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Abstract

The solvent accessible surface area and the solvent accessible volume are measurements

commonly used in implicit solvent models to include the effect of forces exerted by solvents

on the protein surfaces (or the atoms on protein surfaces). The two measurements have lim-

itations in describing interactions between proteins (or proteins’ atoms) mediated/bridged by

solvents. This is because describing the interactions between proteins should be able to

capture the chain of protein-solvent-protein interactions while the solvent accessible surface

area or the solvent accessible volume can capture only protein-solvent interactions. If we

represent the solvent as a continuous medium, we can consider an atom of a protein can

effectively interact with the solvent within a certain distance from its surface (or its own sol-

vent-interacting sphere). In this case, the protein-solvent-protein interactions can be mea-

sured by the amount of solvent interacting with two proteins’ atoms at the same time (or the

volume shared by the two atoms’ solvent-interacting spheres excluding the volumes occu-

pied by proteins’ atoms). We call the shared volume as the common solvent accessible vol-

ume (CSAV); there has been no method developed to determine the CSAV. In this work, we

propose a new sweep-line-based method that efficiently calculates the common solvent

accessible volume. The performance and accuracy of the proposed sweep-line-based

method are compared with those of the naïve voxel-based method. The proposed method

takes log-linear time to the number of atoms involved in a CSAV calculation and linear time

to the resolution. Our results, tested with 52 protein structures of various sizes, show that

the proposed sweep-line-based method is superior to the voxel-based method in both

computational efficiency and accuracy.

Introduction

Most proteins carry out their functions by interacting with other proteins or ligands, and these

interactions are often mediated by solvents. Therefore, understanding the interactions between

proteins/ligands mediated by solvents is key to accurately understanding the functional mech-

anisms of proteins and to designing drugs. Treating each solvent particle as an individual unit

in simulations of protein-protein/ligand interactions provides a more realistic and accurate

simulation condition, but it is computationally demanding. To reduce the computational cost
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and increase the speed of conformational samplings, often implicit solvent models have been

used, such as the molecular mechanics generalized Born solvent accessible surface area

(MM/GBSA) [1] or the molecular mechanics Poisson-Boltzmann solvent accessible surface

area (MM/PBSA) [2]. Implicit solvent models treat solvents as a continuous medium rather

than explicitly handling individual solvent particles, such as water molecules. In many cases,

implicit solvent models are composed of the solvent accessible surface area (SASA) term and

the continuum electrostatics term [3, 4]. The SASA term has been used to include the linear

relationship between the solvation free energy and SASA [3] and to model the forces exerted

on a protein’s atom by solvents [4]. The solvent accessible volume (SAV) has been used to sub-

stitute for or refine the SASA term, in order to include the influence of solvents on the pro-

tein’s interior [5–7]. The continuum electrostatics term models the protein-solvent

electrostatic interactions, and it is usually described using the Poisson-Boltzmann (PB) or gen-

eralized Born (GB) equations.

However, there are some limitations in describing protein-protein interactions mediated by

solvents using the implicit solvent models that use SASA and/or SAV. If we look at the interac-

tions between proteins mediated by solvents at the atomic level, the interactions can be

described as the cases that solvent particles bridge the gap between proteins’ atoms. The bridg-

ing solvent particles can (i) promote the interaction between hydrophilic residues or (ii) defer

their direct interactions by forming protein-solvent-protein interactions or hydrogen-bond

networks to provide extra time for proteins to rearrange their side chains [8, 9]. The bridging

effect cannot be captured by SASA and SAV because they can measure only protein-solvent

interactions; the bridging effect could be captured by a measurement describing protein-sol-

vent-protein interactions. Note that a protein’s atom can have significantly meaningful inter-

actions with solvent particles within 3.5 Å from the atom’s surface or sphere, which is called

the hydration shell [10]. Consider the solvent as a continuous medium. Let the solvent-inter-

acting sphere of an atom be the spherical range where the solvent can interact with the atom.

The protein-solvent-protein interactions, or the solvent-mediated protein-protein interac-

tions, can be estimated by the amount of solvent interacting with two proteins’ atoms at the

same time (or the magnitude of non-bonded interaction of solvent with them). The amount of

solvent, which is the simpler than the magnitude, is same to the volume shared by the two

atoms’ solvent-interacting spheres excluding the volumes occupied by proteins’ atoms, or the

common solvent accessible volume (CSAV) in short. The CSAV can be a useful term to

improve the accuracy of implicit solvent models, especially in explaining the solvent-mediated

protein-protein/ligand interactions.

Many methods have been developed to determine the protein surface area, the protein vol-

ume, and the solvent accessible volume [11–26]. Those methods are developed by using Voro-

noi diagrams [11–13], polyhedrons [14], the inclusion-exclusion principle [15–17] by finding

the overlapping volume of three spheres [18, 19], the integration of the solvent accessible sur-

face area [20, 21], or the voxels (or cubes) [22–26]. The methods determining the solvent

accessible volume (SAV) have been used for the free energy calculation [12, 16, 17, 20, 27, 28].

However, these methods cannot be used to determine the common solvent accessible volume

(CSAV). More specifically, the existing methods, especially those determining the protein vol-

ume or the solvent accessible volume, are designed to determine the volume of the union of

spheres (representing atoms and solvent-interacting spheres). On the other hand, determining

the CSAV requires both the intersection and exclusion of spheres: the CSAV is defined in

terms of intersecting volume of two spheres (representing solvent-interacting spheres) after

excluding other spheres (representing atoms) within the intersection volume. It is theoretically

possible to determine the CSAV using the inclusion-exclusion principle and the existing meth-

ods determining the union of spheres. However, this approach is impractical because the
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inclusion-exclusion principle with n sets or spheres has 2n − 1 number of terms. In other

words, calculating the CSAV using the existing methods (determining the union of spheres)

may require the union of all different combinations of spheres (2n number of unions) in the

worst-case scenarios.

In this work, we present a new method that efficiently determines the CSAV of two atoms.

We determine the CSAV by numerically integrating the true cross-sectional area of the CSAV.

The true cross-sectional area of the CSAV sliced by a plane is determined by dividing the area

into several patches utilizing the sweep-line algorithm [29] and calculating the patches’ areas

using a closed-form solution. Our results show that the proposed method determines the

CSAV value in O(mn log n), where n is the number of atoms involved in the CSAV calculation

and m is the resolution that controls the trade-off between the computational cost and the

accuracy. We compare the proposed method with a naïve voxel-based method, which is related

to other voxel-based methods [22–26] but is designed to determine the CSAV value. The

results show that the proposed method is superior to the voxel-based method in both compu-

tational efficiency and accuracy.

Methods

In this section, we define the common solvent accessible volume (CSAV) and describe a naïve

voxel-based approach. Then, we introduce the proposed sweep-line-based method that

improves the efficiency and accuracy of the CSAV calculation.

Common Solvent Accessible Volume (CSAV)

We define the solvent accessible volume (SAV) of a protein’s atom as the space where the sol-

vent as a continuous medium can interact with the atom. More specifically, we define the SAV

of an atom a as the volume of a sphere whose radius is ra + d, excluding the space occupied by

any atoms including a, where ra is the radius of the atom a and d is the thickness of the solvent

layer. If the value of d is 3.5 Å, then the SAV is the volume of the hydration shell of the atom

[10]. The common solvent accessible volume (CSAV) is the shared volume of two atoms’

SAVs. The CSAV measures the space where the solvent can mediate the interactions between

the two atoms. Fig 1 illustrates the CSAV of two atoms a1 and a2. In Fig 1(A), two light blue

Fig 1. Illustration of the common solvent accessible volume of two atoms a1 and a2 in (A), and its cross-sectional shape and sweep lines in (B).

https://doi.org/10.1371/journal.pone.0265614.g001
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spheres illustrate the SAVs of a1 and a2, and the dark blue region highlights the CSAV of a1

and a2. Fig 1(B) shows the cross-sectional shape of the CSAV’s environment sliced by the red

plane in (A), where the blue region highlights the cross-sectional area of the CSAV. The orange

horizontal lines represent sweep lines, which will be explained later.

