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Abstract
Moderate DNA damage resulting from metabolic activities or sub-lethal doses of exogenous

insults may eventually lead to cancer onset. Human 46BR.1G1 cells bear a mutation in rep-

licative DNA ligase I (LigI) which results in low levels of replication-dependent DNA dam-

age. This replication stress elicits a constitutive phosphorylation of the ataxia telangiectasia

mutated (ATM) checkpoint kinase that fails to arrest cell cycle progression or to activate

apoptosis or cell senescence. Stable transfection of wild type LigI, as in 7A3 cells, prevents

DNA damage and ATM activation. Here we show that parental 46BR.1G1 and 7A3 cells dif-

fer in important features such as cell morphology, adhesion and migration. Comparison of

gene expression profiles in the two cell lines detects Bio-Functional categories consistent

with the morphological and migration properties of LigI deficient cells. Interestingly, ATM

inhibition makes 46BR.1G1 more similar to 7A3 cells for what concerns morphology, adhe-

sion and expression of cell-cell adhesion receptors. These observations extend the influ-

ence of the DNA damage response checkpoint pathways and unveil a role for ATM kinase

activity in modulating cell biology parameters relevant to cancer progression.

Introduction
Maintenance of genome stability is beneficial for cell survival and crucial for cancer avoidance.
Not surprisingly, complex molecular machineries and pathways have evolved to efficiently
detect the damage and to prevent the transmission of harmful genetic information to daughter
cells. In particular, the DNA damage response (DDR) involves a transient cell cycle arrest
coupled with DNA repair. Failure to properly resolve DNA damage results in apoptosis or
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senescence [1,2] of an individual cell with little or no harm to the organism. Selection of geno-
mically rearranged cells that escape these barriers may lead to the onset of cancer.

One parameter relevant for the final outcome is the level of DNA damage: as a generaliza-
tion, while cell senescence or apoptosis is the preferred outcome following exposure to high
doses, the induction of genetically altered cells frequently occurs after exposure to doses that
unlikely affect viability. As most humans are only exposed to low levels of DNA-damaging
agents, either exogenous or endogenous, a consideration of the response to such low levels of
damage is crucial for assessing environmental cancer risk. A great deal of studies has investi-
gated the effects due to the exposure to exogenous sources of DNA damage. However, often
DNA insults result from normal metabolism including DNA replication.

We have recently characterized a model system, based on 46BR.1G1 fibroblastoid cells, suit-
able to investigate the strategies used by the cells to cope with low levels of chronic DNA dam-
age [3], a condition frequently encountered in tumors, which is compatible with cell survival
and proliferation. 46BR.1G1 cells derive from a patient with a genetic syndrome characterized
by drastically reduced replicative DNA ligase I (LigI) activity and impaired maturation of
newly synthesized DNA [4,5]. This defect results in an increased level of endogenous single
(SSBs) and double stranded DNA breaks (DSBs) accompanied by phosphorylation of H2AX
histone variant (γH2AX foci) [3].

LigI expression strongly correlates with the rate of cell proliferation increasing after serum
stimulation of primary fibroblasts and in response to mitogenic stimuli [6,7]. Consistently, LigI
is up regulated in tumor cell lines [8,9] while a strong reduction of LIG1 gene expression is trig-
gered by cell confluence, serum starvation and cell differentiation [6,9,10].

The chronic replication stress induced by LigI-defect in 46BR.1G1 cells does not block cell-
cycle progression and elicits a moderate activation of the checkpoint pathway identified by ATM
and Chk2 (Checkpoint kinase 2) kinases [3,11]. Interestingly, the signs of a DNA damage
response, including histone H2AX and Chk2 phosphorylation, are commonly found in pre-neo-
plastic lesions, where, unexpectedly, apoptosis was suppressed relative to the hyperplasia [12,13].
In this regard, it is worth noting that the murine model of 46BR-LigI-mutation is characterized
by increased incidence of spontaneous cancers with a diverse range of epithelial tumors, particu-
larly cutaneous adnexal tumors that are rare in mice [14]. Interestingly, 46BR.1G1 cells also show
an altered expression and post-translational modification pattern of SR splicing factors, including
SRSF1 [15], that control the splicing profile of several gene transcripts for proteins involved in
cell proliferation and apoptosis [16–21]. This finding suggests a link between DDR activation
and gene expression programs and supports the hypothesis that sub-lethal doses of DNA damage
may influence cell properties relevant to tumor progression. Indeed, recent studies in normal and
cancer cells suggest that also cell differentiation is under the influence of DDR programs [22].

