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Abstract

Diabetic kidney disease (DKD) is characterized by progressive glomerulosclerosis (GS).

ROP mice have a sclerosis-prone phenotype. However, they develop severe, rapidly pro-

gressive GS when rendered diabetic. Since GS also develops in aged C57Bl6 mice, and

can be reversed using bone marrow from young mice which have lower oxidative stress and

inflammation (OS/Infl), we postulated that this might also apply to DKD. Therefore, this pilot

study asked whether reducing OS/Infl in young adult sclerosis-prone (ROP) diabetic mice

leads to resolution of existing GS in early DKD using safe, FDA-approved drugs.After 4

weeks of stable streptozotocin-induced hyperglycemia 8–12 week-old female mice were

randomized and treated for 22 weeks as follows: 1) enalapril (EN) (n = 8); 2) pyridoxamine

(PYR)+EN (n = 8); 3) pentosan polysulfate (PPS)+EN (n = 7) and 4) PPS+PYR+EN (n = 7).

Controls were untreated (non-DB, n = 7) and hyperglycemic (DB, n = 8) littermates. PPS

+PYR+EN reduced albuminuria and reversed GS in DB. Treatment effects: 1) Anti-OS/Infl

defenses: a) PPS+PYR+EN increased the levels of SIRT1, Nrf2, estrogen receptor α (ERα)

and advanced glycation endproduct-receptor1 (AGER1) levels; and b) PYR+EN increased

ERα and AGER1 levels. 2) Pro-OS/Infl factors: a) PPS+PYR+EN reduced sTNFR1, b) all

except EN reduced MCP1, c) RAGE was reduced by all treatments. In summary, PYR+PPS

+EN modulated GS in sclerosis-prone hyperglycemic mice. PYR+PPS+EN also decreased
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albuminuria, OS/Infl and the sclerosis-prone phenotype. Thus, reducing OS/Infl may

reverse GS in early diabetes in patients, and albuminuria may allow early detection of the

sclerosis-prone phenotype.

Introduction

While the pathogenesis and causes of glomerulosclerosis (GS) are unclear, it has been thought

to be inevitably progressive. Diabetic nephropathy (DKD), the most common form of GS in

adults, is restricted to a subset of diabetic patients (~20–40%) suggesting a role for a sclerosis-

prone genetic background, similar to that described in animal models [1–3]. Factors in addi-

tion to hyperglycemia [4] and genetic susceptibility [5] that may influence the development of

DKD include gender, age and dietary intake [6–8].

The first successful attempt to identify components of the sclerosis-prone phenotype was a

comparison of young adult ROP Os+ (sclerosis-prone) and C57 Os/+ (sclerosis-resistant)

mice by transcriptomes [6]. This study “highlighted the roles for oxidative stress” and “pro-

vided evidence for activation of the pro-fibrotic and pro-inflammatory transforming growth

factor β1 (TGFβ1) signal” in the genetic susceptibility to GS. These data complemented other

data suggesting that the pathogenesis of DKD includes both environmental [9–11] and genetic

factors [5, 12] in which inflammation and oxidative stress (OS/Infl) may play pivotal roles [6,

13–17].

The modern human diet and most pelleted experimental animal food contain a ubiquitous

group of environmental factors, including glycation endproducts (AGEs), which are strong

inducers of OS/Infl and are a risk factor for DKD and chronic kidney disease (CKD) [7, 8, 10,

11, 16, 17]. We found that GS develops as OS/Infl increases in normal aging, and that GS can

be reduced by controlling the oral intake of agents that increase OS/Infl, such as AGEs [18].

Additionally, GS can be reduced by the transplantation of bone marrow from young mice,

which have intact OS/Infl defenses, into old mice, which have lowered OS/Infl defenses [19,

20]. In addition GS is induced in young mice after administration of bone marrow from old

mice.

