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Abstract

Administration of the microtubule inhibitor docetaxel is a common treatment for 
metastatic castration-resistant prostate cancer (mCRPC) and results in prolonged 
patient overall survival. Usually, after a short period of time chemotherapy resistance 
emerges and there is urgent need to find new therapeutic targets to overcome therapy 
resistance. The lysine-acetyltransferase p300 has been correlated to prostate cancer 
(PCa) progression. Here, we aimed to clarify a possible function of p300 in chemotherapy 
resistance and verify p300 as a target in chemoresistant PCa. Immunohistochemistry 
staining of tissue samples revealed significantly higher p300 protein expression in 
patients who received docetaxel as a neoadjuvant therapy compared to control patients. 
Elevated p300 expression was confirmed by analysis of publicly available patient data, 
where significantly higher p300 mRNA expression was found in tissue of mCRPC tumors 
of docetaxel-treated patients. Consistently, docetaxel-resistant PCa cells showed 
increased p300 protein expression compared to docetaxel-sensitive counterparts. 
Docetaxel treatment of PCa cells for 72 h resulted in elevated p300 expression. shRNA-
mediated p300 knockdown did not alter colony formation efficiency in docetaxel-
sensitive cells, but significantly reduced clonogenic potential of docetaxel-resistant cells. 
Downregulation of p300 in docetaxel-resistant cells also impaired cell migration and 
invasion. Taken together, we showed that p300 is upregulated by docetaxel, and our 
findings suggest that p300 is a possible co-target in treatment of chemoresistant PCa.

Introduction

Although therapy of organ-confined prostate cancer (PCa) 
by radical prostatectomy or radiotherapy is curative, 
treatment of advanced PCa is considered merely palliative. 
Androgen deprivation therapy (ADT) remains the gold 
standard for patients with prostate-specific antigen (PSA) 
progression. However, tumor progression is inevitable and 
leads to the development of castration-resistant prostate 

cancer (CRPC). Treatment options for non-metastatic and 
metastatic CRPC (mCRPC) include inhibitors of androgen 
synthesis and antiandrogens such as enzalutamide and 
apalutamide as well as the chemotherapeutic compound 
docetaxel (Taxotere®).

In 2004, the landmark study TAX327 showed a 
significant survival benefit of 2.4 months for docetaxel 
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treatment compared to mitoxantrone, which was the first 
study to demonstrate a survival benefit for chemotherapy 
in CRPC patients (Tannock et  al. 2004). Docetaxel 
treatment resulted in PSA decline, prolonged overall 
survival (OS), and improved quality of life. Furthermore, 
the STAMPEDE and CHAARTED trials have utilized 
docetaxel together with ADT into first-line treatment for 
hormone sensitive PCa (HSPC) with a survival benefit 
of 13.4 months compared to ADT alone (James et  al. 
2016, Kyriakopoulos et al. 2018). Additionally, docetaxel 
treatment has no negative consequences for subsequent 
endocrine therapies. Both abiraterone acetate and 
enzalutamide are used as effective second-line therapies 
after resistance to docetaxel has evolved (Lavaud et  al. 
2018). Despite development of novel therapies, treatment 
options for mCRPC patients are still limited, and there 
is an urgent need to find new therapeutic targets to 
overcome chemotherapy resistance.

Transcriptional co-regulators of the AR are involved 
in therapy resistance with several of them increasingly 
expressed during ADT (Comuzzi et  al. 2004, Heemers 
et  al. 2007, Qin et  al. 2014). Two of these well-known 
coactivators are the histone acetyltransferases p300 and 
CBP (CREB binding protein) that show elevated expression 
in advanced PCa and have oncogenic potential (Debes et al. 
2003, Comuzzi et al. 2004). While these coactivators show 
high levels of homology, they play distinctive roles in PCa 
and other diseases (Kalkhoven 2004, Ramos et  al. 2010). 
Common features of p300 and CBP include regulation 
of transcription via remodeling chromatin structure by 
acetylating conserved lysine amino acids of histone proteins. 
They are also capable of recruiting the basal transcription 
machinery to gene promoters and acting as adaptor 
molecules (Chan & La Thangue 2001). In a previous study, 
it was demonstrated that p300 might be a valid target in 
PCa cells, as downregulation of p300 induced apoptosis and 
decreased cell migration in androgen-dependent and CRPC 
cells (Santer et  al. 2011). Based on those previous results, 
this study aimed to investigate whether p300 is a possible 
new target in the context of chemotherapy resistance. 
Therefore, we analyzed (1) p300 expression in patients 
that received docetaxel, (2) p300 expression in docetaxel-
resistant (DR) cells compared to docetaxel-sensitive 
counterparts, and (3) the effects of short-term docetaxel 
treatment on p300 expression. To study the functional role 
of p300, an RNA-interference (RNAi) approach was used 
and doxycycline-inducible p300 knockdown cell lines were 
generated. In addition, effects of p300 downregulation on 
colony formation efficiency, cell migration, and invasion in 
docetaxel-resistant cells were determined.