Few years ago a large-scale proteomic analysis identified over 700 proteins that are phos-
phorylated in response to DNA damage on consensus sites recognized by ATM and ATR, a sig-
nificant fraction of which corresponds to proteins involved in cell structure and motility [23].
The physiological consequences of these modifications, however, are largely unknown. Along
the same line, we have recently reported that a few proteins involved in cytoskeleton organiza-
tion are differentially expressed or post-translationally modified in LigI-deficient 46BR.1G1
cells [15] compared to normal fibroblasts or to 46BR.1G1 cells in which the DNA replication
defect is rescued by the stable expression of ectopic wild-type LigI (7A3 cells), which also pre-
vents spontaneous DSBs.

During this characterization we unexpectedly observed subtle morphological differences
between 7A3 and parental LigI-deficient cells with the formers more similar to normal control
fibroblasts [3]. This observation led to hypothesize that cell morphology could be under the
influence of DDR programs.
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In this study, we examine more in detail the potential role of chronic basal DDR activation
in morphological transitions. Moreover we show that the DNA damage-initiated ATM signal-
ing directly impacts cell morphology, adhesion and migration and affects the expression profile
of cell-cell adhesive receptors encoded by the cadherins family and of focal adhesion vinculin
mRNAs. All these data are confirmed by bioinformatic analysis of gene expression profiles.

Materials and Methods

Drugs, cell lines and cell treatments
Human SV40-transformed 46BR.1G1 fibroblasts (European Collection of Cell Cultures
#CB2577) and GM847 control human fibroblasts [24] were maintained in monolayer culture
in DMEM supplemented with 10% FBS, 4 mM glutamine, and 50 μg/ml gentamicin (Sigma).
46BR.1G1 derivative 7A3 and 31W expressing HUC-tagged wild type LigI were grown in com-
plete DMEM supplemented with 300 μg/ml geneticin (Sigma) [3]. To inhibit ATM kinase
activity 46BR.1G1 cells were treated with 2 mM caffeine (Sigma) or 10 μMKU-55933 (gift
from Dr. Mark O’Connor, KuDOS Pharmaceuticals) for 24 h.

Immunofluorescence
Cells grown on glass coverslips were fixed in 4% paraformaldehyde and permeabilized in PBS-
0.5% Triton X-100 for 10 minutes at 4°C. Actin filaments were decorated with TRITC-conju-
gated phalloidin (1:600, Sigma). Nuclei were stained with 0.1 μg/ml 4’,6-diamidino-2-phenylin-
dole (DAPI, Sigma). Conventional epifluorescence microscopy was done with Optical
Microscope Olympus IX71 equipped with 63x objective. Photomicrographs were taken with
digital camera Cool SNAPES (Photometrics). Data acquisition was done using the MetaMorph
7.7.5 software (Universal Imaging Corporation). Pictures were deconvolved with Media Cyber-
netics Autoquant X2 by the application of the Adaptive Blind deconvolution algorithm for 10
iterations. The Point Spread Function (PSF) was derived from the images analyzed.

Time-lapse
Cells were seeded at low density in a 6-well plate (2x104 cells/well). Time-lapse imaging of cell
migration was performed on a NIKON Eclipse TE2000-E inverted microscope equipped with
an incubation chamber (OKOLab) for temperature and CO2 control. Movies were acquired by
a Cascade II 512 (Photometrics) CCD camera controlled by Metamorph Software (Universal
Imaging Corporation) using a 20x magnification objective. Tracking of cells was performed
using the “Manual Tracking” plug-in distributed with ImageJ software. Data were analyzed
using one-way ANOVA followed by Bonferroni's Multiple Comparison Test performed using
GraphPad Prism version 5.00 for Windows (GraphPad Software, San Diego California USA).

Wound-healing assay
Cells were seeded at a density of 3-4x105 cells/ml on each side of an Ibidi Culture-Insert for
live cell analysis (Ibidi), with a 500 μm ± 50 μm separation between each side of the well, and
allowed to grow for 24 h. Following removal of the insert cells were incubated in DMEM.
Images were taken using a digital camera Cool SNAPES connected to an Optical Microscope
Olympus IX71 using the 4x objective at insert removal (0 h) and at regular intervals of 8 h.
Data acquisition was done using the MetaMorph 7.7.5 software. The image analyses were done
with WimScratch platform (Wimasis Image Analysis).
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Adhesion assay
For adhesion assays cells were washed 3 times with PBS, before adding Trypsin to detach the
cells. Trypsin was then neutralized with Soybean Trypsin Inhibitor and serum-containing
medium. The cells were subsequently seeded in 96 well plates and after 30 min, adhered cells
were fixed by adding 4% paraformaldehyde and stained with 0.1% Crystal violet in 0.2 M boric
acid pH 9.0 for 10 min. After washing with dH2O, the Crystal violet incorporated into the cells
was solubilized with acetic acid (33%) and its amount measured at 620 nm wavelength using
the Microplate Reader (EZ Read 400 Biochrom). The amount of Crystal violet is directly pro-
portional to the number of adherent cells providing a rapid, direct and quantitative measure-
ment of cell adhesion. Data were analyzed using one-way ANOVA followed by Bonferroni's
Multiple Comparison Test performed using GraphPad Prism version 5.00 for Windows
(GraphPad Software, San Diego California USA).

