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Abstract

Background: Wild Amur tigers are a sparsely populated species, and the conservation of this species is of great
concern worldwide, but as an important health risk factor, parasite infection in them is not fully understanding.

Results: In this study, sixty-two faecal samples were collected to investigate the frequency and infection intensity
of Toxocara cati and Toxascaris leonina in wild Amur tigers. The T. cati and T. leonina eggs were preliminary
identified by microscopy, and confirmed by molecular techniques. Infection intensity was determined by the
modified McMaster technique. Phylogenetic trees demonstrated that T. cati of wild Amur tiger had a closer
relationship with which of other wild felines than that of domestic cats. T. leonina of Amur tiger and other felines
clustered into one clade, showing a closer relationship than canines. The average frequency of T. cati was 77.42%
(48/62), and the frequency in 2016 (100%) were higher than those in 2013 (P = 0.051, < 0.1; 66.6%) and 2014 (P =
0.079, < 0.1; 72.2%). The infection intensity of T. cati ranged from 316.6 n/g to 1084.1 n/g. For T. leonina, only three
samples presented eggs when the saturated sodium chloride floating method was performed, indicating that the
frequency is 4.83% (3/62). Unfortunately, the egg number in faecal smears is lower than the detective limitation, so
the infection intensity of T. leonina is missed.

Conclusions: This study demonstrated that ascarids are broadly prevalent, and T. cati is a dominant parasite species
in the wild Amur tiger population.
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Background
The Amur tiger (Panthera tigris altaica), also named as
Siberian tiger, is a flagship species, which was distributed
across the boarders of north-eastern China, the northern
part of Korean Peninsula, and the southern part of the
Russian Far East [1, 2]. Amur tigers are sanctioned China
I level protected animals and are included in the Conven-
tion on International Trade in Endangered Species of
Wild Fauna and Flora (CITES) Appendix I (https://www.
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cites.org/eng/app/appendices.php) [3]. Fewer than 400
wild Amur tigers remain in Northeastern Asia, where they
are primarily confined to the provinces of Primorye and
Khabarovsk (the Russian Far East region) [4]. There
are less than 20 Amur tigers distributed within the
Changbaishan and Wandashan mountains of Northeast
China [5].
Toxocara cati and Toxascaris leonina are common

gastrointestinal parasites of cats [6, 7], both species may
affect host fitness and even impair host health [8, 9]. In-
fection of Toxascaris is generally with considerably lower
prevalence compared to Toxocara infections in domestic
cats [10]. The prevalence of T. leonina was 5.9 to 30% in
domestic cats [11–13], and the prevalence of T. cati was
7.2 to 83.3% has been showed in earlier studies [14–16].
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However, the situation in captive tiger populations is
contrary to that of the domestic cat, a higher prevalence
of T. leonina than T. cati was reported [17, 18]. Ascarids
infections have been reported in 3 fecal samples from
wild Amur tiger [19]. To increase the knowledge of as-
carid frequency in the wild tiger population, faecal sam-
ples were collected over a 5-year period in Northeast
China and the infection frequency and intensity were
analysed in the present study.

Results
The T. cati and T. leonina were recognized according to
the morphological and molecular characteristics of the eggs
present in wild Amur tiger faecal samples. The sequences
have been deposited in GenBank under the accession num-
bers MK381263 (T. cati) and MK381264 (T. leonina).
The frequency of T. cati ranged from 66.6 to 100% in 5

years, and the average frequency was 77.42% (95% CI:
65.59–86.04%) (Table 1). The frequency in 2016 was higher
than those in 2013 (P = 0.051, < 0.1) and 2014 (P = 0.079, <
0.1) (Table 1). The infection intensity of T. cati fluctuated
over the five-year period from 316.6 n/g to 1084.1 n/g, and
the average intensity was 528 n/g (Table 1).
For T. leonina, only three samples presented eggs

when the saturated sodium chloride floating method was
performed, indicating that the frequency was 4.83% (3/
62). Unfortunately, the egg number in faecal was lower
than the detective limitation, so the infection intensity of
T. leonina was missed.
Within the T. leonina internal transcribed spacer 1

(ITS-1) partial nucleotide sequences of four captive ti-
gers (two Amur, one South China tiger, and one Indo-
chinese tiger) and one wild Amur tiger, there were
insertion and transversion observed in the South China
tiger (Panthera tigris amoyensis) and wild Amur tiger,
respectively (Table 2).
By comparing ML, MP and BI phylogenetic trees, the

results demonstrated that T. cati of wild Amur tiger had
a closer relationship with which of other wild felines
than that of domestic cats. T. leonina of Amur tiger and
other felines clustered into one clade, showing a closer
relationship than canines (Fig. 1).
Table 1 Comparison of the differences in infection intensity and fre