These studies support a role for OS/Infl in the development as well as the regression of GS

independently of hyperglycemia. However, the effect of OS/Infl on the sclerosis-prone pheno-

type and to gender has not been further tested.

A search for drugs that control OS/Infl revealed that pentosan polysulfate (PPS) blocks cer-

tain cell surface pro-inflammatory receptors, such as tumor necrosis factor- α (TNF-α). In

addition, pyridoxamine (PYR) blocks intracellular pro-OS/Infl factors, such as methylglyoxal

(a very reactive AGE) [21, 22]. Recently, we found that PYR treatment of anestrus (21 months-

old) female C57Bl6 mice resulted in increased renal expression of anti-oxidant defenses such

as estrogen receptor α (ERα), Sirtuin 1 (SIRT1) and AGER1 (a receptor for AGEs), while

decreasing TGFβ1 in aged mice [23]. We postulated that the combination of enalapril (EN),

PPS and PYR might provide protection against the development of GS in hyperglycemic scle-

rosis-prone mice. In this pilot study we chose young hyperglycemic adult, female ROP Os/

+ mice at an age at which they were known to developed, progressive GS and albuminuria, but

not renal failure [2, 24].

Our aim was to determine if reducing OS/Infl modulated established GS and modified scle-

rosis-prone phenotype using combinations of FDA-approved generic drugs (PPS, PYR and

EN).

Pharmacologic control of oxidative stress and inflammation in diabetic glomerulosclerosis
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Materials and methods

Experimental design

Female ROP Os/+mice were obtained from Jackson Laboratories (Bar Harbor, ME, USA). The

protocol was approved by the Icahn School of Medicine at Mount Sinai Institutional Animal

Care and Use Committee (Protocol # 080328). Animals were housed in groups of two to four

in plastic cages with corncob bedding, maintained on a 12-hour light:dark cycle, and provided

with standard laboratory animal chow and water ad lib. Stable hyperglycemia (DB) was in-

duced at 8–12 weeks of age by 7 to 14 intraperitoneal injections of STZ(50 μg/g body wt), or

vehicle (citrate buffer) as a control, administered within a two week period [24]. Mice were fed

with standard laboratory animal chow. While we have found that standard laboratory contain

large amounts of AGEs, we decided to utilize this chow so that the results of these experiments

could be more easily reproduced in other laboratories [25]. Mice were weighed and fasting

blood glucose levels were determined by tail vein nicking at baseline and weekly thereafter.

After 4 weeks of stable hyperglycemia (>200 mg/dl), mice (DB) were randomized to the fol-

lowing treatment groups: EN (10 mg/kg/day, n = 8), PYR+EN (PYR: 200mg/kg/day, n = 8),

PPS+EN (PPS: 25mg/kg/day, n = 7), and PPS+PYR+EN (n = 7). Untreated non-DB (non-DB,

n = 7) and untreated DB mice (DB, n = 8) served as controls. The estimated number of animals

was based on our prior laboratory experience in this ROP/Os + mouse strain, with and without

the induction of hyperglycemia [26, 27].

Intraperitoneal NPH insulin was given to maintain blood glucose levels below 300 mg/dl.

EN was given to mimic the standard treatment now extant for patients with DKD [28]. Urine

albumin excretion was measured weekly by ELISA (Bethyl Laboratories Inc., Houston, TX)

[29]. Urine creatinine levels were measured by a colorimetric assay (Cayman Chemical Com-

pany, Ann Arbor, MI), and the urine albumin excretion rate was expressed as the ratio of albu-

min to creatinine (ACR) [9, 29]. Blood urea nitrogen (BUN) levels were evaluated by a

colorimetric method (TECO Diagnostics, California, USA) [29, 30]. After 22 weeks of follow-

up, mice were terminally anesthetized with ketamine/xylazine according to Guidelines estab-

lished by the National Institutes of Health (NIH). Level of anesthesia was assessed by pedal

reflex and all efforts were made to minimize suffering.