The voxel-based method

Here, we introduce a naïve voxel-based (or cube-based) method that determines the CSAV

value by counting voxels within the CSAV. Algorithm 1 determines the CSAV of two atoms

a1 and a2. The algorithm takes as input the two atoms a1 and a2, the set of atoms {a3, . . ., an} to

exclude from the CSAV of a1 and a2, the thickness d of the solvent layer, and the voxel size δ.

Lines 1–2 determine the coordinate ai and the radius ri of an atom ai for all n atoms, where 1

� i� n. Denote by s1 and s2 the solvent-interacting spheres of atoms a1 and a2 whose centers

are a1 and a2 and whose radii are r1 + d and r2 + d, respectively. Line 3 determines the bound-

ary of the CSAV: the bounding box of the shared regions of s1 and s2. Lines 4–15 count the

number c of voxels in the CSAV, whose size is δ × δ × δ Å3. Lines 8–9 determine if a voxel at

(x, y, z) is in both s1 and s2. Lines 10–11 increase the number c when the voxel is not occupied

by any atoms including a1 and a2. In the algorithm, kvk is the Euclidean norm of a vector v. In

our experiment, before calling the algorithm, we select atoms in {a3, . . ., an} that overlap with

both s1 and s2, to eliminate the unnecessary computational cost and to ensure fair comparisons

with the sweep-line-based method. This voxel-based method can provide an accurate CSAV as

the voxel size δ gets smaller. Denote by m the resolution that is the number of voxels per Å or

m = 1/δ. Note that the number of iterations to update x, y, and z in lines 5–7 is proportional

to m3, and line 10 requires n iterations. Therefore, the computational cost of Algorithm 1 is

O(m3 n). The efficiency and accuracy of this voxel-based method will be compared with those

of the proposed sweep-line-based method in the Results section.

Algorithm 1 Voxel-based Method(a1, a2, {a3, . . ., an}, d, δ)
1: a1, a2, . . ., an  coordinates of a1, a2, . . ., an
2: r1, r2, . . ., rn radii of a1, a2, . . ., an
3: xmin, xmax, ymin, ymax, zmin, zmax CSAV boundary of a1 and a2
4: c  0
5: for x xmin to xmax step δ do
6: for y ymin to ymax step δ do
7: for z zmin to zmax step δ do
8: p  (x, y, z)
9: if ka1 − pk � r1 + d and ka2 − pk � r2 + d then
10: b  81 � i � n, 9i such that kai − pk � ri

11: c 
cþ 1 if b is false;

c otherwise

(

12: end if
13: end for
14: end for
15: end for
16: csav  c � δ3

17: return csav

The sweep-line-based method

In this section, we propose the algorithm that efficiently and accurately determines the CSAV

of two atoms by numerically integrating the true cross-sectional area of the CSAV. Note that

Fig 1 illustrates the CSAV of two atoms a1 and a2. Fig 1(A) shows how the CSAV of a1 and a2

is calculated when 4 atoms a1–a4 are involved in this calculation. Fig 1(B) shows the cross-
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sectional shape of the CSAV sliced by the red plane in (A) from the top view: the shape is com-

posed of two solvent circles (s1 and s2) and four atom circles (a1–a4). In the figure, the blue

cross-sectional area of the CSAV is split into several smaller solvent patches by horizontal

orange lines that are determined utilizing the sweep-line algorithm [29]. The blue cross-sec-

tional area is determined by summing the solvent patches’ areas calculated using a closed-form

solution that will be explained later. By numerically integrating the cross-sectional areas of the

CSAV in Fig 1(A), the proposed method finally determines the CSAV value.

In the following sections, we describe details of the proposed algorithm in five steps. First,

given information for the cross-sectional shape of the CSAV sliced by a plane, we determine

the sweep lines that split the cross-sectional area into solvent patches, such as the orange lines

in Fig 1(B). Second, we determine the solvent patches that belong to the CSAV, which are blue

regions between two orange lines. Third, the areas of solvent patches are calculated using the

closed-form solution. Fourth, we integrate all components to determine the CSAV value.

Finally, we analyze the time complexity of the proposed sweep-line-based method.

Determining the cross-sectional area of the CSAV utilizing the sweep-line algorithm.

In this section, we describe how to determine the sweep lines that divide the cross-sectional

area of the CSAV into solvent patches utilizing the sweep-line algorithm [29]. The sweep-line

algorithm has been developed to efficiently identify all intersection points of n straight line seg-

ments in a plane in O(n log n) time. Note that atoms and solvent-interacting spheres (or sol-

vent spheres in short) in a cross-sectional plane are represented as circles that are composed of

left- and right-half-circle segments. We find intersection points between the curved circle seg-

ments utilizing the sweep-line algorithm. Fig 2 illustrates how the sweep-line algorithm works

with the circle segments. While an (orange) horizontal sweep line slides down from the top

(α0) to the bottom (α3), when the sweep line passes through (red) event points, the algorithm

handles the events to maintain the sorted list of circle segments on the sweep line and to deter-

mine solvent patches for calculating the cross-sectional area of the CSAV. There are three

event types: circle start, circle end, and segment-intersection. In Fig 2(A), A and C represent

two solvent circles that are determined from solvent spheres, and B represents an atom circle

that is determined from an atom. In the figure, Al and Ar (and Bl, Br, Cl and Cr) represent the

left- and right-circle segments of A (and B and C), respectively, and α1, α2 and α3 illustrate the

Fig 2. Illustration of how the sweep-line algorithm handles three different types of event points. (A) A cross-

sectional plane that contains two solvent circles A and C, and one atom circle B. Small hollow (and filled) red circles

represent circle-start and circle-end (and segment-intersection) event points. Three orange horizontal lines represent

the sweep lines at the three different types of event points. Three light blue regions with hatch patterns show three

solvent patches belonging to the cross-sectional area of the CSAV. (B) An illustration showing how the circle segments

(AL, AR, . . ., CR) are stored in a sorted list before (above the orange sweep line) and after (below) handling events.

https://doi.org/10.1371/journal.pone.0265614.g002
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three cases when the sweep line passes the circle-start, the segment-intersection and the circle-

end event points, respectively. Fig 2(B) illustrates how the sorted list of circle segments on the

sweep line is maintained before (above) and after (below) the orange sweep line as the sweep

line passes through the three different types of event points. The red symbols in the list high-

light that the list is modified locally by: (i) adding two circle segments into the list when their

corresponding circle starts in α1, (ii) swapping two circle segments in the list when they inter-

sect in α2, and (iii) removing two circle segments when their corresponding circle ends in α3.