Materials and methods

Cell culture and chemicals

Human PCa cell lines PC3 and DU145 were purchased 
from the American Type Culture Collection (ATCC, LGC 
Standards, Wesel, Germany). Docetaxel-resistant PC3-DR 
and DU145-DR were previously established by Puhr et al. 
(2012). CWR22RV1 and CWR22RV1-DR cells were a kind 
gift of Prof Dr William Watson (University College Dublin). 
All cell lines were cultured in RPMI 1640 (PAN Biotech, 
Aidenbach, Germany) supplemented with 10% (v/v) 
fetal bovine serum (PAN Biotech, Aidenbach, Germany),  
1% (v/v) penicillin/streptomycin, and 1% (v/v) GlutaMAX 
(both from Lonza, Vienna, Austria). Docetaxel-resistant 
cell lines were cultured in the presence of 12.5 nmol/L  
docetaxel (Sigma Aldrich). HEK293FT cells were obtained 
from Life Technologies and grown according to the 
manufacturer’s instructions. The authenticity of all cell 
lines was validated via short tandem repeat (STR) profiling.

Immunohistochemistry (IHC)

For IHC staining, a tissue microarray (TMA) of 14 patients 
that received neoadjuvant docetaxel therapy before radical 
prostatectomy and 14 patients with no chemotherapy 
was used. The use of patient material was approved by the 
Ethics Committee of the Medical University of Innsbruck 
(study No AM 3174 including amendment 2). For 
detailed information about clinical data from patients, 
see publication of Puhr et  al. (2012). IHC staining was 
performed on a Discovery-XT staining device (Ventana) 
and the following specific antibody was used: anti-p300 
(1:100, D8Z4E, Cell Signaling Technology). Antibody 
specificity was verified by Western blot and IHC staining 
of PC3-DR cells with p300 downregulation. For IHC, 
cells were embedded by coagulation in plasma clots after 
harvesting, transferred into a biopsy histosette, fixed in 
formalin, and embedded in paraffin. Importantly, cross 
staining of CBP was excluded by Western blot analysis.

Transcriptome analysis of patient data

The publicly available transcriptome dataset GSE77930 
(Kumar et  al. 2016) was downloaded from the GEO 
database and analyzed with the Qlucore Omics Explorer 
v3.5. Gene set activity scores for the Hallmark ‘Androgen 
response’ and ‘Myc targets’ gene sets (Molecular Signatures 
Database, MSigDB) were calculated in R with the GSVA 
package (Hanzelmann et al. 2013).
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Western blot

Cells were lysed in LDS sample buffer and 50 µg total protein 
was separated either on 3–8% Tris-Acetate gels (Thermo 
Fisher Scientific) for analysis of p300 and CBP expression 
or 4–12% Bis-Tris gels (Expedeon, San Diego, CA, USA) for 
all other proteins and transferred onto methanol-activated 
PVDF membranes or 0.2 µm nitrocellulose membranes 
(GE Healthcare). Blocking of membranes and antibody 
incubation were performed in 5% BSA in TBS-T. The 
following antibodies were used: anti-p300 (1:4000, ab10485, 
Abcam), anti-CBP (1:1000, Cell Signaling Technology), anti-
c-Myc (1:1000, Cell Signaling Technology), anti-Histone H3 
(1:1000, Cell Signaling Technology), anti-Acetyl-Histone H3 
(Lys18, 1:1000, Cell Signaling Technology), anti-Vimentin 
(1:500, Santa Cruz Biotechnology), anti-Vinculin (1:500, 
Santa Cruz Biotechnology), anti-Lamin A (1:2000, Abcam), 
anti-α-tubulin (1:500, Santa Cruz Biotechnology), and anti-
GAPDH (1:50000, Merck Millipore). House-keeping controls 
were selected in a cell line-specific manner on the basis of 
data showing no change in their expression in that cell line.

