim of calibrating

mass differences is to eliminate constant biases in mass
measurements for precursors and fragments to enhance the
mass resolution and is included as additional feature for mPSM
validation. In Elutator this calibration is based on theoretically
known masses of highly reliable matches of the first search
(FDR = 0.001, calculated on MS Amanda score).
Recalibration can be done for measured deviations of m/z

values, Δ( )m
z
, as well as for relative mass deviations, Δmppm.

Elutator uses the following approximation of mass deviations
over retention time t and m/z to determine the calibration
coefficients a, b, and c:
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Results of mass recalibration for a human data set32 are
presented in Supplemental Figure S3. This data set was
analyzed with lock mass disabled (available in Q Exactive
instruments, Thermo Fisher Scientific). Constant bias and
variable error seemed to be similar in this case. Activating the
lock mass option partly eliminates a constant bias, but increases
a variable error because it is based on measuring the mass of
known ions present in the spectrum. Therefore, we suggest that
disabling the lock mass is preferable for better mass resolution
when PSM validation by Elutator is used.
Longest Consecutive Series A + B + Y. We introduce a

combined consecutive sequence of N- and C-terminal ions as
additional feature for validation, namely the sequence of a, b,
and y ions, which typically constitute HCD/CID spectra. PSMs
with scores close to the FDR threshold contain relatively few
matched fragment peaks; therefore, y ions are likely not able to
form any consecutive sequence. However, longer sequences can
be potentially constructed by taking into account a and b ions,

which fill gaps between y fragments (see Supplemental Figure
S4).

■ EXPERIMENTS

In House Data Generation

Samples were reduced and alkylated using dithiothreotiol (1 μg
DTT per 20 μg protein) and iodacetamide (5 μg per 20 μg
protein). Proteins were predigested with Lys-C at 30 °C for 2 h
(1 μg Lys-C per 50 μg protein in 6 M urea and 12 mM
Triethylammonium bicarbonate buffer (100 mM Ammonium
bicarbonate (ABC) buffer for mouse samples)) and digested
overnight with trypsin (Promega, Trypsin Gold, Mass
spectrometry grade) at 37 °C (1 μg trypsin per 30 μg protein,
0.8 M urea in 45 mM Triethylammonium bicarbonate buffer
(mouse: 2 M urea with 100 mM ABC buffer)); digestion was
stopped by adding concentrated TFA to a pH of approximately
2. Phosphorylated peptides were enriched following the in-
house TiO2 enrichment protocol,33 HeLa peptides were
obtained following the in-house HeLa protocol.34

The HPLC system used was an UltiMate 3000 HPLC RSLC
nano system coupled to an Q Exactive mass spectrometer
(Thermo Fisher Scientific, Bremen, Germany), equipped with a
Proxeon nanospray source (Proxeon, Odense, Denmark).
Peptides were loaded onto a trap column (Thermo Fisher
Scientific, Bremen, Germany, PepMap C18, 5 mm × 300 μm
ID, 5 μm particles, 100 Å pore size) at a flow rate of 25 μL/min
using 0.1% TFA as mobile phase. After 10 minutes the trap
column was switched in line with the analytical column
(Thermo Fisher Scientific, Bremen, Germany, PepMap C18,
500 mm × 75 μm ID, 3 μm, 100 Å). Peptides were eluted using
a flow rate of 230 nL/min. The eluting peptides were directly
analyzed using hybrid quadrupole-orbitrap mass spectrometers
(Q Exactive or Q Exactive Hybrid, Thermo Fisher). The Q
Exactive mass spectrometer was operated in data-dependent
mode using a full scan (m/z range 350−1650Th, nominal
resolution of 70 000, target value 1E6) followed by MS/MS
scans of the 12 most abundant ions. MS/MS spectra were
acquired at a resolution of 17 500 using normalized collision
energy 30%, isolation widths of 2, 4, or 8, and the target value

Figure 3. Comparison of identification results of HeLa data sets measured with various isolation widths and gradient times analyzed with the
CharmeRT workflow. We analyzed triplicates of tryptic HeLa samples for 2 m/z, 4 m/z, and 8 m/z isolation width, each either at a gradient time of 1
h or 3 h. Results are given for 1% FDR calculated at peptide level, showing the (a) number of identified PSMs in the first and in the second search
and (b) number of unique peptides identified only in the first, only in the second, and in both searches.
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was set to 5E4. Precursor ions selected for fragmentation
(charge state 2 and higher) were put on a dynamic exclusion list
for 10 s. Additionally, the underfill ratio was set to 20%,
resulting in an intensity threshold of 2E4.

