organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

4,4'-[4,4'-Sulfonylbis(p-phenyleneoxy)]dibutanoic acid

Chun-Yan Fu,^a* Yong-Hui Liu,^b Zhong-Liu Zhou^c and Hong Tang^a

^aShaoyang Medical College Level Specialty School, Department of Pharmacy, Shaoyang, Hunan 422000, People's Republic of China, ^bRed Cross Hospital at Xinshao County of Hunan Province, Shaoyang, Hunan 422000, People's Republic of China, and ^cChemistry Science and Technology School, Zhanjiang Normal University, Zhanjiang, Guangdong 524048, People's Republic of China Correspondence e-mail: chunyanfu@tom.com

Received 16 March 2011; accepted 30 March 2011

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.003 Å; disorder in main residue; R factor = 0.045; wR factor = 0.139; data-to-parameter ratio = 13.3.

In the title compound, $C_{20}H_{22}O_8S$, the dihedral angle between the two benzene rings is 81.6 (3)°. The benzene-connected portions of the alkoxy substituents are almost coplanar with their respective rings [C-C-O-C torsion angles of 174.77 (17) and -178.5 (4)°]. One of the butanoic acid groups is disordered over two conformations with a site-occupancy ratio 0.719 (6):0.281 (6). In the crystal, pairs of $O-H\cdots O$ hydrogen bonds link the molecules into infinite zigzag chains along [130].

Related literature

For bisphenol S (systematic name 4,4'-sulfonyldiphenol) as a reactant in epoxy reactions and its use in fast-curing epoxy resin glues, see: Askarinejad & Morsali (2006); Danzl *et al.* (2009); Bashiri *et al.* (2009). For its use in the manufacture of pharmaceuticals, adhesives, biocides and agricultural products, see: Howard & David (2002); Howard *et al.* (2005); Yasue *et al.* (2009). For synthesis details and a related structure, see: Zheng *et al.* (2007).

Experimental

Crystal data C₂₀H₂₂O₈S

 $M_r = 422.45$

Monoclinic, C2/c	
a = 30.945 (7) Å	
b = 8.0964 (18) Å	
c = 16.032 (3) Å	
$\beta = 94.711 \ (5)^{\circ}$	
$V = 4003.1 (15) \text{ Å}^3$	

Data collection

Bruker SMART CCD area-detector	12299 measured reflections
diffractometer	4362 independent reflections
Absorption correction: multi-scan	2927 reflections with $I > 2\sigma(I)$
(SADABS; Sheldrick, 1996)	$R_{\rm int} = 0.041$
$T_{\min} = 0.959, \ T_{\max} = 0.975$	

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.045$ 19 restraints $wR(F^2) = 0.139$ H-atom parameters constrainedS = 1.00 $\Delta \rho_{max} = 0.30 \text{ e} \text{ Å}^{-3}$ 4362 reflections $\Delta \rho_{min} = -0.21 \text{ e} \text{ Å}^{-3}$ 327 parameters $\Delta \rho_{min} = -0.21 \text{ e} \text{ Å}^{-3}$

Z = 8

Mo $K\alpha$ radiation

 $0.20 \times 0.18 \times 0.12 \; \rm mm$

 $\mu = 0.21 \text{ mm}^{-1}$

T = 296 K

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$O8B - H8B \cdots O2^{i}$	0.82	2.07	2.890 (11)	180
$O8-H8A\cdots O2^{i}$	0.82	1.77	2.587 (4)	178
$O3-H3\cdots O7B^{ii}$	0.82	1.84	2.623 (13)	159
$O3-H3\cdots O7^{ii}$	0.82	1.85	2.668 (5)	177

Symmetry codes: (i) $x + \frac{1}{2}, y + \frac{3}{2}, z$; (ii) $x - \frac{1}{2}, y - \frac{3}{2}, z$.

Data collection: *SMART* (Bruker, 2007); cell refinement: *SAINT* (Bruker, 2007); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

The authors gratefully acknowledge financial support from the Education Department of Hunan Province (grant No. 10C0294).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PK2315).