RNA isolation and quantitative real-time PCR

Total RNA was isolated using the EXTRACTME TOTAL 
RNA KIT (LabConsulting, Vienna, Austria) according 
to the manufacturer’s manual. cDNA synthesis was 
performed with the iScript Select cDNA Synthesis Kit 
(Bio-Rad). For real-time PCR a Luna Script RT Super 
Mix Kit (New England Biolabs, Ipswich, MA, USA) was 
used. HPRT1 (Fwd: GCTTTCCTTGGTCAGGCAGTA, 
Rev: GTCTGGCTTATATCCAACACTTCGT, Probe: 
CAAGGTCGCAAGCTTGCTGGTGAAAAGGA), TATA-Box 
binding protein (TBP; Fwd: CACGAACCACGGCACTGATT, 
Rev: TTTTCTTGCTGCCAGTCTGGAC, Probe: 
TCTTCACTCTTGGCTCCTGTGCACA), and HMBS 
(TaqMan Gene Expression Assay from Thermo Fisher 
Scientific; Hs00609297_m1) were used as reference genes. 
The following Taqman gene expression assays were used: 
p300 (Hs00914223_m1), CBP (Hs00932878_m1), c-Myc 
(Hs00153408_m1), and Vimentin (Hs00185584_m1).

Generation of doxycycline-inducible knockdown 
cell lines

Stable cell lines with inducible p300 knockdown were 
generated by lentiviral-based transduction of shRNA 
vectors using the BLOCK-iT HiPerform Lentiviral Pol-II 
miR RNAi Expression System with emGFP from Invitrogen. 
Briefly, miR Select oligos (Hmi405238: shp300-1;  

Hmi405239: shp300-2) were purchased from Life 
Technologies and ligated into pcDNA 6.2-GW/EmGFP-
miR expression vector according to the manufacturer’s 
protocol. Then the shRNAs were shuttled into the 
pDONR221 vector to generate entry clones. Entry plasmids 
together with a pENTR-tetOn (from pHR-TetCMV-eGFP-
dest ligated into pENTR 5′/CMVp vector) were then used 
in MultiSite Gateway reactions with pLenti6.4/R4R2/
V5-DEST to generate doxycycline-inducible shp300-1 
and shp300-2. To generate cell lines stably expressing 
the doxycycline activator/repressor cassette, HEK293FT 
cells were first co-transfected with the packaging vectors 
pVSV-G and psPAX2 together with pHR-SFFV-rtTAM2-
T2A-Puro using X-tremeGENE reagent (Roche) according 
to the manufacturer’s manual. Supernatants containing 
virus particles were collected 48 h after transfection, 
filtered through a 0.45 µm membrane filter, and used for 
infection of target cells. Cells were selected with 2 µg/mL 
puromycin and subsequently transfected with packaging 
vectors together with the pLenti6.4 expression vector 
as described previously. Selection of infected cells was 
performed using 2 µg/mL blasticidine. For activation of 
the system, 100 ng/mL doxycycline was used. Activation 
status of the system was verified by GFP expression.

Proliferation assay

Cumulative population doubling levels (PDL) were 
determined by continuously seeding a defined number 
of cells in T25 flasks. Cell numbers were determined by 
CASY cell counter (Schärfe System, Reutlingen, Germany) 
every 3–4 days. Cumulative PDL was calculated with the 
following formula: PDL = 3.32 × (log10(X) − log10(Y)) + I, 
where X = number of cells at the end of growth period, 
Y = number of cells at the beginning of growth period, 
and I = initial population doubling level. To compare 
the growth curves, linear fit regression with the test for 
significance of slopes and intercepts was performed in 
GraphPad Prism 8.

High-resolution colony formation assay

Cell numbers were determined using CASY cell counter 
system (Schärfe System). Per 75 cm2 culture flask, 1000 
cells were seeded and incubated for 10–14 days in the 
absence or presence of 100 ng/mL doxycycline. Cells 
were fixed with 100% ice-cold methanol for 5 min 
and stained with crystal violet (0.5% dissolved in PBS 
containing 20% methanol (Sigma)) for 5 min. Colony 
formation efficiency was determined by the software 
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CATCH-colonies (https://catch-colonies.net). To correct 
for differences in the seeding density of the different 
stable shRNA cell lines, the colony formation efficiency 
was normalized to flasks that were seeded at the same 
time but not treated with doxycycline.

Wound scratch assay

Cells were seeded until they were nearly confluent in multi-
well plates and treated with 100 ng/mL doxycycline or 
10 µM CPI-637 (MedChem Express, Monmouth Junction, 
NJ, USA) for 96 h in total. After the first 24 h, 10 µM of the 
proliferation inhibitor cytosine β-D-arabinofuranoside 
was added. After another 24 h, a scratch was made using 
a 10-µL pipette tip. Images were taken after another 48 h  
and analyzed using the MRI Wound Healing Tool of 
ImageJ.

