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Both basic pathomechanisms underlying Alzheimer’s disease and some

premises for stipulating a possible preventive role of some sirtuins, especially

SIRT1 and SIRT3, protective against Alzheimer’s disease-related pathology, are

discussed in this article. Sirtuins can inhibit some processes that underlie

Alzheimer’s disease-related molecular pathology (e.g., neuroinflammation,

neuroinflammation-related oxidative stress, Aβ aggregate deposition, and

neurofibrillary tangle formation), thus preventing many of those pathologic

alterations at relatively early stages of their development. Subsequently, the

authors discuss in details which mechanisms of sirtuin action may prevent the

development of Alzheimer’s disease, thus promoting brain homeostasis in the

course of aging. In addition, a rationale for boosting sirtuin activity, both with

allosteric activators and with NAD+ precursors, has been presented.
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Introduction

Alzheimer’s disease (AD) is a neurodegenerative disorder, clinically manifesting with

a progressive loss of memory and cognitive functions (Scheltens et al., 2016; Fernando and

Wijayasinghe, 2021). Histopathologic findings in AD patients’ brains usually occur much

earlier than clinical manifestations of the disease; they include β-amyloid deposition in the

interneural space and accumulation of abnormal, hyperphosphorylated tau proteins

within neurons (Sperling et al., 2011; Kumar et al., 2015; Hanseeuw et al., 2019).

Review

General pathomechanisms of Alzheimer’s disease

β-amyloid deposits, referred to as Aβ aggregates, are produced during degradation of

amyloid-precursor protein (APP) which is quite large transmembrane glycoprotein,

cleaved by β- and γ-secretases to about 40-aminoacid peptides called Aβ monomers
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(Zheng and Koo, 2011; Chen et al., 2017). APP protein itself is

quite abundant in the brain, playing a signaling role in neuronal

development, maintenance of synapses, and neuronal

homeostasis (van der Kant and Goldstein, 2015). Some Aβ

monomers tend to condensate into insoluble oligomers, in the

form of fibrils or plaques. Senile plaques, very characteristic for

AD, contain mainly fibrillary proteins referred to as Aβ1-42. Aβ

neurotoxicity is attributed mainly to its soluble oligomeric form,

which is capable to disrupt intraneuronal calcium homeostasis

through causing an excessive calcium influx into the neurons,

with a subsequent mitochondrial damage and neuronal death

(Arispe et al., 1993; Zhao et al., 2012; Colvin et al., 2016; Wälti

et al., 2016) (Supplementary Data Sheet S1). In some mouse

models of AD, progressive deposition of Aβ aggregates is found

mainly in hippocampus and cerebral cortex (Zhao et al., 2012).

Intraneuronal deposition of abnormal tau proteins can usually be

observed within a few years after the onset of Aβ deposition in the

interneural space (Musiek and Holtzman, 2015; Sasaguri et al.,

2017). Tau protein itself is a microtubule-associated protein,

stabilizing the microtubules and thus significant for axonal

transport. Abnormal phosphorylation of tau proteins results

in their dissociation from microtubules and formation of

fibrillary structures called neurofibrillary tangles (NFTs) (Iqbal

et al., 2010; Wang and Mandelkow, 2016). Intraneuronal

accumulation of NFTs results in neuronal malfunction,

followed by neuronal death.

In addition, abnormalities in cerebral metabolism of

cholesterol have been found in Alzheimer’s disease (Feringa

and van der Kant, 2021). Accumulation of cholesterol within

neurons promotes APP interactions with β- and γ-secretases,

resulting in the production of aforementioned Aβ aggregates (Di

Paolo and Kim, 2011). Because apolipoprotein E regulates

cholesterol transport to the brain and lipid rafts function in

astrocytes, a positive correlation can be found between AD risk

and possessing certain alleles of apolipoprotein E-encoding gene

(Corder et al., 1993; Wang et al., 2021).

Neuroinflammation and its role in the
pathogenesis of AD

In addition to accumulation of abnormal protein

aggregates, neuroinflammation—i.e., inflammation within

the central nervous system (CNS) also plays a role in the

pathogenesis of AD (Heneka et al., 2015; Heppner et al.,

2015; Calsolaro and Edison, 2016; Hampel et al., 2020).