References

Askarinejad, A. & Morsali, A. (2006). Inorg. Chem. Commun., 9, 143-146.

- Bashiri, R., Akhbari, K. & Morsali, A. (2009). Inorg. Chim.Acta, 362, 1035– 1041.
- Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Danzl, E., Sei, K., Soda, S., Ike, M. & Fujita, M. (2009). Int. J. Environ. Res. Public Health, 6, 1472–1484.

Howard, M. C. & David, F. L. (2002). Macromolecules, 35, 6875-6882.

Howard, M. C., Zhu, Z. X., Christopher, C. D., Caroline, A. O., David, J. W. & Michael, G. B. D. (2005). *Macromolecules*, 38, 10413–10420.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Yasue, S., Maeda, K. & Uchida, F. (2009). Inorg. Chem. Commun. 12, 336–339. Zheng, Z.-B., Wu, R.-T., Ji, N.-N. & Sun, Y.-F. (2007). Acta Cryst. E63, 03936.

Acta Cryst. (2011). E67, o1048 [doi:10.1107/S1600536811011871]

4,4'-[4,4'-Sulfonylbis(p-phenyleneoxy)]dibutanoic acid

C.-Y. Fu, Y.-H. Liu, Z.-L. Zhou and H. Tang

Comment

Bisphenol S (BPS) is an organic compound with the formula $(C_6H_4OH)_2SO_2$. It has two phenol functional groups on either side of a sulfonyl group. It is commonly used as a reactant in epoxy reactions, and is used in fast-curing epoxy resin glues (Askarinejad & Morsali, 2006; Bashiri *et al.*, 2009; Danzl *et al.*, 2009; Yasue *et al.*, 2009). Bisphenol S is also used in organic synthesis as an organosulfur source in the manufacture of pharmaceuticals, adhesives, biocides and agricultural products (Howard & David, 2002; Howard *et al.*, 2005). In this article, we present the synthesis and crystal structure of a new potential ligand derived from bisphenol S, which contains multiple oxygen donors and flexible aliphatic spacers.

As shown in Figure 1, the benzene-connected portions of the alkoxy substituents lie almost coplanar with the ring [C–C–O–C torsion angle = 174.77 (17) and -178.5 (4)°, respectively]. The two benzene rings make a dihedral angle of 81.6 (3)°. It is noteworthy that one of the butanoic acid groups is disordered over two components with site occupancy ratio 0.719 (6):0.281 (6). In the crystal, O–H···O hydrogen bonds link the molecules into a zigzag 1-D infinite chain that propagates along the [1 3 0] direction. These chains are further interwoven by C–H···O and C–H··· π contacts that stabilize the packing.

Experimental

Reagents and solvents were of commercially available quality. The title complex was synthesized according to the method of Zheng *et al.*, 2007. To a solution of bisphenol S (0.01 mol) in acetonitrile (50 ml), anhydrous potassium carbonate (0.02 mol) and ethyl 4-bromobutanoate (0.01 mol) were mixed. The mixture solution was refluxed for 6 h and filtered. The filtrate was evaporated under reduced pressure and the solid product was dissolved in water/ethanol (1:2 ν/ν), then sodium hydroxide (0.02 mol) was added. The solution was refluxed for another 24 h, then acidified with dilute HCl. The crude product was separated by filtration and crystals of the title compound were prepared by recrystallization from a mixture of water and ethanol (1:1).

Refinement

All H atoms were placed in idealized positions (C—H = 0.93-0.97 Å, O—H = 0.82 Å and refined as riding atoms with $U_{iso}(H) = 1.2U_{eq}(C)$ and with $U_{iso}(H) = 1.5U_{eq}(O)$. One of the butanoic acid groups is disordered over two conformations with site occupancy ratio 0.719 (6):0.281 (6). All distances in the minor component were restrained to within 0.01 Å of their equivalents in the major component.