Migration and invasion assay

For migration and invasion assays, Boyden chamber 
inserts with 8 µm pore size (Fluoroblok System, Becton 
Dickinson) were used. 3 × 104 cells per well of PC3-DR 
shCtrl, PC3-DR shp300-1, and PC3-DR shp300-2 were 
seeded in duplicate in serum-free medium. Bottom 
chambers were filled with medium containing 10% FCS 
serving as chemoattractant. For invasion assays, inserts 
were coated with 30 µl of matrigel (diluted 1:3 in serum-
free medium; Corning). Cells were incubated for 48–72 h  
in the absence or presence of 100 ng/mL doxycycline 
or 20 µM CPI-637, respectively. Afterwards, cells were 
stained with 2 µM of calcein AM (Sigma) diluted in HBSS 
containing 1% FCS. Fluorescent images were taken using 
a JuLI smart fluorescent cell analyzer (Science Services, 
Munich, Germany), and extinction/emission at 494/517 
was measured using TECAN plate reader (Tecan Group 
Ltd., Männedorf, Switzerland).

Immunofluorescence

Cells were seeded on glass coverslips in the absence or 
presence of 100 ng/mL doxycycline for 72 h. Cells were 
fixed with 4% paraformaldehyde and permeabilized 
with 1% BSA in PBS containing 0.2% Triton X-100. 
Washing steps were performed with 1% BSA in PBS. Anti-
Vimentin (1:500, Santa Cruz Biotechnology) was used as a 
primary antibody, together with the fluorescence-labeled 
secondary antibody goat anti-mouse 555 (ThermoFisher). 
Coverslips were mounted with Vectashield mounting 
medium containing DAPI.

Viability assays

PC3-DR cells were seeded in multi-well plates and treated 
with a range of CPI-637 concentrations. The solvent DMSO 
served as a control. The viability was measured using 
RealTime-Glo™ MT Cell Viability Assay (Promega) after 72 h 
and the IC50 was calculated using a nonlinear fit model with 
variable slope of log transformed data in GraphPad Prism 8.

Statistical analysis

Statistical analysis was performed using GraphPad Prism 8 
(GraphPad Software Inc.). Gaussian distribution of patient 
samples was determined using Kolmogorov–Smirnov 
test. Comparison of the two groups was performed using 
Student’s t-test and Mann–Whitney U test, depending on 
Gaussian distribution. Comparison of multiple groups 
was performed using one-way ANOVA and correcting for 
multiple testing using Bonferroni multiple comparison 
test. For integration of multiple independent replicates 
from methods that yield relative abundance values 
(qPCR, Western blot), each replicate was normalized 
to its average signal intensity. P-values of <0.05 were 
considered statistically significant and encoded in figure 
legends as follows: *P < 0.05; **P < 0.01; ***P < 0.001; and 
****P < 0.0001. If not stated otherwise, doxycycline-treated 
cells were normalized to non-treated control cells, and 
doxycycline-treated cells are shown in graphs.

Results

p300 expression is increased in docetaxel-
treated patients

To evaluate whether p300 expression is altered upon 
docetaxel treatment, we analyzed tissue material of 
patients who received docetaxel by IHC staining using 
a specific p300 antibody (Supplementary Fig. 1A, B and 
C, see section on supplementary materials given at the 
end of this article). In total, 28 patients were included,  
14 of them received neoadjuvant docetaxel therapy before 
radical prostatectomy (RPE), while the other 14 patients 
did not receive chemotherapy prior to RPE. For detailed 
information about selected patients, please see the work of 
Puhr et al. (2012), where clinical data are fully described. 
We observed a significantly increased p300 expression in 
cancerous areas of docetaxel-treated patients compared to 
control patients (Fig. 1A and B), which was not the case 
in benign areas. Furthermore, p300 staining was observed 
mainly in nuclear areas.
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Elevated p300 expression was further confirmed 
in publicly available datasets of mCRPC tissue samples 
from patients that suffered from relapse after docetaxel 
treatment (Kumar et  al. 2016). Our analysis revealed 
significantly increased p300 levels (1.5-fold) in patients 
treated with docetaxel compared to patients that did not 
receive docetaxel at any time in their treatment course 
(Fig. 1C). To assess if docetaxel-mediated increase is specific 
for p300, we included the analysis of the closely related 
coactivator CBP. Interestingly, CBP expression levels were 
found slightly decreased in docetaxel-treated patients 
compared to non-docetaxel-treated patients (Fig. 1C).  
Furthermore, we analyzed AR expression and activity 
upon docetaxel treatment to evaluate whether the AR has 
any impact on docetaxel-mediated upregulation of p300. 
Of note, AR mRNA expression and androgen response 
were not significantly changed in patients that relapsed 
after docetaxel treatment compared to control patients 
(Supplementary Fig. 2A and B).