Neuroinflammatory response is an element of innate

immunity, dependent on many types of cells, including

microglial cells, astrocytes, cerebral vascular endothelial

cells, mast cells and leukocytes reaching the cerebrospinal

fluid through abnormally permeable blood-brain barrier

(Das Sarma, 2014; ’t Hart and den Dunnen, 2013).

However, in the further part of this work, we focus mainly

on microglial cells and astrocytes (Colombo and Farina,

2016; Ransohoff, 2016). The problem with

neuroinflammation is that it can be potentially neurotoxic

in its chronic form, despite being useful and neuroprotective

in its acute form, through removal of pathogens from the

brain (Kinney et al., 2018). Pro-inflammatory activity of

microglial cells tends to increase with age, resulting in the

increased production of pro-inflammatory mediators,

inducing neuroinflammation, and increased permeability

of blood-brain barrier (Schuitemaker et al., 2012; Elahy

et al., 2015). Microglial cells obtained from old people

show abnormalities in their morphology and function,

impairing phagocytosis, proteostasis, and cell capability

for migration (Mosher and Wyss-Coray, 2014).

Furthermore, neuroinflammation can be additionally

aggravated by the presence of abnormal protein

aggregates, such as Aβ aggregates (Zenaro et al., 2017). In

AD patients, a positive correlation is observed between the

abundance of Aβ aggregates and intraneuronal deposits of

tau proteins, and the extent of pro-inflammatory phenotype

induction in microglial cells and blood-brain barrier

permeability (Parbo et al., 2017; Dani et al., 2018;

Nordengen et al., 2019). Microglial cells which have

transited from their homeostatic phenotype to pro-

inflammatory phenotype are located mainly in the vicinity

of senile plaques (Heneka et al., 2015; Navarro et al., 2018).

Aβ aggregates are responsible for such phenotypic transition

of microglial cells, which results in the induction of many

pro-inflammatory mediators promoting neuronal deaths,

such as IL-1β, IL-6, TNF-α, chemokines, nitric oxide and

prostaglandins (Glass et al., 2010). In addition, it is supposed

that neuroinflammation can promote NFT formation in AD

patients (Kitazawa et al., 2004; Kinney et al., 2018).

Moreover, elevated concentrations of circulating pro-

inflammatory cytokines (IL-1, IL-6, TNF-α) have been

found in people suffering from dementia (Koyama et al.,

2013; Lai et al., 2017; Darweesh et al., 2018; Shen et al., 2019).

Microglial cells comprise a component of innate

immunity and are basically derived from macrophages

(Ginhoux et al., 2010). Main functions of their

homeostatic, phenotypically quiescent forms in healthy

brain include elimination of pathogens, repairing tissue

damage, immune surveillance, and homeostatic functions

(maintenance of neurogenesis, neuronal plasticity, and

synaptic well-being, thus promoting proper cognitive

skills) (Nimmerjahn et al., 2005; Ji et al., 2013; Parkhurst

et al., 2013). Phenotype of microglial cells can be switched

from homeostatic to pro-inflammatory by pathogen-

associated molecular patterns (PAMPs) and damage-

associated molecular patterns (DAMPs), such as

lipopolysaccharides of bacterial walls (LPS), misfolded

proteins, or even some pesticides and air pollutants (Lull

and Block, 2010). Such phenotypically switched microglial
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cells change their morphology, as well as activate

phagocytosis and inflammation-associated signaling

pathways (ElAli and Rivest, 2016; Minter et al., 2016;

Salter and Stevens, 2017). In addition, the extent of this

kind of phenotypic alteration of microglial cells increases

with age, along with other innate immunity associated pro-

inflammatory phenomena, such as toll-like receptor (TLR)

signaling and inflammasome activation (Sierra et al., 2007;