Data Set Description

To assess the quality of the CharmeRT workflow, we applied it
to several different data sets (3 replicates each, measured on
Thermo Q Exactive or Q Exactive Hybrid): several in-house
HeLa tryptic digests with different isolation widths and
different gradient times (data sets A-F, I), an in-house
phospho-enriched HeLa tryptic digest (data set G), and an
external HeLa tryptic digest32 (data set H).

(A, B) HeLa tryptic digest, in-house measurement (Thermo Q
Exactive Hybrid, 1 h gradient (A) and 3 h gradient (B),
2 m/z isolation width, 1 μg, Figure 3).

(C, D) HeLa tryptic digest, in-house measurement (Thermo Q
Exactive Hybrid, 1 h gradient (C) and 3 h gradient (D),
4 m/z isolation width, 1 μg, Figure 3).

(E, F) HeLa tryptic digest, in-house measurement (Thermo Q
Exactive Hybrid, 1 h gradient (E) and 3 h gradient (F),
8 m/z isolation width, 1 μg, Figure 3).

(G) HeLa tryptic digest, in-house measurement, phospho
enrichment (Thermo Q Exactive, 3 h gradient, 2 m/z
isolation width, 100 ng, Figure 4 and Figure S1, TiO2

enrichment of phosphorylated peptides).
(H) HeLa tryptic digest, external measurement32 (Thermo

Q Exactive, 90 min gradient, 4 m/z isolation width, 5
μg, Figure 4 and Figure S2).

(I) HeLa tryptic digest, in-house measurement (Thermo Q
Exactive, 3 h gradient, 2 m/z isolation width, 100 ng,
Figures 2 and S2)

Database Search Parameters

When possible, runs have been performed in Proteome
Discoverer 1.4, using Mascot version 2.2.7, MS Amanda v
1.4.14.9288, and Elutator v 1.14.1.236. For results obtained
with pParse, all raw files have been preprocessed with pParse
version 2.0.8 and resulting files submitted to PD 1.4. MaxQuant
results were obtained with version 1.5.5.1, and all settings were
set to default values as this lead to the best performance.
The following parameter settings have been used for MS

Amanda, Mascot, and MaxQuant: swissprot database 2016−06
(human/mouse) including the “cRAP” contaminants database;
trypsin as enzyme; 2 missed cleavages; Carbamidomethyl(C) as
fixed PTM; Oxidation(M) and (for the phosphorylated data
set) Phospho(S,T) as variable modifications. For MS Amanda
and Mascot 10 ppm precursor mass tolerance and 0.02 Da
fragment mass tolerance were used.
We applied the following additional settings specific for MS

Amanda, where second search has been enabled: MS1 spectrum
deisotoping set to false; keep y1 ion, remove water losses,
remove ammonia losses, and exclude first precursor set to true;
top 5 results per precursor in Figures 3 and 4/top 10 results per
precursor for Supplemental Figure S7.
For Mascot we set the peptide cutoff score to 0.
The Elutator FDR threshold was set to 1% on peptide level

for results in Figure 3 and on PSM level for the experiments in
Figure 4. For results in Figure 4, the match with the best q-
value was selected in a case when several high confident
matches were reported for the same spectrum, such that the
number of PSMs corresponds to the number of confidently
identified spectra. For all results obtained using Percolator,
numbers were obtained applying an extra Proteome Discoverer

Figure 4. Comparison of MS Amanda and Elutator with other scoring methods and validation tools. Comparison was performed using (a) an
external HeLa data set obtained from Michalski et al.32 (data set H) and (b) an in-house data set of human HeLa after TiO2 enrichment of
phosphorylated peptides (data set G). The FDR threshold of 1% was calculated at PSM level for consistency between different search tools, which
typically operate at PSM level. In cases where several high confident matches were reported for the same spectrum, the match with best q-value was
selected such that the number of PSMs corresponds to the number of confidently identified spectra. Elutator includes features derived from a peptide
elution retention time prediction model. Model training was performed on in−house data sets, the same model was applied to in-house and external
data sets.
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node “Multi-confident PSMs fix”, available at http://ms.imp.ac.
at/?goto=charmert. MaxQuant results were filtered manually.