Algorithm 2 describes the procedural steps of determining the cross-sectional area of the

CSAV by iteratively creating/handling event points, maintaining the sorted list of circle seg-

ments, and sliding down the sweep line. The algorithm takes as input the information of two

solvent circles cs1
and cs2

and a set of atom circles fca1
; :::; can

g. In the algorithm, ei is the i-th

event point that the sweep line is currently passing through, T is the sorted list of circle seg-

ments that are on the sweep line, and Q is the event queue containing event points to be han-

dled or below the sweep line. The two data structures T and Q are implemented as a balanced

binary search tree and a priority queue, respectively. The algorithm first initiates the tree T,

adds all circle-start and circle-end event points determined from all circles into the event

queue Q, and sets the initial event point e0 as a point above all event points in Q. In line 7, the

top-most point in Q is assigned to ei, which means that the sweep line slides down and passes

the point ei at the i-th iteration. Lines 8–9 determine solvent patches in between sweep lines

determined by ei−1 and ei and calculate their areas. Determining the solvent patches and calcu-

lating their areas will be described in the next two sections. Lines 10–29 handle the circle-start,

circle-end, and segment-intersection event points by updating T and adding segment-intersec-

tion event points into Q if needed. The function AddSegmentIntersectionEvent(Q, s1, s2)

inserts segment-intersection event points into Q when there are intersections between circles

of the two segments s1 and s2, which will be explained in Algorithm 3. Lines 5–30 repeat the

steps of popping an event point from Q and handling it to maintain the circle segments in T,

until Q becomes empty. In line 17, if the circle of ei is a solvent circle cs1
or cs2

, the algorithm

can return the area value to save computational cost by skipping unnecessary iterations; how-

ever, we continue the algorithm until Q is empty, in order to make a fair comparison with the

voxel-based method in Algorithm 1. In degenerate cases where several event points are on the

same sweep line, we select them in the following order: segment-intersection events, circle-end

events, and circle-start events. Lines 24–28 handle the event point where only two circle seg-

ments intersect. However, when more than two circle segments intersect at the same point,

which occurs only 0.00004% of the time in our experiment, we resolve this degenerate case in

three steps as follows: (1) the circle segments are sorted by the slopes of their tangents at the

point, (2) their locations in T are updated in the sorted order, and (3) the segment-intersection

event points between their subsequent circle segments are added into Q.

Algorithm 2 CrossSectionalAreaOfCSAV ðcs1
; cs2

; fca1
; :::; can

gÞ

1: T an empty binary search tree
2: Q a priority queue that contains all circle-start and

circle-end event points of circles fcs1
; cs2

; ca1
; :::; can

g

3: i  0
4: ei  1
5: while Q is not empty do
6: i  i + 1
7: ei  pop the top-most event point from Q
8: P  SolventPatches(T, ei−1, ei)
9: area  area + PatchArea(P, ei−1, ei)
10: if ei is a circle start event point then
11: sl and sr  left and right segments of circle of ei
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12: T.insert(sl)
13: T.insert(sr)
14: sp and ss  T.predecessor(sl) and T.successor(sr)
15: AddSegmentIntersectionEvent(Q, sp, sl)
16: AddSegmentIntersectionEvent(Q, sr, ss)
17: else if ei is a circle end event then
18: sl and sr  left and right segments of circle of ei
19: sp and ss  T.predecessor(sl) and T.successor(sr)
20: T.delete(sl)
21: T.delete(sr)
22: AddSegmentIntersectionEvent(Q, sp, ss)
23: else if ei is a segment intersection event then
24: sl and sr  left and right segments of ei
25: sp and ss  T.predecessor(sl) and T.successor(sr)
26: T.swap(sl, sr) // interchange locations of sl and sr in T
27: AddSegmentIntersectionEvent(Q, sp, sr)
28: AddSegmentIntersectionEvent(Q, sl, ss)
29: end if
30: end while
31: return area

Algorithm 3 describes the procedural steps of adding segment-intersection event points

into the event queue Q. The algorithm takes as input the event queue Q and two circle seg-

ments sa and sb. It assumes that the circle segment sa is on the left side of the circle segment sb
in the sorted list: sa is the predecessor of sb in T. Lines 1–2 determine circles ca and cb of the cir-

cle segments sa and sb, respectively. In lines 3–5 and 7, the algorithm skips adding segment-

intersection events when (i) ca and cb are the same circle, (i) intersections between the two cir-

cles are already processed, (iii) the two circles intersect at a single point, or (iv) the intersection

happens at the bottom of the circle ca or cb. Lines 8–12 add a new segment-intersection event e
into Q after making sure that s1 is on the left side of s2 above the point p.

Algorithm 3 AddSegmentIntersectionEvent(Q, sa, sb)
1: ca  the circle of segment sa
2: cb  the circle of segment sb
3: if ca 6¼ cbor intersections between ca and cb are not yet processed

then
4: P a set of intersection points between ca and cb.
5: if |P|�2 then
6: for all p 2 P do
7: if (p 6¼ the circle-end point of ca) and (p 6¼ the circle-end

point of cb) then
8: s1  the segment of ca intersecting at p
9: s2  the segment of cb intersecting at p
10: (s1, s2)  (s1, s2) sorted by their tangent slope at p
11: e  a segment-intersection event of (s1, s2) at p
12: Q.add(e)
13: end if
14: end for
15: end if
16: end if

Determining solvent patches between sweep lines. Let us define a patch as a small region

that is surrounded by two adjacent circle segments and two consecutive sweep lines. The func-

tion SolventPatches(T, ei−1, ei) in line 8 of Algorithm 2 determines solvent patches that are

patches on the CSAV and between two sweep lines determined by ei−1 and ei. We can deter-

mine if a patch is a solvent patch by counting the number of solvent circles and atom circles

on it. Fig 3 illustrates the process of determining the solvent patches. Fig 3(A) shows the case
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where there are two blue solvent circles (A and B) and three gray atom circles (D, E and F)

between two sweep lines determined by ei−1 and ei, and nine patches (p1, . . ., p9). Fig 3(B)

shows the regions of solvent circles (two thick blue lines) and atom circles (three thick gray

lines) on the red dashed line in Fig 3(A). Fig 3(C) depicts the values of the patches, each of

which represents the number of solvent circles subtracted by the number of atom circles in the

corresponding patch. In the figure, p6 and p8 are solvent patches: they belong to both solvent

circles but no atom circles, and their values are 2.

Algorithm 4 determines the solvent patches between two consecutive sweep lines. The algo-

rithm takes as input the two event points ei−1 and ei representing the upper and lower sweep

lines, respectively, and the tree T representing the sorted list of circle segments before handling

ei (or after handling ei−1). In the algorithm, P is the set of solvent patches, and sj is the j-th circle

segment in T, and pj and vj are the j-th patch and its value, respectively. Lines 3–12 scan circle

segments in T from left to right. Line 6 determines the value vj of the j-th patch by updating it

from vj−1. Lines 7–11 add the j-th patch pj into the set P when it is a solvent patch.

The function SolventPatches(T, ei−1, ei) in Algorithm 4 takes O(k) time, where k is the num-

ber of nodes in the tree T. However, this time complexity can be reduced as O(1). This is

because the values of patches between sweep lines on ei−1 and ei do not change from those on

ei−2 and ei−1, except the values of patches that are adjacent to the two circle segments of ei−1.

Therefore, SolventPatches(T, ei−1, ei) can take O(1) time by (i) storing the values of patches in

the nodes of T, (ii) locally updating the values, and (iii) re-determining the solvent patches

from those determined by SolventPatches(T, ei−2, ei−1). We skip the details of locally updating

the values of patches and re-determining solvent patches in this paper: the local update is

decided on a case-by-case basis depending on the type of event point ei−1 and the locations of

ei−1’s circle segments in T.