Figures

Fig. 1. The molecular structure of the title compound, with displacement ellipsoids at the 30% probability level. The disorder in the minor component has been omitted to enhance clarity.

4,4'-[4,4'-Sulfonylbis(p-phenyleneoxy)]dibutanoic acid

Crystal data

 $C_{20}H_{22}O_8S$ $M_r = 422.45$ Monoclinic, C2/c Hall symbol: -C 2yc a = 30.945 (7) Å b = 8.0964 (18) Å c = 16.032 (3) Å $\beta = 94.711 \ (5)^{\circ}$ $V = 4003.1 (15) \text{ Å}^3$ Z = 8

Data collection

Bruker SMART CCD area-detector diffractometer	4362 independent reflections
Radiation source: fine-focus sealed tube	2927 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.041$
ϕ and ω scans	$\theta_{\text{max}} = 27.1^{\circ}, \ \theta_{\text{min}} = 2.6^{\circ}$
Absorption correction: multi-scan (<i>SADABS</i> ; Sheldrick, 1996)	$h = -39 \rightarrow 35$
$T_{\min} = 0.959, T_{\max} = 0.975$	$k = -10 \longrightarrow 8$
12299 measured reflections	$l = -20 \rightarrow 20$

F(000) = 1776

 $\theta = 2.6 - 23.6^{\circ}$

 $\mu = 0.21 \text{ mm}^{-1}$ T = 296 K

Block, colorless

 $0.20\times0.18\times0.12~mm$

 $D_{\rm x} = 1.402 {\rm Mg m}^{-3}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 2472 reflections

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.045$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.139$	H-atom parameters constrained
<i>S</i> = 1.00	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.076P)^{2}]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
4362 reflections	$(\Delta/\sigma)_{\rm max} < 0.001$
327 parameters	$\Delta \rho_{max} = 0.30 \text{ e} \text{ Å}^{-3}$
19 restraints	$\Delta \rho_{min} = -0.21 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds

. .

in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2\sigma(F^2)$ is used only for calculating Rfactors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

	x	У	Z	$U_{\rm iso}^*/U_{\rm eq}$	Occ. (<1)
S1	0.340925 (17)	0.09320 (6)	0.19395 (3)	0.04130 (18)	
01	0.21477 (5)	0.09741 (18)	0.44895 (9)	0.0480 (4)	
02	0.13002 (5)	-0.23795 (19)	0.54170 (11)	0.0623 (5)	
03	0.08084 (6)	-0.0961 (2)	0.46295 (12)	0.0643 (5)	
Н3	0.0708	-0.1887	0.4537	0.096*	
O4	0.31868 (5)	0.1453 (2)	0.11609 (9)	0.0593 (5)	
05	0.36503 (5)	-0.05895 (19)	0.19703 (11)	0.0557 (4)	
C1	0.21744 (7)	-0.0104 (3)	0.52061 (13)	0.0467 (5)	
H1A	0.2459	-0.0025	0.5507	0.056*	
H1B	0.2126	-0.1240	0.5031	0.056*	
C2	0.18298 (7)	0.0436 (3)	0.57577 (14)	0.0512 (6)	
H2A	0.1909	0.1511	0.5990	0.061*	
H2B	0.1826	-0.0333	0.6221	0.061*	
C3	0.13776 (7)	0.0545 (3)	0.53276 (15)	0.0462 (5)	
НЗА	0.1198	0.1173	0.5682	0.055*	
H3B	0.1391	0.1158	0.4811	0.055*	
C4	0.11608 (7)	-0.1071 (3)	0.51281 (13)	0.0425 (5)	
C5	0.24467 (6)	0.0837 (2)	0.39240 (13)	0.0374 (5)	
C6	0.28269 (6)	-0.0081 (2)	0.40364 (13)	0.0404 (5)	
Н6	0.2888	-0.0694	0.4522	0.049*	
C7	0.31147 (6)	-0.0073 (2)	0.34153 (13)	0.0401 (5)	
H7	0.3369	-0.0687	0.3486	0.048*	
C8	0.30262 (6)	0.0842 (2)	0.26918 (12)	0.0354 (4)	
C9	0.26422 (6)	0.1752 (3)	0.25765 (13)	0.0419 (5)	
Н9	0.2581	0.2361	0.2089	0.050*	
C10	0.23556 (7)	0.1743 (3)	0.31866 (13)	0.0431 (5)	
H10	0.2099	0.2342	0.3109	0.052*	
O6	0.45017 (16)	0.6539 (4)	0.3091 (3)	0.0555 (9)	0.719 (6)
O7	0.54917 (16)	1.1033 (5)	0.4276 (4)	0.0632 (11)	0.719 (6)
08	0.59897 (13)	0.9699 (5)	0.5104 (3)	0.0758 (11)	0.719 (6)
H8A	0.6081	1.0636	0.5201	0.114*	0.719 (6)
C11	0.48910 (17)	0.6369 (5)	0.3610 (3)	0.0527 (11)	0.719 (6)
H11A	0.5100	0.5720	0.3332	0.063*	0.719 (6)
H11B	0.4836	0.5824	0.4130	0.063*	0.719 (6)
C12	0.50608 (12)	0.8096 (5)	0.3780 (2)	0.0552 (11)	0.719 (6)
H12A	0.5116	0.8619	0.3255	0.066*	0.719 (6)
H12B	0.4843	0.8742	0.4035	0.066*	0.719 (6)
C13	0.54702 (12)	0.8074 (4)	0.4348 (3)	0.0611 (12)	0.719 (6)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