The study was reviewed and approved by the Institutional Animal Care and Use Committee

of the Icahn School of Medicine at Mount Sinai, as a prerequisite for submission of the original

grant [Juvenile Diabetes Research Foundation (Grant number 17-2008-1041)], which sup-

ported this pilot study.

Histology

Kidneys were flushed with phosphate-buffered saline and then fixed in 4% paraformaldehyde

[9, 29]. Forty eight hours after fixation, tissue samples were embedded in glycol methacrylate

and 4μm sections were stained with periodic acid Schiff.

Glomerular morphometry

Morphologic analysis was performed in periodic acid–Schiff (PAS) stained sections [31]. A

total of 30 glomeruli were randomly selected from each kidney by moving the slide from the

outer to the inner cortex in a random fashion to obtain non-overlapping sample fields. Glo-

merular images were recorded using a CCD camera (Sony, Tokyo, Japan) mounted on a light

microscope (Zeiss, Gottingen, Germany). Glomerular tuft surface area was obtained using the

MetaMorph image analysis computer program (Universal Imaging Co., West Chester, PA).

From the glomerular tuft image, the amount of PAS–positive material was selected

Pharmacologic control of oxidative stress and inflammation in diabetic glomerulosclerosis
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automatically by use of the color recognition properties of the software. The number of pixels

in the PAS-positive area was considered to represent the area of sclerosis and was expressed as

a fraction of the tuft surface area [30].

Plasma sTNFR1

Plasma soluble tumor necrosis factor receptor-1 (sTNFR1) levels were determined by ELISA

kits following the manufacturers’ protocols (eBioscience, Inc. San Diego, Ca, USA and R&D

Systems Inc., Minneapolis, MN, USA respectively).

Circulating and tissue AGEs

The amount of AGEs in the tissue (liver), and plasma was determined by a competitive

enzyme-linked immunosorbent assay using a monoclonal antibody reacting with N-carboxy-

methyl-lysine (CML, 4G9 mAb) or Methylglyoxal (MG, 3D11 mAb) [25]. Tissue values were

corrected to the protein sample concentrations. N-carboxymethyl-lysine-bovine or Methyl-

glyoxal serum albumin were used as standards for quantitation.

Oxyblot

An oxyblot protein oxidation detection kit (Chemicon International, Temecula, CA) was used

to assess overall carbonyl groups introduced into the protein side chain by oxidative modifica-

tion in renal tissues [9]. 2,4-Dinitrophenylhydrazine derivatization was performed for 15 min-

utes following the manufacturer’s instructions on total 10 μg of protein obtained from the

kidney tissue lysate. The dinitrophenylhydrazine-derivatized protein samples were separated

by 12%SDS-polyacrylamide gel electrophoresis. Proteins were transferred to polyvinylidenedi-

fluoride membranes, stained by Ponceau Red, and then probed with an anti-dinitrophenylhy-

drazine antibody. Blots were developed using a chemiluminescence detection system. No

visible bands were seen in samples without reaction with 2,4-dinitrophenylhydrazine before

Western blots (data not shown).

Real time PCR studies

Total RNA was isolated from the renal cortex using a PureYield RNA Midiprep kit (Promega,

Madison, WI) and the preparation was freed of DNA contamination by incubating with

DNase I. Equal amounts of RNA from the samples were then reverse-transcribed as described

previously [32]. The mRNA levels of TGFβ1, a receptor for AGEs (RAGE), monocyte chemo-

tactic protein-1 (MCP1), nuclear factor (erythroid-derived 2)-like 2 (Nrf2) and estrogen recep-

tor-α (ERα) were determined by real-time PCR under standard conditions using the SYBR

Green PCR Master Mix (Applied Biosystems; Warrington, UK). The primer sequences were:

TGFβ1, forward, 5’-GTGCGGCAGCTGTACATTGACTTT and reverse, 5’-TGTACTGTGTGTC
CAGGCTCCAAA; RAGE, forward 5’-CCTGGGAAGCCAGAAATT and reverse 5’-ACACAG
GTCAAGGTCACA; MCP1, forward, 5’-AGGTCCCTGTCATGCTTCTC and reverse, 5’-TCAT
TGGGATCATCTTGCT: Nrf2, forward, 5’-TCCATTCCCGAATTACAGTGTC and reverse, 5’-
CACAGTTGCCCACTTCTTTTT; ERα, forward, 5’-ATTGGTCTCGTCTGGCGCT and reverse,

5’-CTCCACCATGCCCTCTACACA. The mRNA levels in each sample were normalized by

β-actin mRNA levels [9].

Western blots

Proteins were isolated from the renal cortex after homogenization and sonication in a lysis

buffer containing protease and phosphatase inhibitors at 4˚ C (Pierce, Rockford, IL). Samples
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were centrifuged at 4˚ C at 14,000 rpm for 15 minutes, the supernatant was recovered and the

protein concentration was measured by a colorimetric assay according to the manufacturer’s

instructions (BCA Protein Assay Kit, Pierce). The same amount of protein obtained from

three mice was pooled from each group and a total of fifteen micrograms of protein were

loaded onto 8 or 10% SDS-PAGE gels. After separation, proteins were transferred to PVDF

membranes. For Western blots, membranes were pretreated with a blocking buffer (Thermo

Fisher Scientific, Waltham, MA) at room temperature for 30 min before incubating with the

following antibodies with appropriate dilution: anti-OST48 (AGER1) (Santa Cruz Biotechnol-

ogy, Santa Cruz, CA, USA) and anti-SIRT1 (Santa Cruz). After overnight incubation with pri-

mary antibody at 4˚C, membranes were washed and incubated with a horseradish peroxidase-

labeled secondary antibody and immunoreactivity was detected using the enhanced chemilu-

minescence assay (GE Healthcare, Buckinghamshire, UK). Membranes were then washed 30

min with a stripping buffer (Thermo Fisher Scientific) and re-probed with an anti-β-actin anti-

body (1:5000; Sigma, St. Louis, MO) to ensure that protein loading was similar for each sam-

ple. These experiments were at least repeated twice [25].

Statistical analysis

Data were expressed as mean value ± SE. Differences in mean were analyzed by ANOVA and a

p value of less than 0.05 was considered significant. Graph Pad Prism 6.0 software was used for

data analysis. Outliers were removed from the data set according Moore et al [33]. Backward

multiple linear regression analysis were performed to estimate the independent contribution

of blood glucose, serum and intracellular CML (sCML and iCML, respectively) and MG (sMG

and iMG, respectively) levels, sTNRF1, AGER1 and SIRT-1 protein levels and TGFβ1, MCP1,

RAGE, Nrf2 and ERαmRNA levels to ACR and GS, independently, both considered as clinical

markers in the prediction of both the presence and the progression of DKD.

Results

General characteristics

Insulin was used to control hyperglycemia (mean = 265±81mg/dl). Blood glucose area under

the curve (AUC), calculated after randomization and weekly until sacrifice, was significantly

higher in all diabetic groups compared to non-DB controls (p<0.001) but was similar in all

diabetic groups (Table 1). Body weight was significantly reduced only in the PPS+EN group

compared to non-DB mice (<10%) (p<0.05). BUN remained in the normal range in all groups

and kidney weight (unlike that found in sclerosis-resistant strains) was not altered by diabetes

or treatment.