Total number Infection number Average infection int

2012 8 7 510.0 ± 903.7

2013 15 10 380.0 ± 783.7

2014 18 13 394.4 ± 934.2

2015 12 9 1084.1 ± 1578.4

2016 9 9 316.6 ± 378.6

Total 62 48 528.0 ± 1012.0

Note: * P < 0.1; n/g: the number of eggs/gram faeces
Discussion
In the zoo, the Amur had a seriously T. leonina (104 n/g,
61.7%) and T. cati (56.36 n/g, 49.5%) co-prevalence [17].
In the present study, the infection intensity of T. leonina
was lower than the detective limitation (60 n/g) and the
frequency was 4.83%; but the average infection intensity
and the frequency of T. cati were 528 n/g and 77.42%, re-
spectively. This illustrated that T. cati was only the domin-
ant parasite in the wild Amur tiger population and have a
different frequency status comparing with tiger in the zoo.
Parasitic infection causes certain effects on immune sys-
tem [20] and predispose factors for viral infections [21],
and also vice versa; viral infections lowering immunity of
hosts [21] and the target be liable for severe effects of
parasites. As the canine distemper virus has been a risk
factor for the Amur tiger [22], co-infection with ascarid
will aggravated the health threat. Additional, another
situation also needed to be paid an attention. The
Amur tiger, a typical solitary carnivore, have a so big
habit approximately 400–600 km2 [23]; it is hard to
understand how T. cati, a generally monoxenous
nematode, could keep the effective transmission among
Amur tigers in the field as in the zoo except the paratenic
hosts play a role.
Interestingly, wild Amur tiger show a strong preference

for wild boar as diet, which were also the most frequently
consumed prey [24, 25]. Similarly, the wild boar could
take both rodents and earthworm as its diet [26], as well
as the earthworm appeared in the diets of the rodent [27].
Besides, the earthworm could carry T. cati [28, 29], and T.
cati appeared in wild boars and rodents served as potential
paratenic hosts of T. cati, and contributed to persisting in
the environment have been found [30, 31]. If the rodent,
which taken larva of T. cati from earthworm, was preyed
by the wild boar, as well as the wild boar, it taken larva of
T. cati from earthworm or from rodent, was preyed by the
tiger, the tiger will be infected by the T. cati through this
food-chain transmission way (Fig. 2). Then, a hypothesis,
T. cati transmitted in wild tigers with a special route
including paratenic hosts participating was deduced. Actu-
ally, the parasites of wild carnivores take the prey as the
paratenic host to spread have been showed [32–34], and it
quency of T. cati from 2012 to 2016

ensity (n/g) ± SD Frequency* (%) 95% Confidence interval (%)

87.5% abc 52.91–97.76

66.6% c 41.71–84.82

72.2% bc 49.13–87.5

75% abc 46.77–91.11

100% a 70.09–100

77.42% 65.59–86.04



Table 2 Position of insertion or transversion in ITS partial gene sequences of T.leonina in Chinese Tiger and wild Amur Tiger
respectively

Nucleotide
position

Accession Number and Host

JF837175 Amur
tiger

JF837177 Indochinese
tiger

JF837178 South China
tiger

MK381264 Amur
tigera

Unpublished Amur
tiger

24–25 – – C – –

305 G G G A G

Note: a indicated that is wild, others are captured in Zoo
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is a more reasonable transmission way as the carnivore
hosts always have large habits and the oral-faecal trans-
mitting route is impractical in the field. If the speculation
we conducted is certified in the future, it will benefit the
understanding how T. cati spreads in wild big felines
efficiently.
The co-evolution between parasites and hosts has been

shown in different studies [35–37]. Parasites are generally
viewed as having a higher evolutionary potential than their
hosts [37, 38]. This may be especially true when parasites
have shorter generation times, larger population sizes,
higher migration and mutation rates than their hosts [39,
Fig. 1 Phylogenetic analysis based on the ITS partial gene sequences of di
40]. There may be another case between tiger and T. cati,
as indicated by the results of the present study. Phylogen-
etic relations among felid species showed that the diver-
gence time (Ma) of the tiger, Asian golden cat, Asian
leopard cat, and cat lineages (jungle cat and domestic cat)
were 10.78Ma, 9.43Ma, 6.18Ma, and 3.36Ma, respect-
ively [41]. Interestingly, T. cati of the tiger and golden cat
diverged first, followed by the leopard cat, jungle cat, and
domestic cat (Fig. 1), which coincided with the divergence
of these felid hosts. It is supposed that T. cati may have
evolved into different subspecies or strains to orient to fe-
line host divergence.
fferent hosts from Toxascaris and Toxocara. (NP: not performed)



Fig. 2 The speculative life history of the Toxocara cati in wild Amur tiger. A: Tiger host; B: Eggs in the faecals; C: Earthworm; D: Rodents; E: Wild
boar. 1: The eggs of T.cati was discharged into environment with faecal of tiger; 2: The eggs of T.cati in environment was taken by the
earthworm. 3: The earthworm was taken by the wild boar; 4: The earthworm was taken by the rodent; 5: The rodent was taken by the wild boar;
6: The wild boar was preyed by the tiger
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Conclusions
The results of this study demonstrate that T. cati is a dom-
inant parasite species in the wild Amur tiger population.