Docetaxel-resistant and docetaxel-treated PCa cells 
show increased p300 expression

Next, we compared p300 expression in docetaxel-
resistant (DR) derivatives of commonly employed PCa 
cell lines (PC3-DR, DU145-DR, and CWR22RV1-DR) 

relative to their docetaxel-sensitive counterparts. p300 
protein levels were significantly increased (1.5-fold) in 
all three docetaxel-resistant cell lines tested compared to 
docetaxel-sensitive counterparts (Fig. 2A), whereas mRNA 
levels were unchanged (Supplementary Fig. 3A). Increased 
p300 protein expression in docetaxel-resistant PC3-DR 
and DU145-DR was confirmed by IHC staining (Fig. 2B). 
CBP mRNA and protein expression were not significantly 
regulated in docetaxel-resistant cells compared to 
sensitive counterparts (except downregulated CBP mRNA 
expression in PC3-DR cells, Supplementary Fig. 3B and C).

To understand the molecular basis of these findings, 
we analyzed p300 expression upon short-term docetaxel 
treatment in several PCa cell lines. To this end, we 
measured p300 mRNA and protein expression in PC3, 
DU145, and CWR22RV1 cells after treatment with 
docetaxel for 72 h. Protein expression of p300 significantly 
increased (2–2.5-fold increase) in all three cell lines upon 
docetaxel treatment (Fig. 2C), whereas mRNA levels 
were not significantly changed (Supplementary Fig. 4A). 
Time-course experiments revealed that p300 protein, but 
not mRNA expression, increased within 8 h of docetaxel 
treatment and reached a plateau after 16 h (Supplementary 
Fig. 4B and C). Interestingly, p300 expression in docetaxel-
resistant cells decreased if the cells were cultured without 
docetaxel (Supplementary Fig. 4D and E). To investigate 

Figure 1
Expression of p300 is increased upon docetaxel 
treatment. (A) Quantification of p300 
immunoreactivity scores (IRS) after IHC staining 
(Mann–Whitney U test; scatter dot blot with line at 
mean + s.e.m.). (B) IHC staining of p300 (nuclear 
localization). Upregulation of p300 expression in 
cancerous tissue of docetaxel-treated patients 
compared to control patients. (C) p300 and CBP 
mRNA expression were determined in samples of 
docetaxel-treated and docetaxel-untreated 
mCRPC patients (Mann–Whitney U test; box 
whisker plot with 5–95 percentile).
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whether docetaxel influences the protein degradation 
rate of p300, translation was blocked with cycloheximide 
(CHX). Of note, p300 had a protein half-life time  
of around 6 h in untreated PC3 cells, whereas addition of  
docetaxel (PC3 and PC3-DR) stabilized the protein 
(Supplementary Fig. 4F).

We also analyzed the expression levels of the well-
described p300 downstream target c-Myc, which is a known 
oncogene in PCa (Koh et al. 2010). Our analysis revealed no 
significant change of c-Myc mRNA levels (Supplementary 
Fig. 5A), but a Myc gene expression activity score was 
significantly increased in docetaxel-treated patients 
(Supplementary Fig. 5B). Additionally, docetaxel-resistant 
PC3-DR and DU145-DR showed higher c-Myc protein 
expression compared to docetaxel-sensitive counterparts 
(Supplementary Fig. 5C), and c-Myc protein expression was 
increased (1.5-fold) in DU145 upon treatment with 1 nM 
docetaxel compared to the control (Supplementary Fig. 5D).

Docetaxel-resistant cells show reduced colony 
formation ability upon p300 inhibition

To study a possible mechanistic role of p300 in docetaxel 
resistance, PC3, CWR22RV1, and their docetaxel-resistant 
counterparts were stably transduced with doxycycline-
inducible short hairpin (sh)p300 vectors. We selected these 
cell lines to include both AR-negative (PC3 and PC3-DR) 
as well as AR-positive (CWR22RV1 and CWR22RV1-DR) 
sublines. Doxycycline treatment activated the inducible 
system as indicated by homogeneous expression of 
vector-integrated GFP (Fig. 3A), which led to decreased 
p300 protein expression (Fig. 3B) and activity by 
decreased acetylation of histone h3 on lysine 18  
(Fig. 3C). Of note, p300 knockdown had no biologically 
consistent effect on the proliferation rate of docetaxel-
sensitive or docetaxel–resistant cells over a period of  
20 days (Fig. 3D). The significantly reduced proliferation 