qRT-PCR
RNA was isolated with SV Total RNA Isolation System (Promega) following manufacturer’s
instructions and reverse transcribed with Oligo d(T)16 and MuLV Reverse Transcriptase
(Applied Biosystem); qRT-PCR was performed with QuantiTect SYBR Green PCRMaster Mix
(Qiagen) along with gene specific primers (S1 Table) on LightCycler 480 (Roche). The fold
increase of cDNA level retrotranscribed from RNA was determined as follows: 2-(CT test-CT
control) [25], where test refers to the gene of interest and control refers to the reference gene
RPLP0. CT value indicates the cycle at which the amplified product passes the threshold. Statis-
tical significance was determined by Students t test.

Cell lysates andWestern blotting
Cell extracts were prepared as previously described [26] and analyzed by Western blotting with
the following primary antibodies: polyclonal goat anti-human cadherin-13 antibody (AF3264,
R&D), 1:200; polyclonal rabbit anti-R-cadherin antibody (NBP1-90370, Novus biological),
1:300; anti-tag Muscle Actin (HUC1-1) monoclonal mouse antibody (sc-53141, Santa Cruz
Biotechnology, Inc.), 1:100; polyclonal rabbit anti-Histone H2AX (phosphor S139) (γH2AX)
antibody (ab81299, Abcam) 1:100000; monoclonal mouse anti α-Tubulin antibody (T9036,
Sigma) 1:1000. Primary antibodies were revealed with peroxidase-conjugated Donkey anti-
Goat (ab6885, Abcam), Peroxidase-conjugated AffinityPure Goat anti-Rabbit (111-035-144,
Jackson Lab) and anti-Mouse (115-035-146, Jackson Lab) antibodies and enhanced chemilu-
minescence system (Super Signal West Pico Pierce or Luminata Crescendo/Forte Western
HRP substrate Millipore).

Microarray analysis
Whole Human Genome 4 x 44k Oligo Microarrays (Agilent Technologies) were used to com-
pare the expression profiles of 46BR.1G1 and 7A3 cell lines. The entire procedure was
described in Chikh and coworkers [27]. Briefly: equal amounts of mRNA from the two cell
lines were subjected to one round of amplification by the Amino Allyl MessageAmp II aRNA
kit (Ambion Inc., Austin, TX). Labeling was obtained using NHS ester Cy3 or Cy5 dyes (GE
HealthCare, Buckinghamshire, UK) and hybridization was performed with dye-swap duplica-
tion. All steps were performed using the Gene Expression Hybridization kit (Agilent Technolo-
gies) according to manufacturer instructions. Slides were scanned with the dual-laser
microarray scanner Agilent G2505B and images were analysed with the Feature Extraction
software version 9.5 (Agilent Technologies). Agilent Feature Extraction output files were
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processed with the Resolver SE System (Rosetta Biosoftware, Seattle, WA). Microarray expres-
sion data were deposited at the GEO repository under the accession number: GSE56317.

RNA-Seq analysis
Total RNAs isolated from 7A3 and 46BR.1G1 cells were subjected to polyA+ fraction selection
and transformed in a cDNA library for next-generation sequencing by the use of the TruSeq
RNA Sample Prep kit (Illumina) according to manufacturer’s protocol. A total of 120 million
sequence reads were obtained for each cell line in three biological replicates on an Illumina
HiSeq2500 instrument (40 million reads / replicate). Raw reads were subjected to standard
quality control procedures with the NGSQC-toolkit software and aligned to the human
genome reference sequence (NCBI37/hg19) by the TopHat alignment software [28]. Genes
were annotated and quantified according to the TopHat-Cufflinks protocol and differential
gene expression analysis was performed by CuffDiff [29]. RNA-Seq raw data were deposited at
the NCBI Sequence Read Archive (SRA; http://www.ncbi.nlm.nih.gov/sra/) repository under
the accession number: SRP058222.

Expression profiles and literature data analysis
Gene expression data from microarrays and next-generation sequencing were analysed
through the use of QIAGEN’s Ingenuity Pathway Analysis (IPA, QIAGEN Redwood City,
www.qiagen.com/ingenuity). The list of proteins target of ATM/ATR was assembled from
large-scale proteomic studies with the following criteria: (i) from the study of Matsuoka et al.
[23] a total of 683 proteins showing an increased phosphorylation after IR damage and ATM
checkpoint activation were included; (ii) from the study of Bensimon et al. [30] a total of 228
proteins whose phosphorylation state was found dependent or regulated by ATM (see Supple-
mentary Table S11 in [30]); (iii) from the study of Bennetzen et al. [31] a total of 209 proteins
whose phosphorylation change resulted significant in at least one of the observed time points
(see Supplementary Table 1 in [31]). This approach resulted in the compilation of a list of 957
proteins phosphorylated on consensus sites recognized by ATM and/or ATR in response to
DNA damage. This list was compared with the list of the 134 transcription factors predicted to
act as upstream regulators (IPA analysis p-value<0.05) of the genes defined as differentially
expressed by the microarray or the RNA-Seq analyses.