■ RESULTS

CharmeRT Performance

To demonstrate the performance of the CharmeRT workflow,
we analyzed HeLa samples using different isolation widths
during acquisition. In standard mass spectrometry experiments,
very narrow isolation widths (≤2 m/z) are applied to decrease
the probability of coeluting peptides. However, being able to
reliably identify multiple coeluting peptides per spectra reveals
new possibilities for peptide identification and acquisition. By
using broader isolation widths, we were able to considerably
increase the numbers of identified peptides at a constant FDR
(Figure 3).
Applying the second search approach increased the number

of reliable identifications for all tested isolation widths and
gradient times. Even for narrow isolation widths (2 m/z) and
small gradient times (1 h) we observed a considerable number
of validated chimeric spectra, which increased the number of
identified unique peptides by 41% (5360 unique peptides). As
expected, the amount of reliably identified PSMs and peptides
in the first search decreases by 2−15% for broad isolation
widths (8 m/z, 14219 PSMs (1 h)/23138 PSMs (3 h))
compared to narrow isolation widths (2 m/z, 14 506 PSMs (1
h)/27 340 PSMs (3 h)), as spectra complexity increases. This is
alleviated by the chimeric approach, which identified almost the
same number of unique peptides (20 438 (1 h)/28 550 (3 h)
unique peptides) compared to the 2 m/z isolation width runs
(18 566 (1 h)/31 346 (3 h) unique peptides). In our tests an
isolation width of 4 m/z combined with a longer gradient

resulted in the highest number of identified peptides (33 138
unique peptides) and the deepest insight into the investigated
sample. This results not only in further evidence for already
identified proteins, but also in additional proteins unidentified
before (Supplemental Figure S6). Similar results can be
achieved for an external data set:35 analyzing label-free data
acquired at 1.4 m/z isolation width we see an average increase
in PSMs of 75%, whereas for a TMT data set measured at a
very narrow isolation width of 0.4 m/z only a small amount of
chimeric spectra can be identified (see Supplemental Figure
S5).
On average, 38% of the reliably identified spectra at 2 m/z

isolation width (1 h gradient) were chimeric spectra
(Supplemental Figure S7). This number increases to 53% at
an isolation width of 4 m/z (3 h gradient). Additionally, on
average, almost 20% of all reliably identified spectra at 4 m/z
contain more than two peptides. Several examples of randomly
drawn identified chimeric spectra of data set D are given in
Supplemental Figures S11−S18.
Comparison to State of the Art Approaches

The combination of chimeric spectra identification and mPSM
validation using the power of accurate retention time prediction
increased the number of identified PSMs (38373 PSMs
(HeLa)/5463 PSMs (enriched phospho data set)) by up to
129% and considerably outperformed all other methods
(Figure 4, Supplemental Table S3). Compared to the widely
used combination of Mascot and Percolator (17 916 PSMs
(HeLa)/4088 PSMs (enriched phospho data set)), CharmeRT
was able to identify 34−114% more PSMs and 25−62% more
unique peptides. Mascot and Percolator can be additionally
improved by using pParse,36 which enables the detection of
mixed spectra (23 841 PSMs (HeLa)/4488 PSMs (enriched