Algorithm 4 SolventPatches(T, ei−1, ei)
1: P  ;
2: v0  0
3: n  the number of segments in T
4: for j  1 to n − 1 do
5: sj  the j-th element of T

6: vj  
vj� 1 þ 1 if sj is a left solvent circle segment or a right atom circle segment

vj� 1 � 1 if sj is a right solvent circle segment or a left atom circle segment

(

7: if vj = 2 then
8: sj+1  the (j + 1)-th element of T
9: pj  a solvent patch determined by (sj, sj+1, ei−1, ei)

Fig 3. Illustration of procedure for finding solvent patches.

https://doi.org/10.1371/journal.pone.0265614.g003
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10: P  P [ pj
11: end if
12: end for
13: return P

Calculating areas of solvent patches. The function PatchArea(P, ei−1, ei) in line 9 of Algo-

rithm 2 determines the total area of solvent patches determined by Algorithm 4. Note that

each solvent patch is surrounded by two circle segments and two upper and lower sweep lines.

Here, we derive the closed-form solution that calculates the area of a solvent patch.

Let (0, 0) and r be the center of a circle and its radius, respectively. The area f(r, y0, y1) of its

right semicircle surrounded by the y-axis and two horizontal lines y = y0 and y = y1 can be cal-

culated as follows:

f ðr; y0; y1Þ ¼

Z y1

y0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � y2

p
dy ¼ gðr; y1Þ � gðr; y0Þ ; ð1Þ

where −r� y0 < y1� r and

gðr; yÞ ¼
Z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � y2

p
dy ¼

1

2
y
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � y2

p
þ r2arctan

y
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � y2

p

 ! !

: ð2Þ

In the above equation, we select π/2 and −π/2 for arctanðy=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � y2

p
Þ when y� r and

y� −r, respectively. Using Eq (1), the area of a solvent patch surrounded by two circle seg-

ments and two upper- and lower-sweep lines can be calculated algebraically.

Fig 4 shows four different scenarios where a solvent patch (gray) is surrounded by two circle

segments on its left- (red) and right-sides (blue). Let l and r be the circle segments on the left-

and right-sides of a solvent patch, respectively, and y0 and y1 be the lower and upper bounds

of the solvent patch (or two consecutive sweep lines y = y0 and y = y1), respectively. Denote by

(lx, ly) and lr the center of the circle segment l and its radius, respectively. In a similar manner,

denote by (rx, ry) and rr those of the circle segment r. The area A(l, r, y0, y1) of each gray patch

in Fig 4 is calculated using the following formula:

Aðl; r; y0; y1Þ ¼ ðy1 � y0Þðrx � lxÞ � hðlÞ � f ðlr; y0 � ly; y1 � lyÞ
þhðrÞ � f ðrr; y0 � ry; y1 � ryÞ ;

ð3Þ

where h(s) is a sign function that returns −1 and +1 if s is the left- and right-circle segments of

a circle centering at (sx, sy), respectively.

Algorithm 5 calculates the total area of solvent patches. The algorithm takes as input the set

P of solvent patches and two event points ei−1 and ei. Lines 3–4 determine the upper y0 and

Fig 4. Four scenarios in which a gray solvent patch is surrounded by two circle segments and two sweep lines.

https://doi.org/10.1371/journal.pone.0265614.g004
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lower y1 bounds of solvent patches from ei−1 and ei, respectively, and the circle segments on

left-side l and right-side r of the solvent patch p. Line 5 determines the area of a solvent patch

p 2 P using Eq (3) and adds its value to the total area.

Algorithm 5 PatchArea(P, ei−1, ei)
1: area  0
2: for all p 2 P do
3: l and r  circle segments on left- and right-side of p
4: y0 and y1  y-axes of ei−1 and ei
5: area  area + A(l, r, y0, y1)
6: end for
7: return area

Determining the common solvent accessible volume (CSAV). We integrate all the

above algorithms to determine the common solvent accessible volume (CSAV) of two atoms.

As illustrated in Fig 1, the CSAV of two atoms is determined by using the cross-sectional area

of the CSAV sliced by a plane. To this end, we gradually slide down a cross-sectional plane that

is parallel to the xy-plane. While sliding down the plane, we determine (i) atom circles and sol-

vent circles to build the cross-sectional shape, (ii) the cross-sectional area of the CSAV from

the circles, and (iii) the CSAV by numerically integrating the areas. Algorithm 6 determines

the CSAV of two atoms using the numerical integration efficiently. The algorithm takes as

input the two atoms a1 and a2, the set of atoms {a3, . . ., an} to exclude from the CSAV of a1

and a2, the thickness d of the solvent layer, and the gap δ between cross-sectional planes. The

algorithm first determines the solvent spheres s1 and s2 from the atoms a1 and a2 by increasing

their radii by d, respectively, and the maximum (top) and minimum (bottom) z-coordinates of

their shared solvent region of s1 and s2 in lines 1–2. Lines 6–19 slide down the cross-sectional

plane z = w from top to bottom. Lines 8–11 determine the set A of atoms that intersect with

the cross-sectional plane. Lines 12–14 determine two solvent circles cs1
and cs2

and a set C of

atom circles. The two solvent circles are formed by the intersections of solvent spheres and the

cross-sectional plane, and each atom circle in C is formed by the intersections of an atom in A
and the cross-sectional plane. To avoid unnecessary computations in Algorithm 2, line 15

neglects atom circles in C if they do not overlap with both cs1
and cs2

and if they are fully

enclosed by other atom circles. Lines 16–18 determine the cross-sectional area of the CSAV

using Algorithm 2, accumulate its corresponding volume determined using the numerical

integration into the total volume, and slide down the cross-sectional plane by δ. The source

code that determine the CSAV using sweep-line algorithm is made publicly available in S1 File

and at https://github.com/htna/CSAV.

Algorithm 6 CalculateCSAV(a1, a2, {a3, . . ., an}, d, δ)
1: s1 and s2  cloned spheres of a1 and a2 with increasing their radii

by d
2: wmax and wmin  max and min z-coordinates of shared region of s1 and
s2
3: W  a list of max and min z-coordinates of atoms {a1, . . ., an}
4: A  ;
5: csav  0
6: while w  wmax
7: while w � wmin do
8: while w � max(W) do
9: top  pop max(W) value from W

10: A 
A [ fag if top is the max z� coordinate of an atom a

A fag if top is the min z� coordinate of an atom a

(

11: end while
12: cs1

 a circle intersecting a sphere s1 and a plane z = w
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13: cs2
 a circle intersecting a sphere s2 and a plane z = w

14: C  {caj ca is a circle intersecting a sphere a 2 A and a plane z
= w}

15: C  {cajca 2 C overlaps with both cs1
and cs2

, ∄c0 2 C s.t. c0 fully
encloses ca}

16: area  CrossSectionalAreaOfCSAV ðcs1
; cs2

;CÞ
17: csav  csav + area � δ
18: w  w − δ
19: end while
20: return csav

Running time analysis. Here, we provide the time complexity of Algorithm 6. Note that

each atom can overlap with a limited number of other atoms because of the van der Waals

force that prevents the collapse of any two atoms unless they are connected by bonds. This

indicates that each atom circle representing the atom in the cross-sectional plane intersects

with a constant (or limited) number of other atom circles on average. Assume that there are n
atoms involved in the CSAV calculation, and the gap between cross-sectional planes is δ Å.

For simplicity in the running time analysis, without loss of generality, assume that all atoms

have the same radii and are uniformly distributed into a cube whose top face is parallel to the

cross-sectional planes. Since each cross-sectional plane intersects O(n2/3) atoms, there are O
(n2/3) circles in the plane and O(n1/3) circles in a sweep line. Recall that the tree T in Algorithm

2 represents the list of circle segments on the sweep line, and the tree T is updated by handling

circle-start, circle-end, and segment-intersection events. In the algorithm, updating the tree T
by each event takes O(log n1/3) time. Determining the solvent patches between two subsequent

sweep lines in Algorithm 4 and determining their areas in Algorithm 5 take a constant time.