H13A	0.5415	0.7517	0.4864	0.073*	0.719 (6)
H13B	0.5688	0.7442	0.4084	0.073*	0.719 (6)
C14	0.5647 (2)	0.9760 (8)	0.4554 (5)	0.0500 (13)	0.719 (6)
O6B	0.4601 (3)	0.6099 (11)	0.3342 (8)	0.056 (3)	0.281 (6)
O7B	0.5371 (4)	1.1472 (15)	0.4022 (10)	0.079 (3)	0.281 (6)
O8B	0.5816 (5)	0.9780 (14)	0.4772 (8)	0.077 (5)	0.281 (6)
H8B	0.5954	1.0583	0.4958	0.115*	0.281 (6)
C11B	0.4986 (3)	0.5743 (13)	0.3876 (7)	0.052 (3)	0.281 (6)
H11C	0.5204	0.5281	0.3544	0.063*	0.281 (6)
H11D	0.4919	0.4925	0.4289	0.063*	0.281 (6)
C12B	0.5164 (3)	0.7285 (11)	0.4321 (6)	0.064 (3)	0.281 (6)
H12C	0.4938	0.7772	0.4627	0.076*	0.281 (6)
H12D	0.5400	0.6969	0.4725	0.076*	0.281 (6)
C13B	0.5326 (5)	0.8560 (13)	0.3745 (7)	0.086 (4)	0.281 (6)
H13C	0.5088	0.8878	0.3345	0.103*	0.281 (6)
H13D	0.5548	0.8061	0.3434	0.103*	0.281 (6)
C14B	0.5511 (5)	1.0101 (16)	0.4168 (9)	0.070 (5)	0.281 (6)
C15	0.42950 (8)	0.5072 (3)	0.28884 (15)	0.0543 (6)	
C16	0.39020 (8)	0.5418 (3)	0.24433 (16)	0.0583 (7)	
H16	0.3818	0.6508	0.2345	0.070*	
C17	0.36394 (7)	0.4158 (3)	0.21499 (14)	0.0481 (5)	
H17	0.3376	0.4389	0.1850	0.058*	
C18	0.37640 (6)	0.2527 (2)	0.22985 (12)	0.0373 (4)	
C19	0.41573 (7)	0.2172 (3)	0.27360 (13)	0.0452 (5)	
H19	0.4241	0.1080	0.2831	0.054*	
C20	0.44257 (7)	0.3452 (3)	0.30315 (14)	0.0530 (6)	
H20	0.4691	0.3225	0.3323	0.064*	