Results

DDR induced by LigI-deficiency accounts for some morphological
features of 46BR.1G1 cells
We have previously suggested that the LigI-defect, in addition to produce replication-mediated
DNA damage, is associated with a slightly different morphology of 46BR.1G1 compared to that
of normal cultured fibroblasts. Interestingly, the fibroblast-like shape could be rescued by sta-
bly expressing exogenous wild type LigI (7A3 cells) [3]. Based on this qualitative observation
we hypothesized that cell morphology could be a target of DNA damage and of the ATM/Chk2
checkpoint pathway.

To more precisely characterize this aspect and to understand whether the effect on cell mor-
phology involved the DDR, we monitored by time-lapse microscopy 46BR.1G1 and 7A3 in the
presence or not of checkpoint inhibitors. We compared four different parameters: morphology,
directionality, accumulated distance, and velocity. As shown in Fig 1A and S1, S2 and S3 Vid-
eos, 46BR.1G1 cells are significantly more rounded compared to 7A3 cells that express ectopic
wild type (wt) LigI and show a fibroblast-like morphology. A similar difference was observed
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when 46BR.1G1 were compared to another independent clone (31W) expressing wt LigI (S1
Fig) confirming that the effect on cell morphology is not cell clone specific. This shape differ-
ence is accompanied by an altered distribution of the actin cytoskeleton. As expected for nor-
mal fibroblasts, 7A3 cells display long stress fibers, running along the entire length of the
elongated cells. Conversely, in 46BR.1G1 actin stress fibers are mainly confined to a cortical
rim, while only short actin filaments are detectable in the cytoplasm (Fig 1B).

We quantified these morphological differences by measuring the ratio between short and
long axes of the cell (circularity). This analysis revealed a significant difference in the circularity
index, which is 0.77 (SEM±0.005) for 46BR.1G1 and 0.50 (SEM±0.009) for 7A3 cells (Fig 1C),

Fig 1. Correction of LigI defect affects cell morphology. A) Time-lapse imaging of cell migration. Cells
were seeded at low density and monitored by time-lapse microscopy as described in Materials and Methods.
Representative still images of control fibroblasts (GM847), complemented 7A3 expressing wild type LigI and
LigI-deficient 46BR.1G1 cells are shown. B) Distribution of actin cytoskeleton. Cells were grown on coverslips
and decorated with TRITC-conjugated phalloidin. Nuclei were counterstained with DAPI. C) Quantification of
morphological differences between 46BR.1G1 and 7A3 cells was determined by measuring the average ratio
between the short and long axes of the cell (circularity). Circularity was also measured in the presence (+) of
caffeine and KU-55933 as described in Materials and Methods. At least 100 cells/conditions for each cell line
were analysed. Bars showmean ± SEM. *** P < 0.001.

doi:10.1371/journal.pone.0130561.g001
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and provided a quantitative basis to our previous suggestion that LigI-deficiency impacts cell
shape. However, despite this morphology change, none of the migration parameters measured
in this assay, including cell velocity, accumulated distance and directionality, were significantly
altered by LigI activity (S2 Fig).

To verify the hypothesis that morphological differences could be due to the increased basal
level of DNA damage we treated 46BR.1G1 cells with the checkpoint inhibitor caffeine or the
more specific ATM inhibitor KU-55933 [32]. As shown in Fig 1C, these drugs significantly
reduced the circularity of 46BR.1G1 without affecting the shape of 7A3 cells. Thus, ATM acti-
vation in LigI-deficient cells is a determinant of 46BR.1G1 cell morphology, further pointing to
a link between checkpoint kinases and cytoskeleton organization.

Changes in cell morphology may be linked to an altered cell adhesion. To verify this aspect,
we challenged the two cell lines in a standard cell adhesion assay. As shown in Fig 2, 46BR.1G1
cells adhered more efficiently to the plate than LigI-proficient 7A3 cells. Notably, incubation
with caffeine and KU-55933 significantly reduced adhesion of 46BR.1G1 but not of 7A3 cells.
Altogether these results suggest that the activation of the ATM/Chk2 signaling pathway has an
important role in the effect of replication stress induced by LigI-deficiency on cytoskeleton
organization and cell adhesiveness.