This is because we update the values of patches and select the solvent patches locally only at

the event point in Algorithms 4 and 5, respectively, and also because there are only 0–2 solvent

patches between sweep lines in most cases (or 0.77 solvent patches on average) in Algorithm 5,

which will be discussed in the Results section again. Since a circle intersects with a constant

number of other circles on average in the cross-sectional plane, there are O(n2/3) event points,

and the algorithm takes O(n2/3(log n1/3 + 1)) = O(n2/3log n) time to determine the cross-sec-

tional area of the CSAV. Finally, determining the CSAV using Algorithm 6 takes O(n2/3 log n �
n1/3/δ) = O(mn log n) time, where m is the resolution whose value is 1/δ. The resolution m con-

trols the trade-off between the computational cost and the accuracy. Our results in the Results

section show that the average running time of the proposed sweep-line-based method agrees

with our time complexity analysis.

If we assume that all atoms have the same radii and are uniformly distributed in 3D space,

the number n of atoms involved in the CSAV calculation should be proportional to the cube of

the thickness d of the solvent layer. However, our results show that n is about proportional to

the square of d: n/ d1.9. This is probably because the shared region of the two solvent spheres

has a torus- or disk-like shape after excluding the two atoms’ regions and because the CSAV

calculation only involves atoms overlapping with the torus- or disk-like shape. As a result, the

average running time of the proposed sweep-line-based method can be written, using the

thickness d of solvent layer, as O(md2 log d).

Note that the running time of the proposed sweep-line-based method increases linearly

with the resolution m. In contrast to the sweep-line-based method, the running time of the

naïve voxel-based method in Algorithm 1 increases cubically with the resolution m, that is O
(m3 n) or O(m3 d2) where the voxel size is δ = 1/m. We will further discuss the running times

of the sweep-line-based and the voxel-based methods in the Results section.
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Results

In this section, we evaluate the accuracy and efficiency of the proposed sweep-line-based

method described in Algorithms 2–6 by comparing them to those of the naïve voxel-based

method in Algorithm 1. In our work, the whole computation is performed using Intel(R) Xeon

(R) CPU, whose clock speed is 2.20 GHz.

Dataset preparation

We used 52 structures of proteins with 22–481 residues to test the two methods. To decide the

52 protein structures, we initially selected the 100 protein structures listed in the dataset used

by Georgiev et al. [26]. The dataset includes proteins whose sequences are not redundant with

a BLAST p-value cutoff of 10−7, which are selected arbitrarily using the VAST server. We addi-

tionally included two protein structures into the initial selection: Ubiquitin (pdb-id: 1UBQ)

and Trp-cage (pdb-id: 3UC7, one of the smallest proteins). Given a protein structure among

the 102 structures, we first updated the protein structure by adding missing atoms, such as

hydrogens, and by removing water and ligand molecules using the Tinker program [30]. If the

Tinker program fails to add missing atoms into the structure, we discarded it from our dataset.

Finally, the 52 protein structures are selected and used to evaluate the accuracy and efficiency

of the sweep-line-based and voxel-based methods. Table 1 shows the final list of the 52 protein

structures used in this study. In the table, the first column shows pdb-ids and chain identifiers

of the protein structures, and the second and third columns show the sizes of proteins in terms

of the number of residues and atoms, including hydrogens, respectively.

We performed the following steps to decide the list of atom pairs to determine their com-

mon solvent accessible volumes (CSAVs) and to compare the accuracy and efficiency of the

proposed sweep-line-based and voxel-based methods. First, note that two atoms do not have

Table 1. List of proteins used in this study.

pdb-id resia atomb pdb-id resi atom pdb-id resi atom

3UC7A 22 283 1AG4A 103 1577 3KLOA 217 3561

1A11A 25 390 2NLLB 103 1709 4FAYA 227 3208

1S9KE 52 901 3DJ9A 107 1677 2OQ1A 251 3980

1ZLMA 58 930 2ETZA 108 1760 1ZHNA 270 4254

2ADRA 60 998 2CSHA 110 1696 4FYYA 310 4848

1DEMA 60 1003 2QHLC 111 1782 2A3VB 320 5353

1G2BA 62 966 2APFA 112 1688 1M2RA 327 5455

2TRCG 68 1132 2C4FU 116 1856 1A2OA 347 5299

2J7ZA 68 1148 1DX5I 118 1634 1EFYA 350 5591

1UBQA 76 1232 1NA0A 119 1853 4DNUA 366 5385

2ED0A 78 1152 3UBUB 125 2021 1MUWA 386 5168

1CL7I 82 1215 1YPQB 135 2106 1V6SA 390 5971

2YUQA 85 1349 1IT2A 146 2415 1AF6A 421 6426

2K0XA 86 1277 2DBAA 148 2189 1HQSA 422 6280

2JXBA 86 1446 1914A 171 2825 3KQNA 437 6536

1GVPA 87 1385 2GF5A 191 3036 1R64A 481 7255

1P47A 87 1461 2BNUA 203 3063

1R1PB 100 1647 1PN9A 209 3274

aThe number of residues;
bThe number of atoms including hydrogens.

https://doi.org/10.1371/journal.pone.0265614.t001
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CSAV when they are apart or when they are located inside of proteins, assuming there is no

cavity in the protein structures. Given a structure updated by adding missing atoms including

hydrogens, we selected pairs of atoms satisfying the following conditions: (i) the distance

between two atoms’ centers is smaller than 5 Å, and (ii) the distance between the surface of

each atom and the surface of the atom’s protein is smaller than 3 Å. The van der Waals radius

of each atom in the Chemistry at Harvard Macromolecular Mechanics (CHARMM) force field

[31] is used as the radius of the atom. The protein surface is determined by rolling a ball whose

probe radius is 1.4 Å using the method developed by Rashin et al [22]. We finally selected

around 2.3 millions of atom pairs to determine their CSAVs from the 52 protein structures.

The sweep-line-based and voxel-based methods can determine the CSAVs between atoms in

different proteins, but we used the two methods to determine the CSAVs between atoms in

one protein. This is because we are focusing on evaluating the accuracy and efficiency of the

two methods in this experiments.

To evaluate the accuracy and efficiency of the two methods in different conditions of

CSAVs, we used 16 different solvent layer thicknesses ranging 0.5–8.0 Å, which are the dis-

tances between the surface of an atom and solvent particles. Additionally, we used 19 different

values for δ ranging 0.01–1 Å, which represent the gaps between cross-sectional planes or the

voxel sizes. The gap or the voxel size δ is same to the inverse of resolution m, which will be dis-

cussed later: δ = 1/m.

Statistics of atoms, circles, circle segments, and solvent patches in a CSAV

calculation

Determining CSAVs is a complicated task since they have complex geometries. We collected

statistics that show this complexity, including the number of atoms involved in CSAV calcula-

tions, the number of circles in a cross-sectional plane, and the number of circle segments in a

sweep line. The statistics are collected from the 52 protein structures with a 3.5 Å thickness of

the solvent layer and a 0.1 Å gap between cross-sectional planes. Note that the statistics are

dependent on the thickness of the solvent layer, while the shape of their overall distribution

will be similar to those of our results.

Fig 5 shows the probability distributions of the number of atoms, circles, intersections,

and circle segments involved in a CSAV calculation. In the figure, each (red or blue) solid

line represents the probability averaged over 52 proteins’ probabilities, and each (pink or

light blue) band represents the range between the 5th and 95th percentiles of the 52 probabil-

ities. Fig 5(A) shows the probability distribution of the number of atoms involved in a CSAV

calculation. The probability is calculated as follows. For a given protein, the number of

atoms involved in each CSAV calculation is collected, and its normalized histogram is deter-

mined. After collecting all 52 normalized histograms of the proteins, their average and the

range between the 5th and 95th percentiles are plotted as a red line and a pink band in the

figure, respectively. The figure shows that a CSAV calculation involves around 61 atoms on

average and around 140 atoms in the worst case. Fig 5(B)–5(D) are determined in a similar

manner to Fig 5(A).