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S1	0.0421 (3)	0.0388 (3)	0.0425 (3)	-0.0041 (2)	0.0004 (2)	-0.0036 (2)
01	0.0396 (8)	0.0491 (9)	0.0560 (9)	0.0045 (7)	0.0085 (7)	0.0140 (7)
O2	0.0677 (11)	0.0382 (9)	0.0787 (12)	0.0006 (8)	-0.0076 (9)	0.0096 (8)
O3	0.0564 (10)	0.0474 (10)	0.0850 (12)	-0.0063 (8)	-0.0190 (9)	0.0033 (9)
O4	0.0603 (10)	0.0783 (12)	0.0377 (8)	-0.0082 (9)	-0.0060 (7)	0.0012 (8)
O5	0.0559 (10)	0.0374 (9)	0.0750 (11)	0.0022 (7)	0.0126 (8)	-0.0089 (8)
C1	0.0389 (11)	0.0539 (14)	0.0462 (12)	-0.0021 (10)	-0.0034 (9)	0.0087 (10)
C2	0.0507 (13)	0.0572 (14)	0.0459 (12)	-0.0099 (11)	0.0050 (10)	-0.0076 (11)
C3	0.0445 (12)	0.0394 (12)	0.0558 (13)	-0.0019 (9)	0.0106 (10)	-0.0012 (10)
C4	0.0415 (12)	0.0422 (12)	0.0444 (12)	-0.0025 (10)	0.0066 (9)	-0.0025 (10)
C5	0.0324 (10)	0.0319 (11)	0.0474 (11)	-0.0065 (8)	-0.0010 (9)	0.0031 (9)
C6	0.0397 (11)	0.0354 (11)	0.0447 (11)	-0.0013 (9)	-0.0058 (9)	0.0095 (9)
C7	0.0332 (10)	0.0347 (11)	0.0508 (12)	0.0021 (9)	-0.0057 (9)	0.0044 (9)
C8	0.0331 (10)	0.0315 (10)	0.0405 (10)	-0.0057 (8)	-0.0032 (8)	-0.0007 (8)
C9	0.0394 (11)	0.0386 (11)	0.0457 (12)	-0.0025 (9)	-0.0084 (9)	0.0092 (9)
C10	0.0334 (11)	0.0372 (11)	0.0571 (13)	0.0022 (9)	-0.0050 (9)	0.0101 (10)
O6	0.051 (2)	0.0397 (19)	0.073 (3)	-0.0119 (16)	-0.0064 (15)	0.0036 (16)