Glomerulosclerosis and albuminuria

ROP Os/+ mice spontaneously develop proteinuria, glomerulosclerosis, glomerular hypertro-

phy and are prone to develop slowly progressive DKD [24]. ACR remained stable in non-DB

mice, continued to increase in DB mice to reach nearly two-fold higher levels than non-DB at

22 weeks, but was reduced in all treatment groups (Fig 1A and 1B). ACR was most reduced by

PPS+PYR+EN (p<0.005) (Fig 1A). PPS+PYR and PPS+PYR+EN treatment reduced albumin-

uria below DB at 4 weeks (p<0.05 and p<0.001, respectively), an effect that continued to study

end. While ACR in EN treated mice was increased at 4 weeks, it returned to non-DB levels by

12 weeks. PPS+PYR+EN reduced ACR below non-DB controls at 22 weeks (p<0.05) (Fig 1A).

GS, as evaluated by PAS staining (Fig 1C), was evident in non-DB littermates and increased

in DB (p<0.05), and was improved by all treatments (p<0.001) (Fig 1C and 1D). GS was
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more reduced by PPS+PYR+EN than by EN (p<0.001), or DB PPS+EN (p<0.05). The treat-

ment regimens reduced GS below that in non-DB (EN p<0.01; PYR+EN, PPS+EN, PPS+PYR

+EN p<0.001) (Fig 1C and 1D). None of the DB mice had tubulo-interstitial inflammatory

cell infiltrates or glomerular hypertrophy compared to non-DB, consistent with previous data

on ROP Os+ mice at this age [2, 3].

The increased renal TGFβ1 mRNA levels, often associated with GS[34], were increased in

DB, compared to non-DB (p<0.05) and reduced only by PPS+PYR+EN (p<0.01) (Fig 1E).

Oxidative stress and inflammation

Pro-OS/Infl factors. In comparison to non-DB, sTNFR1 levels were higher in DB and

DB EN (p<0.05 and p<0.005, respectively) (Fig 2A). PPS+PYR+EN was the only treatment

that significantly reduced sTNFR1 levels in DB mice (p<0.05), while there was only a trend in

DB PYR+EN and DB PPS+EN.

MCP1 mRNA levels [35] were not different between DB and non-DB (Fig 2B), but were

significantly reduced in all treatment groups compared to DB (p<0.05) except in DB EN in

which only a trend was present. There were no differences between the treatment groups and

non-DB.

RAGE mRNA levels were not different between DB and non-DB, but were decreased in all

treatment groups (p<0.01) (Fig 2C).

Anti-Os/Infl factors. SIRT1 protein levels were increased in DB PPS+PYR+EN, com-

pared to both non-DB and all DB groups except PPS+EN treated animals (p<0.05) (Fig 2D).

AGER1 protein levels were reduced in both DB (p<0.05) and DB+EN compared to non-

DB (p<0.01), but were increased to approximate non-DB levels in DB mice treated with either

DB PYR+EN or DB PPS+PYR+EN (p<0.05) (Fig 2E). The levels in DB PYR+EN and DB PPS

+PYR+EN were higher than DB EN (p<0.05)

Nrf2 mRNA levels were higher in non-DB mice compared to DB (p<0.01). Nrf2 mRNA

was increased in DB+EN compared to DB (p<0.05) (Fig 2F). Nrf2 mRNA levels were also

increased in DB PPS+PYR+EN compared to DB PPS+EN (p<0.05), DB EN (p<0.005), DB

(p<0.005) and non-DB (p<0.05).

ERαmRNA levels were lower in DB compared to non-DB (p<0.01), DB+EN (p<0.01), DB

PYR+EN and DB PPS+EN (p<0.05). ERα expression was also higher in DB+EN compared to

DB EN+PYR (p< 0.05). However, ERα expression was increased by PYR+EN compared to DB

Table 1. Characteristics at sacrifice.