Fig 5(B) shows the probability distribution of the number of circles in a cross-sectional

plane. The figure shows that a cross-sectional plane has around 17 circles on average and

about 40 in the worst case. The sharp peak of the probability at 2 circles in the figure indicates

that many cross-sectional planes contain only 2 solvent circles. The shared area between 2 sol-

vent circles can be easily calculated algebraically; however, we did not use the algebraic solu-

tion in our experiments to make a fair comparison between the sweep-line-based method and

the voxel-based method regarding both computational cost and accuracy. The figure shows
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higher probabilities with 3–16 circles than those with 18–31 circles, which are mainly caused

by neglecting unnecessary circles in line 15 in Algorithm 6.

Fig 5(C) shows the probability distribution of the intersections between circles (red) and

those between circle segments (blue) in a cross-sectional plane. It shows that the pink and light

blue bands are very narrow, and there is an average of 6.9 intersections between circles and an

average of 6.9 intersections between circle segments in a cross-sectional plane. This indicates

that a circle (and a circle segment) overlaps with around 7 other circles (and circle segments)

on average, independent of the protein size. From Fig 5(B) and 5(C), we can estimate the aver-

age number of event points in a cross-sectional plane. Our detailed inspection shows that there

are 149 event points in a cross-sectional plane on average and around 270 event points in the

99th percentile, which agrees with our estimation.

Fig 5(D) shows the probability distribution of the number of circle segments on a sweep

line. In the figure, the red line represents the probability of the number of circle segments on a

sweep line while it slides down from top to bottom in a cross-sectional plane, and the pink

Fig 5. The statistics of the number of atoms, circles, circle segments, and intersections. The probability distribution averaged over the 52 proteins of (A) the number

of atoms in a CSAV calculation, (B) the number of circles in a cross-sectional plane, (C) the number of intersections between circles (and circle segments) in a cross-

sectional plane in red (and blue), and (D) the number (and the maximum number) of circle segments in a sweep line in red (and blue). The pink and light blue bands

represent the range between the 5th and 95th percentiles of the red and blue probabilities determined from the 52 proteins, respectively.

https://doi.org/10.1371/journal.pone.0265614.g005
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band represents the range between the 5th and 95th percentiles. In a similar manner, the blue

line and the light blue band represent the probability of the maximum number of circle seg-

ments that a sweep line can have in a cross-sectional plane. The figure shows that the sweep

line interacts with an average of 18.4 circle segments and a maximum of 56 circle segments in

all CSAVs computations, which corresponds to the average and maximum number of nodes

in the tree T in Algorithm 2.

Table 2 shows that, in most cases, there are only 0–2 solvent patches on the sweep line in

most cases even though the average tree size is 18 and the maximum tree size is 56. In our

implementation of Algorithm 4, we keep the values of patches in their corresponding tree

nodes, update only values of patches involved with the event point that is being handled, and

keep the solvent patches in a separate list to avoid re-determining them when updating the val-

ues of patches. This enables determining the solvent patches in a sweep line and calculating

their areas in O(1) time in Algorithm 4 and Algorithm 5, respectively, rather than taking O(k)

time, where k is the number of circle segments in a sweep line.

Fig 5 shows the case in which the CSAV calculation involves an average of 60 atoms and its

cross-sectional plane contains 17 circles, 18 nodes in a binary search tree, and 149 event points

on average. Table 2 shows that there are usually 0–2 solvent patches on a sweep line. Fig 6

shows the snapshot of a cross-sectional shape that includes 21 circles. In the figure, 2 blue cir-

cles are solvent circles, 19 black circles are atom circles, and the light blue region is the cross-

sectional area of the common solvent accessible volume of two atoms.

Table 2. The probability of the number of solvent patches in a sweep line.

The number of solvent patches in a sweep line 0 1 2 3

Probability 0.41 0.43 0.14 0.02

https://doi.org/10.1371/journal.pone.0265614.t002

Fig 6. A snapshot of a cross-sectional shape that includes 21 circles.

https://doi.org/10.1371/journal.pone.0265614.g006
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Factors of CSAV computations

The accuracy and computational cost of calculating CSAV depend on several factors. The fac-

tors include the number of atoms involved in a CSAV calculation, the thickness of the solvent

layer, and the gap between cross-sectional planes (or the resolution).

The number of atoms involved in a CSAV calculation. Fig 7 shows the relationship

between the CSAV computation time and the number of atoms involved in the calculation.

The figure is determined from all CSAV data collected from the 52 proteins with a 3.5 Å thick-

ness of the solvent layer and a 0.1 Å gap between cross-sectional planes (or the resolution of 10

Å–1). In the figure, the value of each pixel represents the probability of determining CSAVs

whose computations involve x number of atoms and require y milliseconds. The gray dashed

line shows the least-square fit of the log-linear function to the probability distribution:

y = 0.063x log x. Note that the coefficient, such as 0.063, is subject to change depending on the

computing environments, such as the CPU type and the number of tasks running on the com-

puter. Even though it seems that the CSAV computation time increases almost linearly with

the number of atoms involved in the figure, our detailed inspection shows that there is a log-

linear relationship. This also agrees with our time complexity analysis in the Methods section.

The thickness of the solvent layer and the CSAV computation time. Fig 8 shows the

relationship between the thickness of the solvent layer, the number of atoms involved in the

CSAV calculation, and the computational costs of the sweep-line-based method and the voxel-

based method. Fig 8(A) shows the relationships between the thickness, the number of atoms,

and the computation time of the proposed sweep-line-based method in milliseconds. The fig-

ure is determined from 1UBQ with a 0.1 Å gap between cross-sectional planes and the 16 dif-

ferent solvent layer thicknesses ranging 0.5–8.0 Å: 0.5, 1.0, 1.5, . . ., 8.0 Å. In the figure, each

black point represents the average number of atoms in CSAV calculations in the y-axis when

the solvent layer is x Å thick. In a similar manner, each red point represents their average

Fig 7. The probability of calculating a CSAV in y time when x number of atoms are involved in the calculation.

The dashed line is the least-square fit of the log-linear function to the probability.

https://doi.org/10.1371/journal.pone.0265614.g007
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computation time in milliseconds. The inset shows the same results in a different view: each

blue point represents the solvent layer whose value is given above the point, where its x and y
values represent the average CSAV computation time in milliseconds and the average number

of atoms involved in the calculations, respectively. The gray dashed curve represents the least-

square fit of a1 þ a2xa3 to black points. In a similar manner, the pink dashed curve represents

that of bk log k where k ¼ a1 þ a2xa3 to red points, and the light blue dashed curve represents

that of cx log x to blue points.

Fig 8(B) compares the CSAV computation time of the sweep-line-based method and that of

the voxel-based method when the thickness of the solvent layer increases. The figure is deter-

mined from 1ZLM with the 16 different solvent layer thicknesses ranging 0.5–8.0 Å and a 0.1

Å gap between cross-sectional planes (red) and a voxel size of 0.1 Å (blue). In the figure, red

points represent the average CSAV computation time determined using the sweep-line-based

method in milliseconds in the y-axis when the solvent layer is x Å thick. In a similar manner,

blue points are determined using the voxel-based method when the voxel size is x × x × x Å3.

The light blue dashed curve represents the least-square fit of a1xa2 to blue points. The pink

dashed curve represents the least-square fit of bk log k to red points, where k approximates the

average number of atoms when the solvent layer is x Å thick; this curve is determined in the

same way the pink dashed curve in Fig 8(A) is determined.