Methods
Sample collection and parasites separation
In current work, approved by the local government
agents, sixty-two faecal samples of wild Amur tiger
were collected during 2012 to 2016 in northeast China
from the environment (Fig. 3). Most of them were col-
lected in the Hunchun Amur Tiger National Reserve
(HNR), which is a key corridor for movement of Amur
tigers among China, Russia and North Korea [24].
Those samples were collected in winter or spring
when the project of snow-tracking individual tigers
was taken; at that time, the local temperature is abso-
lutely below 0 °C. When samples were brought back to
the laboratory, they were stored frozen at − 80 °C. The
feces samples were confirmed belonging to tigers were
taken by a specific molecular method [2]. The T. cati
and T. leonina eggs were separated with a saturated
solution of sodium chloride as the floating medium
and identified based on the morphological characteris-
tics [19]. After preliminary identification, the identity
of different eggs was confirmed by the polymerase
chain reaction (PCR). Infection intensity was deter-
mined by the modified McMaster technique [42]. The
minimum limit for the infection intensity of T. cati
and T. leonina was 60 n/g.

DNA extraction and PCR amplification
DNA extraction was performed using a QIAmp DNA
Stool Mini Kit (Qiagen Germany) following the manufac-
turer’s instructions. The partial ITS fragment (727 bp) of
T. cati was amplified by PCR using a set of primers, in-
cluding the forward primer FM1: 5′-TTGAGGGGAA
ATGGGTGAC-3′ and reverse primer FM2: 5′-TGCTGG
AGGCCATATCGT-3′ [43]. The partial ITS sequence
(452 bp) of T. leonina was amplified by universal primers:
forward primer S1: 5′-TGCGTTCTTCATCGATCCAC-
3′ and reverse primer S2: 5′-AAAGTCTCCAAACGTG
CAT-3′. PCR reactions were carried out in a final volume
of 25 μl, including 2mM MgCl2, 2.5 mM each dNTP, 10×
Takara buffer, 100 pmol each primer, 1.25 U Takara poly-
merase (Takara), and 1 μL of DNA sample in a thermocy-
cler (BioRad) under the following conditions: initial
denaturation at 94 °C for 5min, 30 cycles at 94 °C for 30 s
(denaturation), 60 °C (T. cati) or 50 °C (T. leonina) for 30 s
for annealing, 68 °C for 1min for extension, followed by a
final extension at 72 °C for 8 min. PCR yielded a single
band detected in a 1% (w/v) agarose gel upon ethidium
bromide staining. PCR products were purified using a
Takara minibest agarose gel DNA extraction kit (Takara,
Japan) according to the manufacturer’s procedure and sent



Fig. 3 Locations of the Amur tiger faecal sampling sites used in this research
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to Comate Biosciences Co., Ltd. (Changchun, China) for
sequencing. For more precision, sequencing of amplicons
was performed in both directions (forward and reverse).

Phylogenetic analysis
The construction of the phylogenetic trees was hypoth-
esized using maximum parsimony (MP), maximum
likelihood (ML), and bayesian inference (BI). MP ana-
lyses were conducted using PAUP* version 4.0b10 [44].
All characters were weighted equally and unordered,
and only potentially phylogenetically informative sites
were retained for tree searching. Analyses used a heur-
istic search with 1000 random stepwise additions
followed by tree bisection reconnection (TBR) branch
swapping. MP bootstrap branch support values were cal-
culated with 1000 pseudoreplicates with ten random-
addition sequences performed in each replication. ML ana-
lysis was carried out by MEGA 6.0 with 1000 bootstrap
replicates for the estimation of branch support. For BI, the
best-fitting models for sequences were HKY +G, which
was selected by using Akaike’s information criterion (AIC)
as implemented in MODELTEST3.7 [45], and the follow-
ing settings were applied: 3 million Markov Chain Monte
Carlo (MCMC) generations, with a sampling frequency of
100. The first one-fourth generations were discarded as
burn-in. The remaining samples were used to generate a
majority-rule consensus tree. The frequency of resolving a
node was termed a Bayesian posterior probability (BPP).
All MCMC runs were repeated twice to confirm a consist-
ent approximation of the posterior parameter distributions.
The partial ITS sequence for Hymenolepis sp. (GenBank:
KU840382) was used as the outgroup.
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Statistical analysis
The old faecal samples collected in the wild environment
did not allow the individual animal identification and it
cannot exclude that some faecal samples belonged to the
same animal. Therefore, this study used the term fre-
quency and not prevalence to describe the proportion of
T. cati infections in the wild Amur tiger population in-
vestigated [46]. The Pnorm function was used to calcu-
late the significant differences in frequency (%), and 95%
confidence interval (CI) was calculated in PropCIs func-
tion in R version 3.5.2.
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