O7	0.056 (3)	0.048 (3)	0.081 (3)	-0.006 (2)	-0.0220 (18)	0.000 (2)
O8	0.082 (3)	0.0502 (15)	0.087 (3)	-0.0161 (15)	-0.0477 (19)	0.0065 (18)
C11	0.057 (3)	0.053 (3)	0.049 (3)	-0.012 (2)	0.008 (2)	-0.001 (2)
C12	0.052 (2)	0.053 (2)	0.059 (2)	-0.0150 (18)	-0.0059 (18)	0.0000 (19)
C13	0.061 (3)	0.044 (2)	0.075 (3)	-0.0112 (18)	-0.0126 (19)	0.0000 (19)
C14	0.058 (4)	0.048 (2)	0.042 (4)	-0.011 (3)	-0.009 (3)	-0.004 (3)
O6B	0.054 (6)	0.028 (4)	0.084 (8)	-0.009 (4)	-0.009 (5)	0.004 (4)
O7B	0.069 (8)	0.061 (7)	0.105 (10)	-0.006 (5)	-0.011 (6)	-0.003 (6)
O8B	0.107 (14)	0.047 (5)	0.069 (9)	-0.023 (8)	-0.042 (6)	-0.001 (5)
C11B	0.049 (6)	0.044 (6)	0.061 (7)	-0.022 (5)	-0.013 (5)	-0.001 (5)
C12B	0.048 (6)	0.073 (7)	0.070 (7)	-0.009 (5)	0.005 (5)	-0.007 (6)
C13B	0.100 (11)	0.084 (8)	0.074 (8)	-0.035 (8)	0.015 (8)	-0.011 (7)
C14B	0.079 (10)	0.092 (13)	0.036 (7)	-0.024 (10)	-0.005 (6)	0.002 (8)
C15	0.0582 (14)	0.0433 (14)	0.0644 (15)	-0.0223 (12)	0.0231 (12)	-0.0135 (11)
C16	0.0601 (16)	0.0348 (12)	0.0825 (18)	-0.0020 (11)	0.0216 (14)	0.0016 (12)
C17	0.0453 (12)	0.0410 (12)	0.0583 (14)	0.0002 (10)	0.0056 (11)	0.0098 (10)
C18	0.0347 (10)	0.0362 (11)	0.0413 (11)	-0.0035 (9)	0.0058 (8)	0.0018 (9)
C19	0.0405 (12)	0.0384 (12)	0.0557 (13)	-0.0010 (9)	-0.0008 (10)	0.0024 (10)
C20	0.0394 (12)	0.0610 (15)	0.0581 (14)	-0.0110 (11)	0.0003 (10)	-0.0038 (12)

Geometric parameters (Å, °)

S1—O4	1.4383 (15)	C11—H11A	0.9700
S1—O5	1.4389 (17)	C11—H11B	0.9700
S1—C8	1.761 (2)	C12—C13	1.498 (4)
S1—C18	1.761 (2)	C12—H12A	0.9700
O1—C5	1.352 (2)	C12—H12B	0.9700
O1—C1	1.440 (2)	C13—C14	1.497 (6)
O2—C4	1.221 (3)	С13—Н13А	0.9700
O3—C4	1.301 (3)	С13—Н13В	0.9700
О3—Н3	0.8200	C14—H8B	1.2897
C1—C2	1.505 (3)	O6B—C15	1.416 (7)
C1—H1A	0.9700	O6B—C11B	1.436 (8)
C1—H1B	0.9700	O7B—C14B	1.208 (12)
C2—C3	1.511 (3)	O8B—C14B	1.321 (11)
C2—H2A	0.9700	O8B—H8A	1.2384
C2—H2B	0.9700	O8B—H8B	0.8200
C3—C4	1.493 (3)	C11B—C12B	1.519 (7)
С3—НЗА	0.9700	C11B—H11C	0.9700
С3—Н3В	0.9700	C11B—H11D	0.9700
C5—C6	1.391 (3)	C12B—C13B	1.498 (7)
C5—C10	1.400 (3)	C12B—H12C	0.9700
C6—C7	1.390 (3)	C12B—H12D	0.9700
С6—Н6	0.9300	C13B—C14B	1.510 (8)
С7—С8	1.384 (3)	C13B—H13C	0.9700
С7—Н7	0.9300	C13B—H13D	0.9700
C8—C9	1.398 (3)	C15—C20	1.386 (4)
C9—C10	1.373 (3)	C15—C16	1.387 (4)
С9—Н9	0.9300	C16—C17	1.364 (3)