Fig 8 shows many interesting points. First, regarding the proposed sweep-line-based

method, the number of atoms involved in the CSAV calculation increases near quadratically to

the thickness of the solvent layer. The least-square fits of k = 8.55 + 5.31x1.86 in Fig 8(A) and

k = 10.03 + 4.93x1.88 in Fig 8(B) are independently determined from 1UBQ and 1ZLM, respec-

tively, which approximates the number of atoms k from the thickness of the solvent layer x.

The two least square fits approximate to the similar function k(x) = a + bx1.9, which is close to

the square of x rather than the cubic of x. This is probably because the shared region of the two

solvent spheres after excluding the two atoms’ regions has torus- or disk-like shapes, as dis-

cussed in the Methods section.

Second, the proposed algorithm takes log-linear time to the number of atoms involved in a

CSAV calculation as discussed in our time complexity analysis in the Methods section. Note

that the least-square fits of the log-linear function in Figs 7, 8(A) and 8(B) are all determined

independently and from different data setups. Note that all points are well aligned to their own

Fig 8. The relationship between the thickness of the solvent layer and the computational cost of sweep-line-based and voxel-based methods. (A) The relationship

between the thickness of the solvent layer, the number of atoms involved in the CSAV calculation, and the CSAV computation time of the sweep-line-based method. (B)

The comparison of the computation time of the sweep-line-based method and that of the voxel-based method when the thickness of the solvent layer increases.

https://doi.org/10.1371/journal.pone.0265614.g008
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log-linear functions. The three least-square fits have similar coefficients because all experi-

ments are performed in the same workstation. This clearly shows that the proposed algorithm

takes O(n log n) time, where n is the number of atoms involved in a CSAV calculation.

Last, the time complexity of the proposed sweep-line-based method is superior to that of

the voxel-based method. In Fig 8(B), the running time y of the voxel-based method approxi-

mated using the least-square fit shows y/ d4.62, where d is the thickness of the solvent layer. It

is similar to our expectation of its time complexity O(d3 n), where n is the number of atoms

involved in the CSAV computation. In detail, the expected time complexity O(d3 n) approxi-

mates to O(n4.88). This is because the total number of iterations in the for-loops in lines 5–7 of

Algorithm 1 is proportional to d3 and it has shown that n/ d1.88 from the least square fit of

k = 10.03 + 4.93x1.88. This clearly indicates that the proposed sweep-line-based method has the

time complexity of O(n log n) and thus is more efficient than that of the voxel-based method.

Accuracy of and computational cost increase by resolution changes. Fig 9 compares the

accuracy (or error) and the computational cost of the sweep-line-based method with those of

the voxel-based method when the resolution increases (or the gap between cross-sectional

planes and the size of voxels decrease). The results are determined from 3UC7 with a 3.5 Å
thickness of the solvent layer and 18 different values ranging 0.02–1.0 Å for the gaps between

cross-sectional planes or the voxel sizes: 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.1, 0.2, 0.3,

0.4, 0.5, 0.6, 0.7, 0.8, 0.9, and 1 Å. Fig 9(A) shows the decrease in error (or the increase in accu-

racy) of the CSAV as the resolution increases (or the gap between cross-sectional planes and

the voxel size decrease). The error was measured using the root mean square error (RMSE)

between the best approximation of a CSAV and the CSAV value determined using the sweep-

line-based method (red) and the voxel-based method (blue). Since the true CSAV of two

atoms cannot be determined because of the complex geometries of CSAVs, we estimate the

true volume as follows. First, given two atoms, the lower (and upper) bound of their CSAV is

determined by counting 0.02 × 0.02 × 0.02 Å3 voxels that are fully (and at least partially)

enclosed in the CSAV, using the modified version of Algorithm 1. Then, we consider the aver-

age value of the lower and the upper bounds as the estimation of the true CSAV v of the two

atoms. The error e of the CSAV v̂ determined using the sweep-line-based method (red) or the

Fig 9. The comparison of (A) the root mean square error and (B) the computational cost in different resolutions determined using the sweep-line-based method

(red) and the voxel-based method (blue).

https://doi.org/10.1371/journal.pone.0265614.g009
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voxel-based method (blue) is defined as the difference with the true CSAV v: e ¼ v � v̂. In the

figure, each red point represents the root mean square error (RMSE) of the CSAV in the y-axis

determined using the sweep-line-based method when the gap between cross-sectional planes

is x Å; the red vertical bar connected to the point represents the range between RMSE and the

95th percentile of the absolute error |e|. In a similar manner, each blue point and its corre-

sponding blue vertical bar are determined using the voxel-based method. Two gray dashed

horizontal lines show the range of error values where the CSAV v̂ determined using the

sweep-line-based or voxel-based methods is converged enough to the estimation of the true

CSAV v. The figure shows that the CSAVs determined using the sweep-line-based method are

more accurate than those using the voxel-based method. However, it is difficult to compare

the accuracy in the figure when the gap between cross-sectional planes or the voxel size in the

x-axis is smaller than 1/10 Å (or the resolution is larger than 10 Å–1). This is primarily because

the true CSAV value is approximated using the 0.02 × 0.02 × 0.02 Å3 voxels. The true accuracy

between the two methods will be discussed again with Fig 10.

Fig 9(B) shows the increase in computation time as the resolution increases (or the gap

between cross-sectional planes or the voxel size decreases). The figure is determined in a simi-

lar manner to Fig 9(A) except that the y-value of each point represents the averaged CSAV

computation time. The pink (and light blue) dashed curve shows the least-square fit of axb to

red (and blue) points. Each dashed curve shows the growing rate of the CSAV computation

time as a function of the resolution m; the resolution is the inverse of the gap δ between cross-

sectional planes or the inverse of the voxel size δ: m = 1/δ. The figure shows that the time com-

plexity of the sweep-line-based method is O(m) and that of the voxel-based method is O(m3).

This agrees with our time complexity analysis in the Methods section.

Fig 10 shows the decrease in true error (or the increase in accuracy) of the CSAV deter-

mined using the sweep-line-based and voxel-based methods as the resolution increases. Unlike

Fig 9(A) where the true CSAVs are approximated using the smallest practical voxels, Fig 10 is

Fig 10. The comparison of the error distributions determined using the sweep-line-based method (red) and the

voxel-based method (blue) by determining CSAVs of random systems in various gaps between cross-sectional

planes or the voxel sizes.

https://doi.org/10.1371/journal.pone.0265614.g010
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determined using a closed-form solution that calculates the true CSAVs of simple random sys-

tems. To evaluate the accuracy of the two methods, we first generate a system that is composed

of two random atoms with 3.5 Å thick solvent layers: each atom is at a random location, and

its radius is randomly selected from the set {1.2 Å, 1.7 Å, 1.55 Å, 1.52 Å, 1.8 Å} whose element

represents hydrogen, carbon, nitrogen, oxygen, or sulfur. The true CSAV value v of the ran-

dom system is determined using the inclusion-exclusion principle and the closed-form solu-

tion calculating the intersection volume of two spheres. The random system is regenerated if v
is smaller than 5 Å3. Given the random system, we determine the CSAV values v̂ using the

sweep-line-based method with a gap δ between cross-sectional planes (and using the voxel-

based method with a voxel size of δ × δ × δ Å3 or simply δ). We use 19 different δ values rang-

ing 0.01–1.0 Å for the gaps (and the voxel sizes). This process is repeated 30,000 times. From

those, the statistics of error e ¼ v � v̂ are determined, including the root mean square error

(RMSE) and the median, 5th, 25th, 75th, and 95th percentiles of the absolute error |e|. Fig 10

shows the error distributions determined from the random systems using the sweep-line-

based method (red) and the voxel-based method (blue). Similar to Fig 9(A), the red and blue

points and their corresponding vertical bars represent the RMSEs and the 95th percentiles of

the absolute errors |e| determined using the sweep-line-based method with the gap of x
between cross-sectional planes and the voxel-based method with the voxel size of x, respec-

tively. The figure shows the RMSE range of [10−2, 10] only in the y-axis to make the compari-

son with Fig 9(A) easy. The inset shows the same results in a different view: the red (and blue)

curve, the light red (and light blue) shaded region, and the red (and blue) vertical bars repre-

sent the median, the range of the 25th–75th percentiles, and the range of the 5th–95th percen-

tiles of |e| determined using the sweep-line-based method (and the voxel-based method),

respectively.