Cribbs et al., 2012). Several kinds of receptors mediate

microglial cell phenotypic transition from homeostatic to

pro-inflammatory, including TLRs, nucleotide-binding

oligomerization domain-like receptors (NLRs), receptors

for advanced glycation products, formyl peptide receptors,

scavenger receptors, and receptors for immunoglobulin Fc

fragments and complement components (Doens and

Fernández, 2014; Fiebich et al., 2018). In the course of

Alzheimer’s disease, microglial cells interact with Aβ

aggregates through such receptors as TLR2, TLR4, TLR6,

TLR9, scavenger receptors such as CD36, CD37, and

scavenger receptor A1 (SR-A1), as well as receptors for

advanced glycation products and complement

components, like complement receptor 3 (CR3) (Doens

and Fernández, 2014; Fiebich et al., 2018). In the course

of aging, as well as in metabolic syndrome-associated

systemic inflammation, microglial cells can be abnormally

recruited to induce neuroinflammation (Perry and Teeling,

2013; Niraula et al., 2017). Both metabolic syndrome-

associated systemic inflammation and aging-associated

systemic inflammation are characterized by increased

plasma concentrations of IL-6 and TNF-α, which is

positively correlated with cognitive impairment and AD-

resembling symptoms. This may suggest that such

symptoms are mediated by phenotypic switching of

microglial cells from their homeostatic/surveillant

phenotype to pro-inflammatory phenotype, due to

increased systemic concentration of pro-inflammatory

cytokines (Holmes et al., 2011).

Studies on mouse models of AD indicate that LPS-

stimulated microglial cells produce increased amounts of

IL-1β which in turn stimulates astrocytes to produce

chemokines, such as chemokine C-C motif ligand 2

(CCL2), chemokine C-X-C motif ligand 1 (CXCL1) and

chemokine C-X-C motif ligand 10 (CXCL10) (Lopez-

Rodriguez et al., 2021). Results of those studies suggest

that microglia-astrocyte interactions in response to

microglial cell acquiring a pro-inflammatory phenotype

may aggravate neuroinflammation, which can sometimes

result in the impairment of cognitive functions (González-

Reyes et al., 2017). Microglial cells which have acquired a

pro-inflammatory phenotype in Aβ-dependent manner may

adhere to the sites of Aβ deposition as disease-associated

microglia (DAM) (Keren-Shaul et al., 2017; Shahidehpour

et al., 2021). In early stages of AD, DAM cells can be useful,

removing Aβ aggregates in triggering receptor expressed on

myeloid cells 2 (TREM2)-dependent manner (Keren-Shaul

et al., 2017; Ulland and Colonna, 2018). Possessing some

rarely occurring alleles of TREM2 encoding gene is a risk

factor of late-onset Alzheimer’s disease (Gratuze et al., 2018).

In the course of aging, replicative stress imposed on

microglial cells can hinder their efficacy in Aβ clearance,

which may promote Aβ deposits growing larger (Hu et al.,

2021). This may in turn functionally overload microglial

cells, decreasing the effectiveness of phagocytosis because of

reduced expression of Aβ-binding proteins, such as SR-A1,

CD36 and receptor for advanced glycation products (RAGE),

as well as reduced expression of Aβ-degrading enzymes

(Hickman et al., 2008). Overaccumulation of Aβ

aggregates in DAM cells may also promote

neuroinflammation through stimulating the expression of

pro-inflammatory mediators (IL-1, IL-6, TNF-alfa) as well as

other neurotoxic substances that can promote the progress of

AD (e.g., nitric oxide and superoxide anion) (Block et al.,

2007; Hickman et al., 2008; Smith et al., 2012; Deczkowska

et al., 2018). Furthermore, intracellular accumulation of Aβ

aggregates may result in microglial cell necrosis, with a

subsequent release of Aβ aggregates back to the

extracellular space, which can further promote Aβ

deposits enlargement (Baik et al., 2016). Phagocytic

efficacy of microglial cells can be restored by reducing Aβ

burden (Krabbe et al., 2013). Since chronic and excessive

imposing of pro-inflammatory phenotype on microglia

promotes formation of neurofibrillary tangles

(intraneuronal deposits of tau proteins), moderating this

kind of microglial cell phenotypic transition is considered

to be a potentially useful strategy in the prevention and

treatment of Alzheimer’s disease (Kitazawa et al., 2004).

Pro-inflammatory signaling pathways
within microglial cells

Aβ binding toTLR receptors onmicroglial cells activates the same

signaling pathways as are generally used for pathogen destruction.