C10—H10	0.9300	С16—Н16	0.9300
O6—C15	1.375 (4)	C17—C18	1.390 (3)
O6—C11	1.413 (5)	C17—H17	0.9300
O7—C14	1.207 (8)	C18—C19	1.384 (3)
O8—C14	1.323 (7)	C19—C20	1.387 (3)
O8—H8A	0.8199	С19—Н19	0.9300
O8—H8B	0.7586	С20—Н20	0.9300
C11—C12	1.510 (5)		
O4—S1—O5	119.39 (10)	C13—C12—H12B	109.4
O4—S1—C8	107.79 (9)	C11—C12—H12B	109.4
O5—S1—C8	108.49 (10)	H12A—C12—H12B	108.0
O4—S1—C18	108.03 (10)	C14—C13—C12	113.5 (4)
O5—S1—C18	108.01 (10)	C14—C13—H13A	108.9
C8—S1—C18	104.08 (9)	С12—С13—Н13А	108.9
C5—O1—C1	119.19 (15)	C14—C13—H13B	108.9
С4—О3—Н3	109.5	С12—С13—Н13В	108.9
O1—C1—C2	107.20 (18)	H13A—C13—H13B	107.7
O1—C1—H1A	110.3	O7—C14—O8	123.4 (5)
C2—C1—H1A	110.3	O7—C14—C13	124.7 (6)
O1—C1—H1B	110.3	O8—C14—C13	111.8 (6)
C2—C1—H1B	110.3	O7—C14—H8B	89.9
H1A—C1—H1B	108.5	C13—C14—H8B	145.3
C1—C2—C3	115.04 (18)	C15—O6B—C11B	132.5 (7)
C1—C2—H2A	108.5	C14B—O8B—H8A	134.2
С3—С2—Н2А	108.5	C14B—O8B—H8B	115.4
С1—С2—Н2В	108.5	O6B—C11B—C12B	111.5 (8)
С3—С2—Н2В	108.5	O6B-C11B-H11C	109.3
H2A—C2—H2B	107.5	C12B—C11B—H11C	109.3
C4—C3—C2	115.44 (19)	O6B—C11B—H11D	109.3
С4—С3—Н3А	108.4	C12B—C11B—H11D	109.3
С2—С3—НЗА	108.4	H11C-C11B-H11D	108.0
С4—С3—Н3В	108.4	C13B—C12B—C11B	113.9 (8)
С2—С3—Н3В	108.4	C13B—C12B—H12C	108.8
НЗА—СЗ—НЗВ	107.5	C11B—C12B—H12C	108.8
O2—C4—O3	123.0 (2)	C13B—C12B—H12D	108.8
O2—C4—C3	122.7 (2)	C11B—C12B—H12D	108.8
O3—C4—C3	114.26 (19)	H12C—C12B—H12D	107.7
O1—C5—C6	125.11 (18)	C12B—C13B—C14B	115.3 (10)
O1—C5—C10	114.95 (17)	C12B—C13B—H13C	108.5
C6—C5—C10	119.93 (19)	C14B—C13B—H13C	108.5
C7—C6—C5	119.33 (18)	C12B—C13B—H13D	108.5
С7—С6—Н6	120.3	C14B—C13B—H13D	108.5
С5—С6—Н6	120.3	H13C—C13B—H13D	107.5
C8—C7—C6	120.56 (18)	O7B—C14B—O8B	123.1 (12)
С8—С7—Н7	119.7	O7B—C14B—C13B	123.7 (13)
С6—С7—Н7	119.7	O8B—C14B—C13B	112.9 (13)
C7—C8—C9	120.04 (19)	O6—C15—C20	130.9 (3)
C7—C8—S1	119.87 (15)	O6—C15—C16	108.6 (3)
C9—C8—S1	120.02 (15)	C20—C15—C16	120.5 (2)