Although the time-lapse experiments fail to detect differences in the random migration of
individual 7A3 and 46BR.1G1 cells, it is plausible that the increased adhesion of LigI-deficient
cells may affect directional migration or collective locomotion. To verify this possibility we
challenged 7A3 and 46BR.1G1 cells in a wound-healing assay. Under these conditions, cells are
forced to move directionally into the open wound thus adopting a polarized mode of cell loco-
motion. As shown in Fig 3, 46BR.1G1 cells heal the wound slightly faster than 7A3. The prolif-
eration rate of 46BR.1G1 cells is slightly reduced with respect to 7A3 [3], ruling out that their
faster migration is accounted by different rate of growth. Moreover, differently from 7A3 cells,
LigI-deficient cells tend to migrate together in cohesive sheets, suggesting that the balance

Fig 2. LigI-deficient 46BR.1G1 cells adheremore efficiently to the plate than complemented 7A3 cells.
Cells were plated on 96-well plate and allowed to adhere for 30 minutes before fixing. Cells were stained with
Crystal Violet, solubilized with acetic acid and quantified by measuring the OD at 620 nm. Data are shown as
mean ± SEM of four independent experiments.

doi:10.1371/journal.pone.0130561.g002
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between cell-cell interactions and cell-plate adhesion is shifted toward the former, resulting in
improved collective directionality (Fig 3C).

On the basis of these observations, we conclude that DNA damage signaling could trans-
duce information influencing cytoskeleton organization, cell adhesion and migration, three
functional parameters frequently altered in tumors.

Fig 3. LigI-deficiency affects directional migration. A) Wound-healing assay. The same number of
46BR.1G1 and 7A3 cells were seeded in each side of an Ibidi culture insert and incubated for 24 h. Cells were
photographed at the time of insert removal (0 h), 8 h and 16 h after. Magnification: 4x. B) The percentage of
the scratched area at each time point was calculated with theWimScratch tool (Wimasis Image Analysis).
Data are shown as mean ± SEM of three independent experiments. C) Representative images of 7A3 and
46BR.1G1 directional migration in the scratched area (magnification 10x).

doi:10.1371/journal.pone.0130561.g003
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DDR induced by LigI-deficiency affects the expression of genes involved
in cell adhesion and migration
The results described above suggest that DNA replication-dependent DNA damage caused by
LigI-deficiency can induce morphological changes and affect important cell features such as
cell adhesion and motility. All these events appear to depend, at least in part, on the activation
of the ATM pathway, which can influence both post-translational modifications and changes
in expression programs. In agreement with this hypothesis, we have previously shown that
LigI-deficiency affects the phosphorylation profile of splicing regulator SRSF1 [15], which con-
trols the splicing pattern of a number of genes in the apoptotic pathway and is necessary for
cell survival [20,33].

In order to characterize the impact of LigI-deficiency on gene expression we compared total
RNAs from 46BR.1G1 and 7A3 cells by the microarray technology. By this approach we identi-
fied a total of 2114 differentially expressed genes (LFC�|1|; adjusted p-value� 0.05). Interpre-
tation of this set of genes using the IPA Core Analysis tool (Ingenuity) selected 39 categories of
the Bio-Function group, corresponding to a total of 642 terms statistically enriched with a p-
value< 1x10-3. Among the top ten categories (357 terms), six include genes involved in cell
proliferation, development and survival, which may have a role in the capacity of the cells to
cope with moderate replicative stress. In agreement with our previous proteomic analysis [15],
the “Gene expression” category includes the splicing factor SRSF6 (already known as SRp55)
gene, reinforcing the notion that splicing regulation is part of the cell response to the type of
DNA damage produced by LigI deficiency. Interestingly, 3 out of the 10 most-enriched catego-
ries concern biological processes connected to the cytoskeleton (Table 1). In particular, the
“Cellular Assembly and Organization” category includes 34 terms with enrichment p-values
<5x10-4 and the “Cell Morphology” and “Cell Movement” categories include respectively 38
and 46 terms exceeding the same p-value threshold (see S2 Table). Thus, genes differentially
expressed in 46BR.1G1 vs 7A3 cells are enriched in categories compatible with the biological
differences evidenced by the functional assays described above.

To confirm this analysis we decided to study the expression profiles in 46BR.1G1 and 7A3
cell lines by next-generation RNA sequencing. By this approach we identified a total of 855
genes differentially expressed with a LFC� |1| and a q-value�0.05. The evaluation of the com-
plete list by the IPA Core Analysis tool identified 46 statistically significant categories of the Bio-
Function group, which include a total of 786 terms (p-value<1x10-3). Interestingly, 7 of the top
ten categories where in common with those identified by the analysis of microarray data
(Table 1). Four categories correlated with developmental processes (“Embryonic Development”,
“Organismal Development”, “Tissue Development” and “Cellular Development”). Among the
cytoskeleton related categories, “Cellular movement” was the most enriched one (40 terms with
p-value< 5 x10-4) and “Cellular Assembly and Organization” was ranked 3rd (19 terms with p-
value< 5 x10-4). “Cell Morphology” was not included in the top ten list, however it was present
at the 11th position with 26 terms exceeding the same p-value threshold (see S2 Table). Thus,
although the list of genes identified by RNA-Seq is smaller than that selected by the microarray,
a strong concordance in the functional categories exists (see S3 Table for the list of the genes).