Directly, it can activate myeloid differentiation primary response

(Myd88) transcription factor, which can transactivate other

transcription factors, including nuclear factor kappa B (NF-κB)
(Kawai and Akira, 2007). Active NF-κB may in turn promote the

production of pro-IL-1β and NLR family pyrin domain containing 3

(NLRP3) cytoplasmic receptor (Bauernfeind et al., 2009). IL-1β is the

main pro-inflammatory cytokine associated with neuroinflammation

in the course of Alzheimer’s disease (Shaftel et al., 2008). In addition, it

has been found that increased IL-1β expression in human microglial

cells in the course of aging is underlied by a selective hypomethylation

of IL-1β gene proximal promoter (Cho et al., 2015). However, IL-1β is

synthesized in the form of inactive precursor—pro-IL-1β which can

be transformed to IL-1β in the presence of active caspase 1, an
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intracellular pro-inflammatory caspase (Halle et al., 2008). Caspase

1 is also produced in the form of its inactive precursor—procaspase 1,

and transforming of procaspase 1 to caspase 1 requires its proteolytic

processing in inflammasomes, the most important being

NLRP3 inflammasome. NLRP3 inflammasome consists of

NLRP3 receptor, apoptosis-associated speck-like protein containing

a CARD (ASC protein), and caspase 1 protease. Inflammasomes are

responsible for detection of potential tissue insults and inducing an

inflammatory response if such insults are indeed detected.

NLRP3 inflammasome can be stimulated by several factors at the

level of inflammasome assembly activation. Those factors include

potassium efflux from intracellular fluids, reactive oxygen species

(ROS), mitochondrial and phagolysosomal damage, as well as

pathogens, such as bacteria, viruses, fungi and parasites (He et al.,

2016; Zheng et al., 2020). Overexpression of active caspase 1 in

microglial cells has been found in patients suffering from mild

cognitive impairment or AD (Heneka et al., 2013). In addition,

NLRP3 receptor expression is also transcriptionally controlled by

NF-κB (Bauernfeind et al., 2009). It has been recently found that

fibrillary Aβ aggregates can directly activate NLRP3 inflammasomes

in microglial cells, which promotes caspase 1 activation (Nakanishi

et al., 2018; Lučiūnaitė et al., 2020). Moreover, it has been confirmed

that NLRP3 inflammasome indeed contributes to Aβ deposits

formation in mice (Venegas and Heneka, 2019). In physiology, IL-

1β can increase core body temperature through stimulation of

thermoregulation center in the hypothalamus. In addition, IL-1β

can promote sleep and sickness behavior in response to infections.

While small amounts of IL-1β can promote long term potentiation

(LTP) and thus acquisition of cognitive skills, large amounts of IL-1β

are thought to be detrimental in the course of AD, mainly through

suppression of hippocampal neurogenesis (Hevett et al., 2012).

Inflammasome activation in mouse microglial cells has

been found to promote formation of neurofibrillary tangles

(Ising et al., 2019). This phenomenon is mediated by increased

phosphorylation of tau proteins by p38 kinase, stimulated by

IL-1 (Li et al., 2003). In addition, pro-inflammatory stimuli,

such as lipopolysaccharide (LPS) have also been found to

promote hyperphosphorylation of tau proteins by cyclin-

dependent kinase 5 (CDK-5), which can in turn be

stimulated by IL-6 (Quintanilla et al., 2004; Kitazawa et al.,

2005).

Mechanisms of microglial cell contribution to

neuroinflammation and cognitive impairment in the course

of Alzheimer’s disease are graphically illustrated in Figure 1

Sirtuin functions and their expression in
the CNS

Sirtuins comprise a family of evolutionarily conserved

enzymes performing NAD+ dependent protein

deacetylation/deacylation (North and Verdin, 2004).

Sirtuins have been initially discovered as transcription

silencing factors in yeast, extending yeast replicative

lifespan through histone deacetylation, resulting in

heterochromatin formation and silencing mating-

FIGURE 1
Microglial cell response and neuroinflammation in the pathomechanism of cognitive impairment—the main symptom of Alzheimer’s disease.
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associated genes (Kaeberlein et al., 1999; Imai et al., 2000).