Figure 5. Comparison of protein expression values. Proteins identified in the second search (red) correspond in a higher proportion to low abundant
proteins compared to proteins already identified in the first search (blue). Overall expression values for HeLa cells (gray) have been taken from
ProteinAtlas.37
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phospho data set)). Still, CharmeRT identified 22−61% more
PSMs than this combination.
Compared to a single search strategy, the CharmeRT

approach was able to identify 52−90% more PSMs and 23−
45% more peptides. In addition, 29−36% of all validated
peptides identified in the first search could be confirmed using
the second search. The efficacy of Elutator was much higher for
matches identified in the second search, as the spectrum quality
for coeluting peptides is lower and therefore the effect of
including auxiliary information used in Elutator is higher: the
increase in PSMs was 17−51% for the first search and 106−
149% for the second search (see Supplemental Table S3 and
Supplemental Figure S8). The overall positive effect of
retention time prediction appeared to be 8−15%. Notably,
the RT prediction model was applied to the externally
measured data sets without any additional training.
Only a minor amount of mixed spectra can be identified

when the second search approach is used on phosphorylated
sample. The validation through Elutator leads to 25%
additionally identified PSMs in this case for the conventional
single search compared to Mascot + Percolator. Chemical
modifications hamper spectrum identification due to an
increased combinatorial search space. However, only a small
number of mixed spectra is expected in this case, as the
enrichment of phosphorylated peptides with, for example,
titanium dioxide (TiO2) reduces the overall complexity of the
sample.
We hypothesized that the additional peptides identified in

the second search correspond to lower abundant proteins,
which typically are difficult to be identified in standard shotgun
workflows.16,17 If this hypothesis could be confirmed, the
dynamic range of mass spectrometry measurements could
effectively be expanded. To validate our assumption, we used
publicly available RNA expression profiles of HeLa proteins.37

High reliable peptides identified in a single raw file (data set D)
with a global peptide level FDR of 1% from first and second
search were used to infer 4696 protein groups (Proteome
Discoverer 1.4, no additional filters).
For 4435 (94%) proteins, nonzero HeLa RNA expressions

were found. The remaining proteins mainly correspond to
contaminant proteins or proteins absent in the RNA expression
database (Supplemental Table S4). Of the expressed proteins,
885 (20%) were identified exclusively in the second search. The
statistical distributions of expression levels of proteins identified
in the first search and second search strongly indicate that
activating second search shifts the sensitivity toward lower
abundant proteins (Figure 5 and Supplemental Figure S9). As
the correlation between protein and RNA abundance is only
about 40%,38,39 we support this finding by additionally
analyzing a publicly available spike in data set40 (see
Supplemental Figure S10).

■ DISCUSSION
We have shown that already in experiments with narrow
isolation widths (2 m/z, 1 h and 3 h gradient) a large number
of chimeric spectra exists (39%), indicating that coeluting
peptides are a common issue in tandem mass spectra
identification. Still, chimeric spectra generally remain uncon-
sidered, as standard peptide identification workflows stick to
the one-peptide-one-spectrum approach. By combining chi-
meric spectra identification and appropriate validation with
retention time prediction, this challenge can be turned into a
major chance. We are able to identify almost up to three-times

as many PSMs as compared to a standard workflow, leading to
an increase of identified unique peptides of up to 63% at 1%
FDR (peptide level). The CharmeRT workflow allows the use
of wider isolation widths, which enable a deeper insight into
measured samples. This indicates a possible expansion suitable
for data-independent measurements (DIA). More importantly,
CharmeRT increases the proteome coverage at unaltered
acquisition time, enabling the identification of low abundant
proteins at no extra cost, except for algorithmic runtime. As
proteins with regulatory functions often occur at low
abundance,41 identifying them is essentially important for
understanding and investigating cell mechanisms. By applying
CharmeRT, we are able to expand the sensitivity range of mass
spectrum analysis.
Availability

CharmeRT is freely available at http://ms.imp.ac.at/?goto=
charmert for Proteome Discoverer 1.4 and 2.2. A version for
Proteome Discoverer 2.3 and a standalone version are currently
in progress and will be available soon. In addition, a tool for
training RT models on user specific in-house columns is
provided.
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repository with the data set identifier PXD007750.
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M.; Yang, J.; Schlögelhofer, P.; Mechtler, K. Quantitative Phospho-
proteomics of the ATM and ATR dependent DNA damage response.
Mol. Cell. Proteomics 2015, 14 (3), M114.040352.
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