Figure 2
p300 expression is increased in docetaxel-
resistant prostate cancer cells. (A) Comparison of 
p300 protein expression between docetaxel-
sensitive and docetaxel-resistant (DR) PC3 (n = 4), 
DU145 (n = 5), and CWR22RV1 (n = 4). Data 
represent mean + s.e.m. (t-test). (B) IHC staining for 
p300 in docetaxel-resistant PC3-DR, DU145-DR, 
and CWR22RV1-DR compared to docetaxel-
sensitive counterparts. Magnification 40×. (C) PC3 
(n = 5), DU145 (n = 5), and CWR22RV1 (n = 4) were 
treated with the indicated concentrations of 
docetaxel for 72 h, and p300 protein expression 
was analyzed by Western blot, and one 
representative Western blot is shown. Values 
represent mean + s.e.m. (one-way ANOVA).
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rate of PC3-DR shp300-2 was not reproducible with 
the shp300-1 construct and is, thus, likely an artifact 
or off-target effect. To exclude the possibility that CBP 
is upregulated by p300 inhibition, thus compensating 
for the effects of p300 downregulation, we analyzed 
CBP expression upon p300 knockdown. As expected, 
specific downregulation of p300 had no impact on CBP 
expression (Supplementary Fig. 6).

An important characteristic of aggressive 
tumor cells is the ability to form colonies, thereby 
assessing a single cell’s ability to undergo unlimited 
division. In docetaxel-sensitive PC3 and CWR22RV1, 
knockdown of p300 had no significant effect on the 
clonogenic potential (Fig. 4A). However, interestingly, 
p300 inhibition in docetaxel-resistant PC3-DR and 
CWR22RV1-DR significantly reduced colony formation 
efficiency (reduction by 40–50% in PC3-DR and 20–30% 
in CWR22RV1-DR; Fig. 4B).

Cell migration and invasion are impaired upon p300 
downregulation in docetaxel-resistant cells

It has previously been shown that p300 is involved in 
migration and invasion in PCa cells (Santer et al. 2011). 
Therefore, we wanted to test if p300 inhibition might also 
impair cell migration and invasion in docetaxel-resistant 
cells. We employed PC3-DR cells for these experiments 
since the migration ability of CWR22RV1-DR cells is low. 
We first performed wound scratch assays that revealed a 
2.5-fold decrease in the wound healing rate upon p300 
downregulation (Fig. 5A). Consistently, significantly 
decreased cell migration by ~50% was observed in Boyden 
chambers following p300 downregulation (Fig. 5B). 
Moreover, invasion assays, which were conducted on 
matrigel-coated membranes, also showed a significantly 
reduced invasion ability (reduction by 50%) upon p300 
downregulation (Fig. 5C). These findings were confirmed 

Figure 3
Establishment and validation of doxycycline-
inducible p300 knockdown cell lines using a 
non-targeting control (shCtrl) sequence and two 
specific p300-shRNA sequences (shp300-1 and 
shp300-2). Docetaxel-sensitive PC3 and 
docetaxel-resistant PC3-DR are shown here, 
representing all mentioned cell lines. For better 
visualization in the following experiments, only 
doxycycline-treated shCtrl, shp300-1, and 
shp300-2 replicates are shown. Confirmation of 
(A) uniform expression of shRNA-constructs by 
fluorescence microscopy (BF = bright field, 
GFP = green fluorescent protein) and 
magnification 40× and (B) p300 knockdown by 
Western blot analysis after activation of 
shp300-sequences with 100 ng/mL doxycycline 
for 72 h. Values indicated are mean + s.e.m. 
(one-way ANOVA, n = 3). (C) Decreased p300 
activity was confirmed by analysis of histone h3 
acetylation on lysine18 in PC3 and PC3-DR cells. 
One representative Western blot out of three 
independent experiments is shown. (D) 
Cumulative population doubling levels (PDL, n = 1) 
of PC3 and PC3-DR cells over time with 
downregulated p300 were calculated by cell 
number measurement upon each passage (linear 
fit regression and test for significance of slopes 
and intercepts).
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by the use of the dual inhibitor of p300 and CBP CPI-
637. Viability assays were performed to calculate the 
IC50 for PC3-DR cells (Supplementary Fig. 7). It was 
determined that IC50 for CPI-637 is 17.52 µM. PC3-DR 
cells treated with CPI-637 for 72 h revealed a significantly 
decreased migration and invasion ability (reduction by 
50–60%, Fig. 5D, E and F). Vimentin is a cytoskeleton 
component that plays an important role in migration and 
was therefore analyzed in p300-silenced PC3-DR cells by 
immunofluorescence, where we observed a significantly 
decreased vimentin protein expression (by 60–70%,  
Fig. 5G). Reduced vimentin levels were additionally 
confirmed by qRT-PCR and Western blot analysis (Fig. 5H).

Discussion

Although chemotherapy for CRPC patients confers 
a clinical benefit for patients, there is no curative 
treatment available for late stages of PCa. Development 
of chemotherapy resistance occurs rapidly, and it remains 
largely unclear which factors are differentially expressed 
during chemotherapy and might contribute to docetaxel 
insensitivity. Thus, it is important to understand the 
molecular mechanisms and to find new therapeutic 
targets to overcome therapy failure.

