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Abstract: A series of copper-based photocatalysts of the type Cu(NN)(BINAP)BF4 were synthesized
bearing π-extended diimine ligands. Their behavior in several photocatalytic processes were evalu-
ated and revealed acceptable levels of activity in an SET process, but negligible activity in PCET or ET
processes. Suitable activity in ET processes could be restored through modification of the ligand. The
BINAP-derived complexes were then evaluated for activity against triple-negative breast cancer cell
lines. Controls indicated that copper complexes, and not their ligands, were responsible for activity.
Encouraging activity was displayed by a homoleptic complex Cu(dppz)2BF4.
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1. Introduction

Copper-based complexes have demonstrated their potential across photocatalysis [1].
As an alternative to precious metal complexes [2–4], discreet copper-based complexes can
be exploited as photocatalysts under UV [5–7] and visible-light irradiation [8–12]. In turn,
a number of copper complexes can be formed in situ and used in metallaphotoredox pro-
cesses, which are particularly advantageous for asymmetric photocatalysis [13]. In addition
to synthetic applications, copper-based complexes have found interest in solar energy
sciences [14], photocatalytic water splitting [15] and organic light-emitting diodes [16].

McMillin and co-workers first reported that heteroleptic copper-based complexes
(Cu(NN)(PP)X) bearing the wide-bite-angle bisphosphine DPEPhos possessed unusually
long excited-state lifetimes [17]. Following our initial discovery that such complexes exhib-
ited significant potential for synthetic photocatalysis [18], we reported a structure/activity
study library of 50 copper complexes that were evaluated in single-electron transfer
(SET) [19,20], energy transfer (ET) [21] and proton-coupled electron transfer (PCET) reac-
tions [22]. Although most photocatalysis using heteroleptic complexes continue to employ
wide-bite-angle bisphosphines [23,24], the aforementioned library study revealed that the
small-bite-angle bisphosphine BINAP could form copper complexes that afforded high
yields in all three of the mechanistic processes evaluated. Our bank of available diimines
and bisphosphines has since expanded to allow for development of improved complexes
for energy transfer processes [25]. Among the diimine structures evaluated were those
that possessed extended π-surfaces, which unfortunately did not afford heteroleptic com-
plexes with remarkable activities in photocatalysis [26]. However, previous studies were
limited to wide-bite-angle bisphosphines, as the preparation of the corresponding com-
plexes with BINAP was problematic (Figure 1). Herein, we describe the synthesis of the
“missing” copper-based complexes of the type Cu(NN)(BINAP)BF4, their evaluation in
photochemical processes and preliminary biological testing against triple-negative breast
cancer cell lines.
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supplementary materials) (Figure 2). Our hypothesis was that the small-bite-angle 

oriented the phenyl groups of the phosphine over the copper center, which is already 

encumbered by the methyl groups found on the diimine ligands. Attempts at conducting 

the synthesis in other solvents (PhME, THF, and mixtures thereof with CH2Cl2) did not 
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Experiments involving lower temperatures and/or slow addition of the bisphosphine 

were also non-productive. Repeated crystallization of crude reaction mixtures did 
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selectivities or yields that were synthetically useful. 

 

Figure 2. Synthesis of heteroleptic copper-based complexes using BINAP. 

Consequently, the BINAP-containing complexes were prepared with the analogous 

diimines dpq, dppz, and bdppz (Table 1). Gratifyingly, all three complexes were isolated 

in good yields (53–77%). When examining the photophysical data, the UV-vis absorption 

characteristics of the BINAP-containing photocatalysts did not change significantly with 

respect to the diimine. The absorption maxima are all within a narrow window (424–462 

nm), although the emission maxima are more spread out (560–625 nm) with lower-

wavelength emissions observed for the larger diimine ligands. Extinction coefficients and 

Figure 1. Small-bite-angle bisphosphine for heteroleptic copper-based complexes.

2. Results and Discussion

Heteroleptic complexes are typically formed by sequential addition of the diimine
and bisphosphine ligands to a copper salt in a solvent, followed by precipitation. When
the synthesis of heteroleptic Cu(I)-based photocatalysts using BINAP and the ligands
ddpq, ddppz, or dbdppz− [27] was attempted, the resulting solids were mixtures of the
corresponding hetero- and homoleptic complexes (1H-NMR and mass spectrometry, see
supplementary materials) (Figure 2). Our hypothesis was that the small-bite-angle oriented
the phenyl groups of the phosphine over the copper center, which is already encumbered
by the methyl groups found on the diimine ligands. Attempts at conducting the synthesis
in other solvents (PhME, THF, and mixtures thereof with CH2Cl2) did not result in a
shift in the equilibrium between heteroleptic and homoleptic complexes. Experiments
involving lower temperatures and/or slow addition of the bisphosphine were also non-
productive. Repeated crystallization of crude reaction mixtures did improve the ratio of
heteroleptic versus homoleptic complexes, but did not approach selectivities or yields that
were synthetically useful.
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Figure 2. Synthesis of heteroleptic copper-based complexes using BINAP.