By crossing the gene lists selected by the two genome-wide approaches we identified a com-
mon set of 375 genes that were then classified in bio-functional categories using the IPA Core
Analysis tool. Remarkably, a strong overlap with categories present in the microarray or RNA--
Seq data (Table 1) was detectable. In particular, “Cellular movement” is the most-enriched cat-
egory and contains 28 terms exceeding the threshold of p-value< 5x10-4 (see Table 1 and S2
Table). Interestingly most of the categories concern cell organization, movement and differen-
tiation features.
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Thus, gene expression analysis performed with two independent approaches selects bio-
functions that may account for the morphological and migration properties of LigI-deficient
cells.

Expression of cadherins is affected by LigI deficiency in an ATM-
dependent manner
As a further validation of the high-throughput analyses we decided to measure by qRT-PCR
the expression of a few selected genes. IPA categories describing the process of cell migration
include vinculin and some members of the cadherin superfamily involved in cell adhesion and
migration [34]. We focused on genes of the cadherin family, some of which were detected as
differentially expressed in 46BR.1G1 vs 7A3 cells by both microarray and RNA-Seq analyses.
As shown in Fig 4, in agreement with the genome wide analyses, qRT-PCR measured statisti-
cally significant differences in the expression of cadherin 4 (CDH4 also called R-cadherin), cad-
herin 13 (CDH13, H-cadherin), cadherin 9 (CDH9, T1-cadherin) and cadherin 12 (CDH12,
N-Cadherin 2). Notably CDH4 is a critical regulator of epithelial phenotype [35] and CDH13
levels are frequently down regulated in invasive carcinoma cells [36]. In order to verify the
effect of this regulation at the protein level, cell extracts from 46BR.1G1 and 7A3 cells were
immunoblotted with antibodies against CDH13 and CDH4, whose transcripts are overex-
pressed in LigI-deficient cells. Fig 5 shows that, in agreement with the qPCR analysis, both pro-
teins are overexpressed in 46BR.1G1 cells. The down-regulation of CDH13 and CDH4 in LigI-
proficient cells was also confirmed in 31W cells (Fig 6) ruling out the possibility that the
observed change in gene expression was cell clone specific. Notably, the differential expression
of these cadherins is consistent with the idea that LigI-deficiency may induce a shift toward an
epithelial-like shape. In line with this hypothesis CDH9, which is up-regulated during EMT
(epithelial to mesenchymal cell transition) of renal tubular epithelial cells [37], and CDH12,
whose overexpression increases the invasive properties of salivary adenoid cystic carcinoma

Table 1. Enrichment analysis of IPAmolecular function categories.

IPA Categories 46BR.1G1 vs 7A3 microarray
(n = 2114)

46BR.1G1 vs 7A3 RNA-seq
(n = 855)

46BR.1G1 vs 7A3 microarray and RNA-
seq (n = 375)

Cellular Assembly and Organization 1.94E-18 5.63E-14 1.72E-09

Cellular Function and Maintenance 1.94E-18 5.63E-14 1.72E-09

Cell Morphology 6.23E-17 - 1.93E-10

Cellular growth and Proliferation 3.85E-16 7.72E-14 -

Cell death and Survival 7.77E-16 1.53E-15 -

Gene Expression 8.28E-14 - -

Cellular Movement 1.40E-11 5.48E-17 5.29E-11

Connective Tissue Development and
Function

1.75E-11 - -

Organismal Survival 5.11E-11 - -

Cellular Development 1.37E-10 5.91E-14 2.29E-09

Embryonic Development - 9.01E-14 1.81E-09

Organismal Development - 9.01E-14 1.81E-09

Tissue Development - 1.22E-13 3.15E-09

Tissue Morphology - 1.34E-12 -

Nervous System Development and
Function

- - 3.37E-10

Cell Cycle - - 3.28E-09

doi:10.1371/journal.pone.0130561.t001
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Fig 4. Analysis of vinculin, vimentin and cadherins gene expression by real time RT-PCR. The panels show the relative expression levels of the
indicated transcripts in 46BR.lG1 (gray bars) and 7A3 cells (black bars) before (-) and after (+) incubation with 10 μMKU-55933. Gene transcripts have been
internally normalized versus RPLP0 expression levels. Data are shown as mean ± SEM of four independent experiments. CDH: cadherin, VCL: vinculin,
VIM: vimentin. * P < 0 .05, ** P < 0.01, *** P < 0.001.