As a coactivator of the AR, p300 is involved in many 
biological processes such as differentiation, proliferation, 
and cell cycle regulation (Iyer et al. 2004) and has already 
been associated with tumor progression and poor prognosis 

(Debes et  al. 2003). Furthermore, p300 expression is 
increased upon androgen deprivation (Heemers et  al. 
2007) and plays an essential role in ligand-independent 
transactivation of the AR in androgen-independent PCa 
cells (Debes et al. 2002).

The main finding of this study is that p300 is 
upregulated upon docetaxel treatment in primary PCa and 
mCRPC tissue samples as well as in docetaxel-sensitive and 
docetaxel-resistant PCa cells. IHC staining was performed 
in samples of patients who received neoadjuvant docetaxel 
therapy at the Department of Urology of the Medical 
University of Innsbruck. Of course, these samples do not 
reflect the same clinical stage as docetaxel-resistant cells. 
However, patients who receive chemotherapy for PCa in 
the Authors’ institution are not subjected to removal of 
tumor tissue. Therefore, the samples from individuals who 
received neoadjuvant docetaxel therapy were selected to 
be able to analyze p300 expression in patient material. 
Furthermore, metastatic tissue samples obtained by rapid 
autopsy from a publicly available transcriptome dataset 
including mCRPC patients that received docetaxel in their 
treatment course were analyzed. Increased 300 expression 
was observed in vitro in docetaxel-resistant AR-positive and 
AR-negative cells (PC3-DR and CWR22RV1-DR) compared 
to their respective docetaxel-sensitive counterparts. This 
finding indicates that p300 is upregulated by docetaxel 
regardless of AR expression and is consistent with previous 
publications documenting multiple functions of p300 
in PCa also independently of the AR (Debes et al. 2003, 
Santer et al. 2011). This is also in concordance with the 

Figure 4
p300 inhibition decreases colony formation ability of docetaxel-resistant cells. Representative images and quantification of high-resolution colony 
formation assays of docetaxel-sensitive PC3 and CWR22RV1 (A) and docetaxel-resistant PC3-DR and CWR22RV1-DR (B). Colony numbers were analyzed 
by the software CATCH-colonies. Data represent mean + s.e.m. (one-way ANOVA, n = 3).
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finding that AR expression and activity are not changed 
upon docetaxel treatment; although, in previous studies 
it has been shown that docetaxel impairs transcriptional 

activity of the AR (Zhu et  al. 2010). Other groups  
reported an inhibitory effect of docetaxel on AR 
activity by interfering with AR intracellular trafficking  

Figure 5
p300 downregulation decreases cell migration and invasion. (A) Wound scratch assays were performed on confluent layers of PC3-DR shCtrl, shp300-1, 
and shp300-2 treated with 100 ng/mL doxycycline. Images were taken 48 h after scratch and analyzed by ImageJ (n = 6). (B) PC3-DR were seeded in 
Boyden chambers and shp300 sequences were activated with 100 ng/mL doxycycline for 72 h. Cell migration was measured after staining with calcein 
and visualized by fluorescence microscopy (n = 4). (C) Invasion assays were conducted as in B, except that Boyden chambers were pre-coated with 
Matrigel (n = 3). Values indicated in A–C denote mean + s.e.m. (one-way ANOVA). (D) Wound scratch assays on PC3-DR treated with 10 µM CPI-637. Data 
represent mean + s.e.m. (t-Test, n = 3). (E) Migration (n = 4) and (F) invasion assays (n = 5) of PC3-DR treated with 20 µM CPI-637. Values indicated are 
mean + s.e.m. (t-test). (G) Immunofluorescence staining for vimentin (red) and quantification relative to counterstaining of nuclei (blue). Original 
magnification 630×. (H) mRNA (qPCR) and protein expression (Western blot) of vimentin. Data in G-H represent mean + s.e.m. (one-way ANOVA, n = 5).
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(Martin et al. 2015) and nuclear translocation (Thadani-
Mulero et al. 2014).

Contrary to p300, the closely related coactivator CBP 
was not upregulated upon docetaxel treatment. Thus, we 
conclude that docetaxel-induced upregulation is specific 
for p300. Hatano and colleagues reported a role of c-Myc, 
which is a known downstream target of p300 in docetaxel 
resistance (Hatano et  al. 2013). Concordant with their 
study, we observed an increased expression of c-Myc in 
docetaxel-treated patients; however, the upregulation was 
not statistically significant. Nevertheless, Myc activity was 
significantly increased in patients who received docetaxel. 
Ogiwara and colleagues also reported that p300 ablation 
caused downregulation of Myc expression in CBP-
deficient cells and thereby suppressed cancer cell growth 
(Ogiwara et al. 2016). We assume that p300 upregulation 
by docetaxel is not mediated by c-Myc, but c-Myc is 
affected in consequence as a target gene of p300.