Consequently, the BINAP-containing complexes were prepared with the analogous
diimines dpq, dppz, and bdppz (Table 1). Gratifyingly, all three complexes were isolated
in good yields (53–77%). When examining the photophysical data, the UV-vis absorption
characteristics of the BINAP-containing photocatalysts did not change significantly with re-
spect to the diimine. The absorption maxima are all within a narrow window (424–462 nm),
although the emission maxima are more spread out (560–625 nm) with lower-wavelength
emissions observed for the larger diimine ligands. Extinction coefficients and excited-state
lifetimes are again all relatively similar across the series. The short excited-state lifetimes
are to be expected, as the absence of both ortho-substitution on the diimines and the small
bite angle of the bisphosphine will not stabilize the geometry of the excited state. Excited
state reduction potentials all were in the range of ~1.0 eV which corresponds to what
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was observed with the complexes derived from ortho-substituted analogues having ddpq,
ddppz, and dbdppz ligands.

Table 1. Synthesis and Properties of Cu(I)-Based Photocatalysts of the Type Cu(NN)(BINAP)BF4.
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Entry NN PP Yield (%) a
λ max (nm) ε

(L/mol·cm)
τ

(ns) λ emm (nm) ET (eV) E
(* CuI/CuII)

1 ddpq 78 458 6760 3 680 1.82 −1.36
2 ddpq DPEPhos 84 382 4485 5 565 2.19 −1.26
3 ddpq XantPhos 85 386 3444 3 560 2.21 −1.72
4 ddpq dppf 91 380 3346 73 530 2.34 −1.15
5 dpq BINAP 75 424 5752 1.4 625 2.38 −1.02
6 ddppz 99 453 14428 4 762 1.63 −0.90
7 ddppz DPEPhos 78 380 17508 44 664 1.87 −1.12
8 ddppz XantPhos 91 380 12489 71 634 1.95 −0.82
9 ddppz dppf 79 380 17508 61 510 2.43 −1.59
10 dppz BINAP 77 433 6759 1.8 545 2.27 −1.26
11 dbdppz 82 412 25891 78 567 2.19 −1.34
12 dbdppz DPEPhos 77 409 16663 69 489 2.53 −1.82
13 dbdppz XantPhos 50 408 13754 75 565 2.19 −1.29
14 dbdppz dppf 79 413 11711 69 597 2.08 −0.80
15 bdppz BINAP 53 462 5930 2.3 560 2.21 −1.20

a Isolated yields following precipitation with Et2O; * The astericks demotes the excited state of Cu(I).

With the new BINAP-containing copper-based complexes, their evaluation in pho-
tocatalysis was performed and compared to analogous catalysts. Three mechanistically
distinct photocatalytic transformations were pursued. In a visible-light Appel-type reaction
(Figure 3) [28,29], the new BINAP-containing copper-based catalyst Cu(dpq)(BINAP)BF4
provided similar yields to other complexes having large-bite-angle bisphosphines. Note
that control reactions performed in the absence of light or in the absence of catalyst at 450 nm
did not afford any significant conversion to the alkyl bromide 2. However, as the π-surface
of the ligands grew, the BINAP-containing complexes of dppz and bdppz were all inferior
to analogous complexes having wide-bite-angle bisphosphines. Although the complexes of
dppz and bdppz had larger excited-state reduction potentials, it is possible that the com-
plexes with ligands with larger π-surfaces could be more unstable in solution. The stability
of various copper complexes with diimines having large π-surfaces was previously shown
to decrease with the size of the ligand in other photocatalytic processes [26]. However, it
should be noted that amongst other BINAP-derived complexes, the Cu(dpq)(BINAP)BF4
(66% of 2) was superior in the Appel-type reaction to other structurally similar complexes
such as Cu(dmp)(BINAP)BF4 (18% of 2) and Cu(phen)(BINAP)BF4 (45% of 2), suggesting
that the dpq offered some beneficial reactivity (Figure 4).
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type process.