More recently, sirtuins have been found to extend lifespan, or

at least healthspan, in flatworms, fruit flies and mice (Imai

and Guarente, 2016). In addition, sirtuin induction has been

associated with caloric restriction-dependent lifespan

extension in mammals (Bishop and Guarente, 2007;

Guarente, 2013). Seven sirtuins have been identified in

mammals so far; they can possess various enzymatic

activity profiles and different subcellular location, but all

of them share evolutionarily conserved catalytic core,

consisting of NAD+ binding domain and zinc binding

domain. Sirtuin domains other than aforementioned

catalytic core seem to take part in substrate recognition

and activity regulation (Feldman et al., 2012). Sirtuins can

deacetylate both histone and non-histone substrates,

including transcription factors, manganese superoxide

dismutase (MnSOD) and tubulin. Mammalian sirtuins

(SIRT1—7) have different profiles of action, substrate

affinity, and subcellular compartmentation. Yet, all of

them share a similar catalytic domain and use NAD+ as a

co-substrate. Although initially identified as deacetylases,

sirtuins are now known to have much more kinds of

enzymatic activity, including deacylase and O-ADP-

ribosylase activity (Michan and Sinclair, 2007). SIRT3,

SIRT4, and SIRT5 are mitochondrial proteins, while

SIRT1, SIRT6 and SIRT7 are nuclear enzymes, and—as

such—can take part in the epigenetic regulation of cell

phenotype, especially that they target histones and

transcription factors. SIRT2 can be shuttled between

nucleus and cytoplasm, depending on the phase of the cell

cycle. Through exerting posttranslational regulatory

modifications (PTRMs) on their target substrates, sirtuins

can regulate a plethora of intracellular processes, such as

energy expenditure, metabolic pattern, ROS concentration,

DNA conservation, DNA damage repair, and cellular aging

(Michan and Sinclair, 2007; Haigis and Sinclair, 2010;

Houtkooper et al., 2012).

Sirtuins are quite abundantly expressed in the brain

(Sidorova-Darmos et al., 2014; Jayasena et al., 2016).

There is much evidence that various sirtuins are produced

in different regions of the brain, while their activity can

change with age. Furthermore, sometimes sirtuins’

enzymatic activity becomes reduced with age, despite their

concentration increasing, which has been confirmed in mice

in reference to SIRT1 and is generally attributed to falling

concentration of NAD+ within cells (Braidy et al., 2015).

However, in some circumstances, e.g., in rat hippocampal

cells, SIRT1 expression becomes also reduced with age (Yan

et al., 2019). The same problem may exist in reference to

mitochondrial sirtuins (SIRT3-5) (Braidy et al., 2015). In

neurons and glial cells cultured in vitro, the most expressed

sirtuins include SIRT1-3 (Jayasena et al., 2016). Moreover,

the levels of SIRT1 and SIRT3 in AD patients brains are

reduced (Lutz et al., 2014; Lee et al., 2018; Yin et al., 2018). In

addition, even in the plasma obtained from old mammals,

SIRT1 and SIRT3 concentrations are decreased, which is

correlated with general frailty (Kumar et al., 2014). In AD

patients serum levels of SIRT1 are reduced, while

SIRT6 levels are also reduced—both in the CNS and in the

plasma, both in AD patients and in mouse models of AD

(Kumar et al., 2013; Jung et al., 2016; Kaluski et al., 2017).

The role of sirtuins in maintenance of brain
homeostasis and prevention of Alzheimer’s
disease

Sirtuins play an important role in the maintenance of

neuronal well-being during aging (Herskovits and Guarente,

2014). In addition, they regulate many AD-associated

processes, including APP processing, tau protein processing,

mitochondrial functions, oxidative stress level, and

neuroinflammation (Lalla and Donmez, 2013; Jęśko et al.,

2017; Lee et al., 2018; Mohamad Nasir et al., 2018; Rizzi and

Roriz-Cruz, 2018).

Sirtuin actions inhibiting Aβ aggregate formation
and promoting their degradation

SIRT1 inhibits Aβ aggregate production through

activating a disintegrin and metalloproteinase domain-

containing protein 10 (ADAM-10), and thus stimulating

APP processing to non-amyloidogenic, soluble

metabolites, called soluble APPα (sAPPα) (Qin et al.,

2006; Lee et al., 2014; Zhang et al., 2020). Furthermore,

SIRT1 facilitates Aβ peptide degradation by upregulating

lysosome number in primary astrocytes (Li et al., 2018).