Treatment Body weight (gr) Kidney weight/

body weight

Blood glucose

(mg/dl)

Blood glucose

AUC

BUN

(mg/dl)

Non-DB (n 7) 23.7 ±0.4 0.0051±0.0004 124.8±4.0 7022±202 26.22±1.36

DB (n 8) 21.8±0.8 0.0047±0.0002 289.7±37.2 ��� 40318±4787��� 25.74±2.36

DB EN (n 8) 21.9 ±0.6 0.0042±0.0001 269.7±30.2 �� 38230±4047��� 24.66±1.32

DB EN+PYR (n 8) 22.8±0.7 0.0043±0.0001 224.5±18.3 � 32556±2144��� 28.19±2.06

DB EN+PPS (n 7) 20.9±0.5� 0.0044±0.0002 253.9±23.9�� 37079±3493��� 32.09±2.76

DB EN+PYR+PPS (n 7) 21.4±0.6 0.0044±0.0003 234.4±24.7 � 33298±2824��� 30.08±2.31

BUN: blood urea nitrogen; AUC: area under the curve.

Data are expressed as mean value ± SE.

�p<0.05

��p<0.01

���p<0.001 vs. Non-DB

https://doi.org/10.1371/journal.pone.0204366.t001
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(p<0.01). ERα expression was returned to non-DB control levels by PPS+PYR+EN (p<0.005)

(Fig 2G).

There were no significant differences in liver tissue (intracellular) or circulating (serum)

levels of CML or MG (data not shown). As in most previous studies of ROP mice at this

“young/adult” age we found little histological evidence of interstitial inflammatory cells [2, 3,

24, 36].

Fig 1. A) Albumin to creatinine ratio (ACR) at sacrifice (22 weeks). B) ACR follow-up for 22 weeks. C) Periodic acid–Schiff (PAS) staining: a) non-DB, b) DB, c) DB

EN, d) DB PYR+EN, e) DB PPS+EN, f) DB PPS+PYR+EN. D) Morphometric evaluation of glomerular PAS positive areas. E) Kidney TGFβ1 mRNA levels. �p<0.05;
��p<0.01; ���p<0.005; #p<0.001. DB, diabetics; EN, enalapril; PPS, pentosan polysulfate; PYR, pyridoxamine; PAS, periodic acid–Schiff; TGFβ1, transforming growth

factor β1.

https://doi.org/10.1371/journal.pone.0204366.g001
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Oxidized total kidney protein

The levels of oxidized proteins with a molecular weight <55 kDa were significantly increased

in DB kidneys (p<0.01) (Fig 3). PYR+EN and PPS+PYR+EN reduced the levels of these pro-

teins in DB kidneys (p<0.05 and p<0.01 respectively), reaching levels similar to non-DB con-

trols. The levels of oxidized kidney proteins with a MW >55Kd were not increased in DB, but

were lower than DB in the PPS+PYR+EN group (p<0.05) (S1 Fig).

Fig 2. A) Plasma sTNFR1 levels. B) Kidney MCP1 mRNA levels. C) Kidney RAGE mRNA levels. D) Kidney SIRT1 protein levels. E) Kidney AGER1 protein levels. F)

Kidney Nrf2 mRNA levels G) Kidney ERα mRNA levels. �p<0.05; ��p<0.01; ���p<0.005; #p<0.001. DB, diabetics; EN, enalapril; PPS, pentosan polysulfate; PYR,

pyridoxamine; sTNFR1, tumor necrosis factor receptor-1; MCP1, monocyte chemotactic protein-1; RAGE and AGER1, receptors for AGEs; SIRT1, Sirtuin-1; Nrf2,

nuclear factor (erythroid-derived 2)-like 2; ERα, Estrogen receptor α.

https://doi.org/10.1371/journal.pone.0204366.g002
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Independent association of inflammation and oxidative stress-related

parameters and the albumin/creatinine ratio (ACR)

In a multiple linear regression analysis with ACR as the dependent variable, sMG and sTNFR1

levels as well as TGFβ1, RAGE and MCP1 mRNA levels appeared as significant predictors of

ACR (all p<0.05) (Table 2). However, there was no independent link of ACR with sCML,

iCML, iMG levels and AGER1 protein levels, and Nrf2 and ERα mRNA levels. ACR levels were

reduced to values comparable to non-DB controls only by PPS+PYR+EN (p<0.01). There

were no associations with any of the other analyzed parameters when GS was used as the

dependent variable.