The BINAP-containing catalysts were then compared to the previous series being
the ortho-substituted diimines in a reductive proton-coupled electron transfer (PCET)
reaction. Our group has previously used the homolytic activation of ketones to benchmark
complexes for their efficiency in a PCET process (Figure 5) [30] Previous evaluation with
the ortho-substituted series revealed very poor reactivity and low yields (0–20% yield).
Unfortunately, the screening with the new BINAP-containing complexes was equally
disappointing. Recent work suggests that the process is in fact a reductive quenching of the
Cu-based photocatalysts in the excited state [31,32] The electron-rich π-extended ligands
would not be favorable in such a mechanism. Furthermore, given the results from the
oxidative quenching in the Appel process, it is clear that the bisphosphine is not playing a
significant role in altering the excited-state redox potentials of the resulting complexes.
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The last evaluation of the new BINAP-containing Cu-based photocatalysts was via en-
ergy transfer for the transformation of vinyl azides to the corresponding pyrrole (Figure 6) [33].
Given that the new complexes had neither wide-bite-angle phosphines or ortho-substituted
diimines to stabilize the excited state, the yields of the pyrrole were expected to drop. Note
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that the excited-state lifetimes of the new BINAP-containing complexes were all approxi-
mately an order of magnitude less than analogous complexes (e.g., Cu(bdppz)(XantPhos)BF4
τ = 71 ns; Cu(dppz)(BINAP)BF4 τ = 1.8 ns). Indeed, the yields of the pyrrole 6 with the
BINAP-containing complexes (21–23% of 6) were barely above the observed background
reaction in the absence of any catalyst at 450 nm (19% of 6). A further comparison of
Cu(phen)(BINAP)BF4 (38% of 6) and Cu(dpq)(BINAP)BF4 (21% of 6) showed that the dpq
ligand had a deleterious effect on the energy transfer process. It should be noted that
good yields of the pyrrole are possible when switching to any ligand known to extend the
excited-state lifetimes (Figure 7). For example, using an ortho-substituted diimine ligand in
a complex with BINAP affords quantitative yields of the product (Cu(dmp)(BINAP)BF4,
99% of 6). In addition, using a wide-bite-angle bisphosphine also affords a quantitative
yield of 6 (Cu(dppz)(XantPhos)BF4, 99% of 6).
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Given the recent interest in copper-containing complexes for medicinal chemistry [34–36],
it was decided to test the most soluble of the new BINAP-containing complexes against
triple-negative breast cancer cell lines (MBA-MB-231) (Figure 8). The viability of the cell
lines was evaluated with the Cu(dpq)(BINAP)BF4 and Cu(dppz)(BINAP)BF4 complexes
(5 µM, entries 1 and 2, respectively) and both displayed approximately 25–35% viability.
Controls performed from the dpq, dppz, and BINAP ligands (entries 10–12) demonstrated
that biological activity was originating from the metal complexes themselves. While a
homoleptic complex Cu(BINAP)2BF4 was poorly active, the homoleptic complexes derived
from the diimines showed low cell viabilities, with Cu(dppz)2BF4 being the most active of
all complexes tested. Finally, given that the BINAP used in the above photocatalysis and
biological evaluations was racemic, we prepared and evaluated the enantiomer variants
of the dpq- and dppz-containing complexes. Interestingly, for the dpq complexes, the (S)-
BINAP-containing complex Cu(dpq)((S)-BINAP)BF4 was approximately twice as active as
the analogous (R)-BINAP complex. The copper complexes of dppz bearing either (S)- or
(R)-BINAP did not show any difference in activity. The complex [Cu(MeCN)4]BF4 (10 µM)
had negligible effects on cell viability (>75%), indicating that the complexes, rather than
free copper, were responsible for biological activity.
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Figure 8. Viability of MDA-MB-231 cells at 5 µM. MDA-MB-231 cells were seeded at the density of
7000 cells per well in 96-well plates; plates were incubated overnight. The cells were then treated
with growth media containing 5 µM of the copper complexes (entries 1–9) or controls (entries 10–12)
and allowed to incubate at 37 ◦C for 72 h. The viabilities of cells were finally determined by MTT
assay and converted to percentages. Data are an average of three different experiments.

In summary, a series of copper-based photocatalysts of the type Cu(NN)(BINAP)BF4
were synthesized bearing π-extended diimine ligands. Their behavior in several photocat-
alytic processes was evaluated and revealed the following:

1. Copper-based complexes derived from BINAP with π-extended diimine ligands
without ortho-substitution did not show significant different photophysical properties
when compared to analogous complexes with the exception of the excited state
lifetime, which decreased by approximately an order of magnitude.

2. The new BINAP-containing complexes were active in the visible-light Appel-type
process, with the Cu(dpq)(BINAP)BF4 complex having slightly better activity than
analogous complexes derived from phen of dmp ligands.

3. The new BINAP-derived complexes did not afford complexes active for a PCET
process.

4. In an energy transfer process, high yields of the desired product could be obtained with
either BINAP or the dpq, dppz, and ddppz diimines through judicious choice of the
accompanying ligand. For example, Cu(dmp)(BINAP)BF4 and Cu(dppz)(XantPhos)BF4
afforded quantitative yields of the product.

5. In addition to the photocatalysis, the copper complexes were evaluated for the first
time in a medicinal chemistry context against triple-negative breast cancer cell lines.
Controls indicated that copper complexes, and not their ligands, were responsible for
activity. Encouraging activity was displayed by a homoleptic complex Cu(dppz)2BF4.
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