SIRT1 levels in cerebral cortex of AD patients are reduced,

and decreased SIRT1 concentration and activity are positively

correlated with Aβ deposits formation in the extracellular space

and NFT formation inside neurons (Julien et al., 2009).

Furthermore, caloric restriction as a classic SIRT1 inducer

alleviates Aβ-dependent pathology on animal models of AD

(Wang et al., 2005; Qin et al., 2006). Aβ aggregates can

reduce the expression of SIRT6 which is important for DNA

damage repair and maintenance of genomic stability (Kugel and

Mostoslavsky, 2014; Jung et al., 2016). Increased expression of

SIRT6 may protect hippocampal neurons from Aβ-dependent

DNA damage (Jung et al., 2016). Main mechanisms underlying

inhibitory actions of SIRT1 towards Aβ aggregate deposition and

related pathology are graphically illustrated in Figure 2.

Sirtuin actions inhibiting NFT formation through
preventing hyperphosphorylation of tau
proteins

NFT formation is usually preceded by increased

posttranslational regulatory modifications of tau proteins, such

as phosphorylation and acetylation (Wang and Mandelkow,

2016; Guo et al., 2017). Acetylation of tau proteins inhibits
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their degradation, especially in reference to their phosphorylated

forms, which promotes tau accumulation and neurotoxicity (Min

et al., 2010; Cohen et al., 2011; Min et al., 2015; Tracy et al., 2016).

In mouse models of tauopathy, SIRT1 overexpression or

activation counteracts tau acetylation, which alleviates tau-

related neurotoxicity (Min et al., 2018). It has been also

shown that tau acetylation in mice can be promoted by Aβ

aggregates through inhibition of SIRT3 expression (Yin et al.,

2018). In mouse hippocampal neurons, SIRT3 activity induction

reduces the extent of tau acetylation, while SIRT3 inhibition has

the opposite effect (Li et al., 2019). Phosphorylation of tau

proteins may be prevented by SIRT6 which inhibits glycogen

synthase kinase 3 (GSK3) as a tau-phosphorylating enzyme

(Kaluski et al., 2017).

The key actions of sirtuins, preventing NFT formation, are

presented graphically in Figure 3.

FIGURE 2
The key role of SIRT1 in supporting neuroprotective action of SIRT6 through preventing Aβ aggregates formation.

FIGURE 3
The key role of SIRT1 in both, inhibiting NFTs formation through preventing hyperphosphorylation of tau proteins and recovering activities of
SIRT3 and SIRT6 through preventing Aβ aggregates formation.
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Anti-neuroinflammatory actions of
sirtuins, through inactivation of
p65 subunit of NF-κB

NF-κB activation may occur through the canonical or non-

canonical pathway. Still, in standard conditions, the canonical

pathway is blocked by default due to IkB proteins, which

sequestrate NF-κB in the cytoplasm. However, pro-

inflammatory stimuli may activate IkB kinase (IKK), which

promotes IkB degradation through inhibitory phosphorylation,

and thus relocation of NF-κB to the cell nucleus. Sirtuins may

inhibit NF-κB both directly and indirectly. Firstly—SIRT1 and

SIRT2 can deacetylate NF-κB’s p65 subunit at lysine 310, which

directly inhibits NF-κB activity (Yeung et al., 2004).

Furthermore, such acetylation impedes methylation of

adjacent lysine residues (K314 and K315), promoting

ubiquitination and degradation of p65 (Rothgiesser et al.,

2010; Yang et al., 2010). Secondly—SIRT1 can inhibit NF-κB
through inhibitory phosphorylation of its transcriptional

activators, such as PARP-1 and p300 histone acetyltransferase

(Bouras et al., 2005; Rajamohan et al., 2009). Thirdly—SIRT1 and

SIRT6 may inhibit the expression of NF-κB target genes due to

transcriptional silencing through H3K9 DAC (Kawahara et al.,

2009). In this way, SIRT1 exerts anti-inflammatory actions,

counteracting neuroinflammation. Aβ interactions with

microglial cells promote p65 subunit acetylation, while

SIRT1 activation or overexpression prevents this effect.

Therefore, SIRT1 protects CNS from Aβ neurotoxicity

through inhibiting NF-κB dependent pro-inflammatory

signaling pathway (Chen et al., 2005; Yang et al., 2012).