Discussion

These results show that progressive GS in adult sclerosis-prone mice with controlled hypergly-

cemia can be reversed using a combination of FDA-approved drugs that are safe, readily avail-

able and inexpensive. Pentosan polysulfate+pyridoxamine+enalapril (PPS+PYR+EN)

treatment: 1) reduced established GS and albuminuria; 2) increased anti-OS/Infl defenses and

decreased pro-OS/Infl components, and 3) reduced elements of the sclerosis-prone phenotype

Fig 3. Oxidized kidney proteins< 55kDa, densitometric analyses. �p<0.05; ��p<0.01. DB, diabetics; EN, enalapril;

PPS, pentosan polysulfate; PYR, pyridoxamine.

https://doi.org/10.1371/journal.pone.0204366.g003
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in non-DB controls. Other combinations of these drugs had less marked results, suggesting

that effective control of DKD may require addressing both extracellular and intracellular OS/

Infl.

PPS and PYR are extensively utilized in the clinics and have good a safety profile. PPS is a

hyper-sulfated, natural heparinoid with minimal anticoagulant effect (1/15th that of heparin),

and has significant anti-inflammatory properties [37]. It reduces CKD in several experimental

mouse and rat models [22, 31, 38], and reduces inflammation and/or sclerosis in vascular

grafts in animals and humans [26, 39]. PYR is a biguanide that inhibits intracellular OS/Infl by

scavenging carbonyl compounds and hydroxyl radicals, that have been shown to reduce cellu-

lar anti-OS/Infl defenses [21]. PYR decreases intracellular OS/Infl in part by binding intracel-

lular methylglyoxal (an AGE precursor), which is a very active oxidant formed during normal

metabolism, but in excess amounts in diabetes [16, 17, 21, 40]. PYR has be shown to reduce

DKD in animal models [40–42].

EN, an established standard in the clinical care for DKD with albuminuria [43]. When

given as a single agent, it reduced GS and albuminuria less significantly than did PPS+PYR

+EN. EN as a single drug or in combination with PPS or PYR significantly reduced RAGE
below DB and non-DB levels. These data suggest that the RAAS system may be involved in the

sclerosis-prone phenotype of ROP mice [44].

The fact that PPS+PYR+EN reduced GS and albuminuria below those in non-treated con-

trol ROP/Os+ controls provides critical support for a role for OS/Infl in the development of

GS in mice and, perhaps, with the sclerosis-prone phenotype. Further support for the hypothe-

sis that increased OS/Infl is a significant component of the development of GS is provided by

two related studies. First, pre-anestrus hyperglycemic C57Bl6 mice have robust OS/Infl

defenses and do not develop significant glomerular changes [2]. However, hyperglycemia

induces a rapidly progressive inflammatory glomerular disease after menopause [9], a time at

which OS/Infl defenses, including ER, have been compromised [22, 24, 25, 45, 46]. Secondly,

C57Bl6 mice transgenic for SV40Tag, which induces inflammation, develop progressive glo-

merulosclerosis at a young age [47]. Thus, intact OS/Infl defenses may play a role in the resis-

tance to glomerulosclerosis and CKD in mice. Finally, impaired OS/Infl defenses are part of

the sclerosis-prone phenotype in mice.

SIRT1, a key member of the OS/Infl defense system, may protect against GS by suppressing

downstream TGFβ1 signaling [48, 49]. Sirt1 mRNA levels are reduced in DB and aged C57Bl6

mice [50] and humans [8]. The current study provides evidence that SIRT1, while it is reduced

in hyperglycemic ROP Os/+ mice, their levels can be increased with drugs. Since SIRT1 levels

in the PPS+PYR+EN group exceeded those in the non-treated litter-mate controls (non-DB),

Table 2. Multiple linear regression coefficients� to predict ACR.