С10—С9—С8	119.64 (18)	C20—C15—O6B	107.2 (4)
С10—С9—Н9	120.2	C16-C15-O6B	131.9 (5)
С8—С9—Н9	120.2	C17—C16—C15	119.9 (2)
C9—C10—C5	120.49 (19)	С17—С16—Н16	120.0
C9—C10—H10	119.8	C15-C16-H16	120.0
C5-C10-H10	119.8	C16—C17—C18	120.2 (2)
C15—O6—C11	114.4 (3)	С16—С17—Н17	119.9
C14—O8—H8A	109.7	С18—С17—Н17	119.9
C14—O8—H8B	70.7	C19—C18—C17	120.29 (19)
O6—C11—C12	106.4 (4)	C19—C18—S1	120.77 (16)
O6—C11—H11A	110.4	C17—C18—S1	118.93 (16)
C12—C11—H11A	110.4	C18—C19—C20	119.6 (2)
O6—C11—H11B	110.4	C18—C19—H19	120.2
C12—C11—H11B	110.4	С20—С19—Н19	120.2
H11A—C11—H11B	108.6	C15—C20—C19	119.5 (2)
C13—C12—C11	111.3 (4)	C15—C20—H20	120.3
C13—C12—H12A	109.4	С19—С20—Н20	120.3
C11—C12—H12A	109.4		
C5-01-C1-C2	174.77 (17)	O6B—C11B—C12B—C13B	-65.6 (15)
O1—C1—C2—C3	53.5 (3)	C11B—C12B—C13B—C14B	-179.2 (11)
C1—C2—C3—C4	73.3 (3)	C12B—C13B—C14B—O7B	-120.5 (19)
C2—C3—C4—O2	12.6 (3)	C12B—C13B—C14B—O8B	53.2 (19)
C2—C3—C4—O3	-168.2 (2)	C11—O6—C15—C20	-7.8 (7)
C1—O1—C5—C6	-11.3 (3)	C11-O6-C15-C16	174.8 (4)
C1	170.19 (18)	C11	13.3 (16)
O1—C5—C6—C7	-177.81 (18)	C11B—O6B—C15—O6	-164 (3)
C10-C5-C6-C7	0.6 (3)	C11B—O6B—C15—C20	-0.3 (17)
C5—C6—C7—C8	0.2 (3)	C11B—O6B—C15—C16	172.4 (11)
C6—C7—C8—C9	-0.8 (3)	O6—C15—C16—C17	178.3 (3)
C6—C7—C8—S1	176.31 (15)	C20-C15-C16-C17	0.6 (4)
O4—S1—C8—C7	160.76 (16)	O6B-C15-C16-C17	-171.4 (8)
O5—S1—C8—C7	30.16 (18)	C15—C16—C17—C18	0.2 (4)
C18—S1—C8—C7	-84.68 (17)	C16—C17—C18—C19	-0.8 (3)
O4—S1—C8—C9	-22.18 (19)	C16—C17—C18—S1	177.98 (17)
O5—S1—C8—C9	-152.77 (16)	O4—S1—C18—C19	-146.43 (17)
C18—S1—C8—C9	92.39 (17)	O5—S1—C18—C19	-16.0 (2)
C7—C8—C9—C10	0.4 (3)	C8—S1—C18—C19	99.18 (18)
S1—C8—C9—C10	-176.62 (15)	O4—S1—C18—C17	34.8 (2)
C8—C9—C10—C5	0.4 (3)	O5—S1—C18—C17	165.25 (17)
O1—C5—C10—C9	177.64 (18)	C8—S1—C18—C17	-79.57 (19)
C6—C5—C10—C9	-1.0 (3)	C17—C18—C19—C20	0.5 (3)
C15—O6—C11—C12	-178.5 (4)	S1-C18-C19-C20	-178.27 (16)
O6—C11—C12—C13	178.5 (4)	O6—C15—C20—C19	-178.0 (4)
C11—C12—C13—C14	-178.6 (4)	C16—C15—C20—C19	-0.9 (4)
C12—C13—C14—O7	-2.6 (9)	O6B-C15-C20-C19	172.8 (6)
C12—C13—C14—O8	175.4 (5)	C18—C19—C20—C15	0.4 (3)
C15—O6B—C11B—C12B	-171.3 (12)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
O8B—H8B···O2 ⁱ	0.82	2.07	2.890 (11)	180
O8—H8A···O2 ⁱ	0.82	1.77	2.587 (4)	178
O3—H3···O7B ⁱⁱ	0.82	1.84	2.623 (13)	159
O3—H3…O7 ⁱⁱ	0.82	1.85	2.668 (5)	177
Symmetry codes: (i) $x+1/2$, $y+3/2$, z ; (ii) $x-1$	/2, y = 3/2, z.			

sup-8

Fig. 1