SIRT6 can induce the production of IkB at the level of

transcription, which exerts an anti-inflammatory effect

because IkB blocks the canonical pathway of NF-κB activation

by default (Kawahara et al., 2009). In addition, SIRT6 may both

desensitize cells to TNF-alpha, an upstream inducer of NF-κB,
and inhibit TNF-alpha secretion. SIRT1 and SIRT6 actions

described above are primarily responsible for their anti-

inflammatory effects.

In addition, SIRT1 inhibits the production of IL-1β, a pro-

inflammatory cytokine. This effect is dependent on activatory

deacetylation of DNA (cytosine-5)-methyltransferase 1

(DNMT1)—an enzyme that inhibits biosynthesis of IL-1β at

the level of transcription, through DNA methylation at IL-1β

proximal promoter (Peng et al., 2011; Cho et al., 2015; Heo et al.,

2017). If SIRT1 activity is reduced with age, the extent of DNA

methylation at IL-1β proximal promoter is also reduced, which

can facilitate IL-1β biosynthesis at the level of transcription, thus

aggravating neuroinflammation. SIRT1 activators, such as

resveratrol, can prevent this effect (Yan et al., 2019).

SIRT2 can also inhibit neuroinflammation through direct

deacetylation of p65 at lysine 310 (Rothgiesser et al., 2010; Pais

et al., 2013). SIRT2 inhibition may promote transition of

microglial cells from homeostatic/quiescent phenotype to

pro-inflammatory phenotype on mouse model of traumatic

brain damage, through reactivation of NF-κB dependent pro-

inflammatory signaling pathway (Yuan et al., 2016). It has been

also found that SIRT2 overexpression in rats reduces

neuroinflammation exactly through p65 deacetylation

(Zhang and Chi, 2018). On the other hand, results of other

research studies reveal some potentially pro-inflammatory

actions of SIRT2. Inhibition of SIRT2 blocks NF-κB
molecule translocation to cell nucleus, thus abrogating TNF-

α and IL-6 expression in mouse microglial cells exposed to LPS.

Thus, SIRT2 seems to be necessary to induce LPS-dependent

neuroinflammation (Wang et al., 2016). Pharmacologic

inhibition of SIRT2 reduces TNF-α and nitric oxide

production in LPS-exposed microglial cells (Harrison et al.,

2018). Furthermore, SIRT2 inhibition attenuates α-synuclein
neurotoxicity on mouse models of Parkinson’s disease (Outeiro

et al., 2007; Chen et al., 2015). Similarly, SIRT2 inhibition in

mice alleviates cognitive deficits on mouse models of

Alzheimer’s disease, through inhibition of Aβ formation

(Biella et al., 2016). Although TNF-α signaling dependent on

TNF-R1 receptor is thought to be pro-inflammatory and thus

deleterious in the course of AD, TNF-α may also exert some

neuroprotective effects through acting on TNF-R2 receptors.

Since neuroprotective actions of TNF-αmay include protection

against demyelination, excitotoxicity and cerebral ischemia

(Probert, 2015), this may—at least in part—explain why

SIRT2 inhibition can be neuroprotective in some

circumstances. Therefore, further research studies are needed

to verify overall effect of SIRT2 and its inhibitors towards

neuroinflammation in the course of AD, although inhibitors

of TNF-α dependent signaling usually improve the cognitive

performance of AD patients (He et al., 2007). In general, the

outcome of NF-κB activation depends very much on the cell

type and the stimuli present, since it determines which signaling

pathway becomes activated. This may account for some

discrepancies related to SIRT2 activation/inhibition effects

towards inflammatory response.

Unlike TNF-α, IL-6 seems to have mainly deleterious

effects towards aging brain, through promoting gliosis and

inflammation, inhibiting LTP in hippocampal neurons,

enhancing the neurotoxic properties of NMDA, as well as

reducing adult neurogenesis in the hippocampal dentate gyrus

(Godbout and Johnson, 2004). Furthermore, severity of

dementia in the course of AD is positively correlated with

IL-6 concentration in serum (Kalman et al., 1997). When

having taken into consideration that IL-6 production is

stimulated by NF-κB and its upstream inducers, both

SIRT1 and SIRT6, which inactivate NF-κB, may exert their

beneficial effects on the brain exactly through possessing this

property.