The plot shows that the sweep-line-based method is more accurate than the voxel-based

method in all ranges of the gap or the voxel size δ in the x-axis. Recall that Fig 9(A) cannot

clearly distinguish the accuracies of the two methods when δ< 1/10. This is primarily because

the true CSAV value in Fig 9(A) is approximated using the 0.02 × 0.02 × 0.02 Å3 voxels. In Fig

10, the true CSAV is not approximated but directly calculated using the inclusion-exclusion

principle and the closed-form solution. This enables to clearly compare the accuracies of the

two methods even when δ is small. Note that the accuracies or error distributions of the two

methods in Fig 9(A) are similar to those in Fig 10 when δ 2 [1, 2/10]. This indirectly shows

that if the true CSAVs in Fig 9(A) can be determined, the figure will show that the sweep-line-

based method is clearly more accurate than the voxel-based method, like the inset in Fig 10.

Our detailed inspection of Fig 10 shows that the sweep-line-based method is around 100-times

more accurate than the voxel-based method in terms of the median of the absolute error.

Figs 9 and 10 shows that the proposed sweep-line-based method is superior to the voxel-

based method in terms of both accuracy and computational efficiency. The resolution or the

gap between cross-sectional planes controls the trade-off between the computational cost and

the accuracy. The economical value of the gap between cross-sectional planes is 0.1 Å in our

close inspection.

Conclusion and discussion

In this work, we propose the sweep-line-based method that efficiently determines the common

solvent accessible volume (CSAV). We define CSAV as the shared volume of two atoms’ sol-

vent accessible (or interacting) regions excluding the volume occupied by atoms. The pro-

posed method determines the CSAV by numerically integrating its cross-sectional area. In

order to efficiently determine the area, the method divides the area into a list of disjoint solvent
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patches utilizing the sweep-line algorithm [29] and calculates the area of solvent patches using

the proposed closed-form solution. Our results show that the proposed method finds the

CSAV of two atoms in log-linear time O(n log n), where n is the number of atoms involved in

the CSAV calculation. The resolution m is the model parameter that is the inverse of the gap

between cross-sectional planes, which controls the trade-off between accuracy and computa-

tional cost. Our results show that the resolution of 10 Å–1 (or the gap of 0.1 Å) is an economical

choice which balances good accuracy with low computational cost. Considering both n and m,

the proposed sweep-line-based method finds the CSAV in O(mn log n) time. Our experiment

shows that the number n of atoms involved in the CSAV calculation is near proportional to

the square of the solvent layer thickness d: n/ d2. This is probably because the shared region

of the two solvent spheres has torus- or disk-like shapes after excluding their corresponding

atoms’ regions. The accuracy and the computational efficiency of the proposed sweep-line-

based method are compared to those of the naïve voxel-based method. Our results show that

the sweep-line-based method outperforms the voxel-based method in both accuracy and

computational efficiency.

The proposed method can be a useful tool to measure the solvents’ mediation of protein-

protein interactions. Proteins interact with other proteins mediated by solvents before they

have direct contract, and often the hydrogen-bond networks in solvents play an important role

in mediating the interactions between proteins [8, 9] At the atomic level, these solvent-medi-

ated protein-protein interactions can be described as the springs (or spring tensors) added

between two proteins’ atoms by solvents or the spring networks in solvents located between

the two atoms. More specifically, the potential energy surface of solvated proteins can be

approximated using the second-order Taylor expansion. Assume that solvent particles s influ-

ence the interaction between two atoms a and b of proteins. The spring (or spring tensor)

between atoms a and b influenced by solvent particles s can be determined from the second-

order term of the Taylor expansion, as follows: [32]

δ>a H
0

abδb ¼ δ>a ðHab � HasH
� 1

ss HsbÞδb ; ð4Þ

where δa and δb are the location changes of a and b, respectively, Hab, Has, and Hsb indicate

the springs (or spring tensors) between a and b, between a and s, and between s and b, respec-

tively, and H� 1

ss determines the dynamics of the solvent particles s. In the above, if the second

summand HasH
� 1

ss Hsb can be determined correctly with considering all possible and realistic

solvent particle locations, we can consider the summand as an ideal implicit solvent model,

which is infeasible to determine. Here, the proposed method determining the CSAV can help

predict the summand. Consider a and b effectively interact with solvent particles in their own

solvent spheres. We can approximate the ideal implicit solvent model HasH
� 1

ss Hsb using the fol-

lowing integration:

Z

Vða;bÞ
Hauf ðuÞHub du ; ð5Þ

where f(u) predicts the dynamics of a solvent particle at location u, and Vða; bÞ is the region of

the CSAV of two atoms a and b. The above integration can be solved utilizing the proposed

method by replacing Eqs (1)–(3): the CSAV considers Hau f(u)Hub = 1. In other words, the

proposed method determining the CSAV can be utilized to measure how much the solvent at

u can mediate the spring interaction between a and b through its dynamics f(u).

There are many methods designed to measure the solvent accessible surface/volume of a

protein [11–26], which are often used in implicit solvent models to describe the forces exerted

on atoms on the protein surface by the solvent [1–7]. However, the existing methods have
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limitations in solving the above integration problem in Eq (5). First, it is impractical to use the

existing methods to determine the interval Vða; bÞ, representing the region of the CSAV.

Determining the solvent accessible volume or the protein volume of an entire protein can be

solved by finding the union of spheres representing solvent spheres and atoms, while deter-

mining the CSAV requires both intersection and exclusion of spheres representing solvent

spheres and atoms. Determining the CSAV is theoretically possible using the inclusion-exclu-

sion principle and the existing methods solving the union, but this may require an impracti-

cally large amount of computations in the worst-case scenarios. Second, the existing methods

cannot apply the indefinite integral
R

Hau f(u)Hub du without appropriate modifications on

the methods.

The proteins are surrounded by two groups of solvents: the hydration shell and bulk sol-

vent. The hydration shell is about 3.5 Å thick layer of solvent molecules next to the surface of

proteins [10]. The low-frequency global motions of proteins assist their conformational

changes, and therefore they are related to the functions of the proteins. Our previous study

shows that the protein structures, the hydration shell, and bulk solvent has about 50%, 35%,

and 15% contributions to the low-frequency motions, respectively [32]. This implies that we

may need to use a solvent layer whose thickness is greater than 3.5 Å, such as 8 Å, to include

the contributions by the hydration shells and the bulk solvents and thus to achieve better accu-

racy when evaluating the interaction between proteins bridged or mediated by solvents. The

proposed sweep-line-based method can be extended to efficiently measure the volumes of sol-

vent layers with different thicknesses by simply adding multiple solvent spheres, which is the

additional advantage of the proposed sweep-line-based method.

Supporting information

S1 File. The program source code implementing the sweep-line-based method that deter-

mines the common solvent accessible volume of two atoms.
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