doi:10.1371/journal.pone.0130561.g004
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cells [38], are down-regulated in 46BR.1G1 cells. We also analyzed two members of the cad-
herin family whose expression is commonly used as a diagnostic marker of EMT events: CDH1
and CDH2 genes, which are respectively down and up regulated during EMT. The RNA-Seq,
but not the microarray analysis, evidenced a moderate but statistically significant reduction of
CDH2mRNA in 46BR.1G1 cells (LFC = -0.66 p-value = 4x10-4) while both methods were
unable to predict the behavior of CDH1 because its expression was too low to be analyzed
under the experimental conditions used in this study. In agreement with RNA-Seq data,
qRT-PCR analysis evidenced statistically significant down-regulation of CDH2 in LigI-defi-
cient cells accompanied by a slight increase of CDH1mRNA (Fig 4, panel B). In particular,
CDH2 expression was reduced to about 50% in 46BR.1G1 cells, consistent with the difference
estimated by RNA-Seq analysis. The differential expression between 7A3 and 46BR.1G1 of dif-
ferent cadherins is notable. It has been shown that the expression of several cadherin genes is
differentially affected by epithelial as opposed to the mesenchymal phenotype. Within this
framework, for example CDH9 and CDH12 are up regulated as expected in the more mesen-
chymal-like line 7A3. CDH1, the prototypical epithelial junctional protein, is elevated in LigI-
deficient cells while CDH2 (the mesenchymal N-cadherin) is down regulated. The functional
phenotypic consequences of other cadherins is less understood and would be interesting in
future to explore their impact on the nature of epithelial vs mesenchymal phenotype. Alto-
gether this analysis is consistent with the idea, suggested by the morphological data, that LigI
deficiency induces a shift toward an epithelial-like morphology. Moreover, in agreement with
the increase in adhesion properties (Fig 2), the vinculin (VCL) gene, which encodes a focal
adhesion protein [39], is up-regulated in 46BR.1G1 cells (Fig 4 panel C). Up-regulation of vin-
culin was detected only by the micro-array and confirmed by qRT-PCR but not by the

Fig 5. Differential expression of cadherin 13 and cadherin 4 proteins in 46BR.1G1 and 7A3 cells. (A)
Cell lysates from 46BR.1G1 and 7A3 cells were analyzed byWestern blotting with anti-cadherin 13, anti-
cadherin 4, and anti-α-tubulin antibodies. (B) Quantification of the assay was performed by densitometric
analysis with NIH ImageJ 1.43 program. Bars showmean ± SEM of three independent experiments.

doi:10.1371/journal.pone.0130561.g005

DNA Damage Response and Cell Morphology

PLOS ONE | DOI:10.1371/journal.pone.0130561 July 7, 2015 12 / 18



Fig 6. Differential expression of cadherin 13 and cadherin 4 proteins in 46BR.1G1 and 31W cells. Cell
lysates from 46BR.1G1 and 31W cells were analyzed byWestern blotting with antibodies against the
indicated proteins.

doi:10.1371/journal.pone.0130561.g006
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RNA-Seq analysis, once more pointing to the cautions that must be put in the interpretation of
genome wide data, particularly when low number of reads are considered in RNA-Seq experi-
ments. We also evaluated the expression of vimentin (VIM) a member of the intermediate fila-
ments family of proteins responsible for maintaining cell shape, and whose expression is
typically up regulated during EMT. In accord with microarray and RNA-Seq data, qPCR analy-
sis detected a comparable expression of vimentin in 46BR.1G1 and 7A3 cells (Fig 4 panel C).

Since morphometric parameters of 46BR.1G1 cells become similar to those of 7A3 cells
upon ATM inhibition, we investigated whether expression level of the genes discussed above
could be affected by KU-55933, a specific ATM inhibitor. As shown in Fig 4, treatment with
KU-55933 significantly decreases the levels of CDH13 (P = 0.0054), CDH4 (P = 0.0386), and
vinculin (VCL P = 0.0331) mRNAs (panel A and C) only in 46BR.1G1 cells where they are up
regulated. In spite of a similar trend, treatment with KU-55933 in 7A3 cells did not show statis-
tically significant difference in the expression levels of the analyzed genes. On the contrary, the
drug has no significant effect on CDH1 gene (P = 0.4735), up regulated in 46BR.1G1, and on
CDH9 (P = 0.7173), CDH12 (P = 0.7609) and CDH2 (P = 0.4735) which are more expressed in
7A3 cells, suggesting the existence of additional levels of complexity in controlling gene expres-
sion regulation in response to DNA damage in 46BR.1G1 cells. Collectively, our analysis indi-
cates that replication-dependent DNA damage may affect the expression level of a number of
genes involved in cytoskeletal organization through the activation of kinases of the checkpoint
pathways, in agreement with the hypothesis that DDR programs impact on cell morphology
and motility processes.