We found that p300 mRNA expression was not 
significantly changed upon docetaxel treatment, which 
indicates that p300 protein increase is not due to increased 
transcriptional activity. p300 protein expression also 
does not increase because of elevated translation, since 
p300 protein expression in docetaxel-resistant cells was 
unchanged upon translation inhibition, which suggests 
that p300 is protected from proteasomal degradation. 
In a previous study, it was found that androgens 
downregulate p300 protein but not mRNA expression 
(Heemers et al. 2007). Those results suggest similarities 
in regulation of p300 by docetaxel and androgens.

It has been previously shown that the competitive 
histone acetyltransferase p300/CBP inhibitor C646 reduced 
colony formation in AML cell lines and primary blasts  
(Gao et al. 2013). While this highlights the capacities of HAT 
inhibitors, there are issues with the potency and selectivity 
of these early inhibitors (Lasko et al. 2017). Meanwhile, more 
effective bromodomain and extra-terminal (BET) inhibitors 
that prevent protein-protein interactions between BET 
proteins and acetylated histones have been developed. The 
BET inhibitors INCB054329 and INCB057643 have been 
shown to be effective as single agents in PCa. Likely, novel 
BET inhibitors will be combined with existing therapies, in 
particular, for therapy-resistant PCa (Vazquez et al. 2019). 
In this study, we initially employed a shRNA approach to 
down-regulate p300 and exclude non-specific effects. We 
confirmed effects of shRNA-mediated p300 downregulation 
on migration ability of docetaxel-resistant cells with the 
bromodomain inhibitor CPI-637 that is specific for p300 
and CBP, where we observed similar results as with genetic 
p300 downregulation.

In contrast to docetaxel-sensitive cells, p300 inhibition 
in docetaxel-resistant PC3-DR and CWR22RV1-DR 
significantly reduced colony formation efficiency. 
Downregulation of p300 had no specific effects on 
proliferation of docetaxel-resistant cells, indicating that 
p300 inhibition indeed impaired the colony-initiating 
capacity and that the reduced colony number is not just 
a secondary effect. It has already been described that 
docetaxel-resistant cells show a stem-cell-like phenotype 
(Puhr et al. 2012, Marin-Aguilera et al. 2014), suggesting 
that p300 inhibition is effective in conditions in which 
pathways connected to colony formation and tumor-
initiation play a central role. A possible explanation as to 
why p300 inhibition shows no effects on colony formation 
of docetaxel-sensitive cells could be the formation of p300-
complexes. It has been described that the cysteine protease 
USP24 stabilizes p300 and thereby increases acetylation of 
histone h3 (Wang et al. 2018). The CtBP1-p300-FOXO 3a 
complex was found to repress apoptotic regulators Bax and 
Bim in osteosarcoma cells (Li et al. 2019). Cell proliferation 
is regulated by p300 in complex with the transcriptional 
repressor YY1 and HDAC2 (Tang et al. 2019). Future studies 
of therapy resistance in PCa should therefore examine and 
quantitate the complexes relevant to p300. In contrast to 
PCa, in some models of breast cancer, p300 is considered a 
tumor inhibitor (Asaduzzaman et al. 2017). However, the 
histone methyltransferase DOT1L in complex with p300 
and c-Myc enhanced cellular stemness (Cho et al. 2015). 
The reasons for obviously contrasting effects of p300 on 
stemness in breast cancer are not yet known.

p300 inhibition significantly decreased cell migration 
and invasion in PC3-DR cells and reduced vimentin 
expression. These findings indicate that p300 is involved 
in cellular pathways that regulate migration and invasion 
in PCa and are in concordance with previous studies, 
where they reported involvement of p300 in migration 
in nasopharyngeal carcinoma and breast cancer cells 
(Fermento et al. 2014, Liao et al. 2017).

Taken together, p300 could be a valid target in 
docetaxel-resistant PCa as it reduces the metastatic 
potential of docetaxel-resistant cells by reducing colony 
formation, migration, and invasion capability. So far, 
multiple factors that contribute to the development of 
docetaxel resistance in PCa have been described (Patterson 
et al. 2006, Deng et al. 2019, Kapur et al. 2019). Therefore, 
docetaxel resistance in PCa is heterogeneous, thus 
suggesting that medical intervention may be based on a 
personalized approach. This issue is particularly relevant 
because p300 inhibitors enter clinical trials in oncology, 
thus pointing to appropriate selection of patients who 
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will benefit from specific p300 targeting in combinations 
with other drugs approved or tested for treatment of PCa.
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