Variables Unstandardized Coefficients Standardized Coefficients p value

B Standard error Beta
sMG 0.164 0.066 0.306 0.019

sTNFR1 3.18 x 10−4 9.21 x 10−5 0.322 0.007

TGFβ1 mRNA 0.038 0.016 0.277 0.036

RAGE mRNA 0.153 0.047 0.449 0.008

MCP1 mRNA 0.222 0.048 0.517 0.001

Dependent Variable: ACR (units) Predictive variables tested by backward method: blood glucose (mg/dl), sCML (U/mL), sMG (nmol/mL), iCML (U/mg protein), iMG

(nmol/mg protein), sTNFR1 (pg/mL), AGER1 and SIRT1 protein levels, and TGFβ1, MCP1, RAGE, Nrf2 and ERαmRNA levels.

�(Constant) = 0.333. (R) = 0.945.

https://doi.org/10.1371/journal.pone.0204366.t002
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suggests that reduced SIRT1 levels may be an important part of the sclerosis phenotype and

that intact SIRT1 levels may provide protect against hyperglycemia-induced GS. Finally, it also

suggests that intact SIRT1 levels may modify the sclerosis-prone phenotype.

AGER1, another important member of the anti-oxidant defense system [51], is present

both on the cell surface where it serves as an AGE receptor, and in the endoplasmic reticulum,

where it is a part of the oligosaccharide transferase complex (OST) [52]. Cell surface AGER1

acts in synergism with SIRT1. While AGER1 protein levels were decreased in DB, all treat-

ments except EN increased AGER1 to non-DB levels. This may have contributed to decreased

OS/Infl and GS.

Nrf2 and ERαmRNA levels, both of which are redox-sensitive transcription factors, were

reduced in both non-DB and DB ROP OS/+ mice. Nrf2 is an essential component in the trans-

activation of genes containing antioxidant-response elements in their regulatory regions,

which allows the coordinated expression of genes associated with protection against OS/Infl

[53, 54]. PPS+PYR+EN enhanced the expression of Nrf2 in the DB kidney to levels above

those in non-DB. ERαmRNA levels were markedly suppressed in DB and while they were

increased by EN+PYR, they were restored to non-DB levels only by EN+PYR+PPS. The poten-

tial clinical relevance of this finding is that reduced ER function in diabetic patients with CKD

was restored by reducing inflammation [55–57]. Thus, decreased OS/Infl defenses, a compo-

nent of the sclerosis-prone phenotype, appear to be modifiable.

The multiple linear regression analysis corroborated the contribution of OS/Infl factors

(sMG and sTNFR1 levels and TGFβ1, RAGE and MCP1 mRNA levels) as being contributing

factors in the pathogenesis of albuminuria. It also suggests that these factors might prove useful

in assessing the utility of interventions in early DKD.

This pilot study has several limitations including the relatively short follow-up period, the

absence of a treated non-DB control or male mice, the presence of tissue and OS/Infl marker

studies only at study end, and the small size of the study groups. Since the relatively large

amount of oxidant AGEs in the usual animal chow, was not modified in this study [17, 18], a

more pronounced effect of dietary oxidants on OS/Infl might have been seen if their restric-

tion, by either low AGE food or drugs that bind AGEs in food had been utilized [55, 56]. These

pilot data suggest that additional drugs that might preserve OS/Infl defenses should be

explored.

In summary, the present pilot study in hyperglycemic and naive ROP/Os+ mice demon-

strates that control of OS/Infl with currently available and relatively inexpensive and safe

agents can modulate established GS, and DKD, decrease the sclerosis-prone phenotype in

mice. The relevance of these data to humans with progressive DKD and a detailed study of the

mechanisms involved, or other types of genetically determined CKD remains to be

determined.
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