Discussion
LigI-deficient 46BR.1G1 cells represent a good model to investigate the biological effects of
sub-lethal levels of DNA insults. Indeed, the cyclic induction of DNA damages in successive S-
phases, resulting from a defect in the maturation of the Okazaki fragments, is sufficient to elicit
a moderate ATM-dependent DDR that mildly lengthens the cell-cycle without triggering cell
apoptosis or senescence [3]. Unexpectedly, LigI-deficiency also perturbs morphological cell
features and impacts the organization of stress fibers, a distinctive feature of fibroblasts. In this
manuscript we have quantified the morphological and migratory differences between LigI-
mutated 46BR.1G1 and their derivatives 7A3 cells in which the replication defect has been res-
cued by the stable expression of wild type LigI cDNA. During this analysis we have observed
that differences between the two cell lines can be greatly reduced by growing 46BR.1G1 cells
for 24 hours in the presence of the ATM inhibitor KU-55933, raising the hypothesis that a
modest DNA damage response can affect cell phenotype. However, the failure of ATM inhibi-
tion to completely revert the phenotype of 46BR.1G1 cells to the fibroblast morphology seems
to indicate the involvement of additional mechanisms. It is conceivable that a persistent mod-
erate level of DNA damage may trigger gene expression changes that are resistant to the tempo-
rary inhibition of checkpoint kinases, particularly if the source of the damage (i.e. LigI
deficiency) is not removed. Only hypothesis can be raised at this moment about the players
involved. A plausible candidate is the epigenetic organization. Indeed, DNA repair mecha-
nisms and DNA damage signaling are known to affect chromatin organization and histone
post-translational modifications [40]. Whether these marks affect specific gene expression cir-
cuits relevant to the morphology of 46BR.1G1 cells is an open question we are presently inves-
tigating. Whatever is the mechanism involved in this phenomenon, we speculate that such an
effect of moderate DNA damage may be physiologically relevant during developmental and
cell differentiation programs or may play a role in a number of pathological conditions such as
cancer and some neurological disorders, as for instance Parkinson’s or Alzheimer’s disease.
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Although highly hypothetical, our proposal is in line with a number of observations. Thus, a
DNA damaging agent like hypoxia plays a role in developmental programs [41,42], metastatic
dissemination of cancer cells [43] and neurological disorders [44]. Moreover it has been
recently observed that DNA damage drives differentiation of leukemic cells [45]. Another
example is the signaling pathway identified by p38 and MAPKAP kinase-2 (p38/MK2) that
operates in the cytoplasm downstream of ATM and ATR. p38/MK2 can affect cell biology by
modulating the stability of mRNAs containing AU-rich elements in their 3’-UTR [46].

In order to gain insight into the regulatory circuits underlying the distinctive morphological
features of 46BR.1G1 cells in response to replicative DNA damage, we have compared the gene
expression profiles in 46BR.1G1 and 7A3 by means of two genome wide approaches, namely
microarrays and RNA-Seq. The results of these analyses raise two types of considerations. One
is methodological and concerns the reciprocal validation of the two assays. We have observed
only a partial overlapping between the lists of genes selected by the two approaches (2114 by
the microarray and 855 by RNA-Seq). This may partially originate from the limited number of
reads (40 millions) used in the RNA-Seq analysis. However, it also emphasizes the caution in
comparing data produced with different genome-wide approaches, a problem already dis-
cussed in a recent publication [47]. On the other hand, the differences between the two meth-
ods are almost completely eliminated when, instead of single genes, bio-functional categories
selected by the IPA Ingenuity program are taken into account. Notably the same list of catego-
ries account for most of the 375 genes (corresponding to 43.9% of the RNA-Seq data) that
form the common core of differentially expressed gene identified both by RNA-Seq and micro-
array analysis.

The second consideration pertains the concordance between the bio-functional categories
and the cell morphology and migration properties evidenced by our functional assays. Interest-
ingly, all our data seem to indicate that LigI-deficiency can promote a transition of fibroblasts
toward an epithelial phenotype both in term of cell morphology, migration properties and
gene expression profiles. The regulatory circuits acting downstream of ATM and involved in
this transition are still matter of investigation. Recently, a number of transcriptional regulators
have been shown to be targets of checkpoint signaling kinases ATM and ATR [23,30,31]. This
list includes 14 transcription factors that are predicted by the IPA analysis as upstream regula-
tors of genes differentially expressed in 46BR.1G1 vs 7A3 cells and highly enriched in IPA bio-
logical categories related to cytoskeletal-based functions (S4 Table). The identification of the
regulatory circuits underlying this DNA damage-induced transition will open new perspectives
to the analysis of cell differentiation programs.
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S1 Fig. Bright-field microscopy of 46BR.1G1 and 31W cells.
(TIF)

S2 Fig. Parameters of cell migration. A) Accumulated distance, B) Velocity, C) Directionality
were calculated from analysis of 16 cells in 3 independent experiments. Bars show
mean ± SEM. The analysis was performed by Chemotaxis and Migration plug-in for Image J
software (version 1.01) distributed by Ibidi.
(TIF)
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