Main preventive actions of sirtuins against both

neuroinflammation and neuroinflammation-related oxidative

stress are presented graphically in Figure 4.
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Sirtuin actions inhibiting
neuroinflammation and neuronal death
through their anti-oxidative effects

SIRT3, a mitochondrial sirtuin, is quite significant for

counteracting oxidative stress, since it both optimizes the

action of respiratory chain enzymes and activates MnSOD.

Therefore, SIRT3 inhibits ROS production and facilitates ROS

inactivation (Ansari et al., 2017; Meng et al., 2019). SIRT3 activity

falls during neuroinflammation in LPS-exposed microglial cells,

while SIRT3 activation can prevent both LPS-induced

neuroinflammation and mitochondrial dysfunction resulting

in microglial cell death (Zhou and Jiang, 2019). Microglia-

derived pro-inflammatory cytokines may induce apoptosis of

neural tissue stem cells, as well as inhibit their proliferation.

Using co-cultures of microglial cells and neural tissue stem cells,

it has been found that Aβ-induced microglial cell transition to

pro-inflammatory phenotype results in neural tissue stem cell

necrosis through cytokine-dependent inhibition of SIRT3 and

MnSOD, with a subsequent rise in intracellular ROS

concentration. SIRT3 activation or overexpression protects the

cells from such cytokine-dependent oxidative stress (Jiang et al.,

2017). SIRT3 also protects mice from cognitive deficits induced

by surgery/anesthesia brain injury. In old mice with cognitive

impairments, loss of function of both SIRT3 and MnSOD has

been found in hippocampal cells (Liu et al., 2021).

SIRT1 can also counteract oxidative stress through forkhead

box O3A (FoxO3A) deacetylation, resulting in MnSOD activation

by deacetylated FoxO3A (Brunet et al., 2004). As to SIRT3, it may

promote both FoxO3A deacetylation and direct activation of

MnSOD, also through deacetylation (Tao et al., 2014;

Rangarajan et al., 2015).

Both ROS and mitochondrial degradation products can exert

pro-inflammatory actions through activating

NLRP3 inflammasome (Zhou et al., 2011; Wilkins et al.,

2017). In this context, hyperactivation of inflammasomes as

innate immunity components may promote

neuroinflammation in the course of AD, while inflammasome

activity inhibition can prevent neuroinflammation (Venegas and

Heneka, 2019). This is why both SIRT1 and SIRT3 can prevent

neuroinflammation through their mitochondria-protective and

antioxidative effects (Zhang et al., 2017; Zou et al., 2018).

SIRT2 may also inhibit NLRP3 inflammasome through

deacetylation of α-tubulin, which is necessary in its acetylated

form for inflammasome activation (Misawa et al., 2015).

SIRT2 may also directly deacetylate pyrin domains significant

for inflammasome activation (He et al., 2020).

Growing evidence suggests that mitochondrial dysfunction

within CNS cells, as well as the resulting oxidative stress, are

strongly associated with Alzheimer’s disease (Manoharan et al.,

2016; Kausar et al., 2018; Llanos-González et al., 2020). In this

context, activation of SIRT1 and SIRT3 can prevent AD through

FIGURE 4
Anti-neuroinflammatory actions of sirtuins, through inactivation of p65 subunit of NF-κB, activation of DNMT1 and anti-oxidative effects.
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boosting their antioxidative and mitochondria-protective actions

(Woodbury et al., 2013; Ye et al., 2019).

Aβ aggregates can also activate NLRP3 inflammasome

through inducing phagolysomal damage in microglial cells,

followed by leakage of lysosomal proteases and cathepsin B

into the cytoplasm (Halle et al., 2008; Heid et al., 2013; Wu

et al., 2013; Campden and Zhang, 2019; Kelley et al., 2019). Since

SIRT1 inhibits Aβ aggregate formation, increasing its activity in

the brain may causally prevent AD-associated pathology (Gay

et al., 2020).

Conclusion: boosting sirtuins activity, especially in reference

to SIRT1 and SIRT3, both through allosteric activation and

through NAD+ replenishment, can be regarded as very

promising strategy of promoting brain homeostasis and AD

prevention, especially if the applied boosters are well-tolerated,

safe, and easily crossing the blood-brain barrier.

Discussion

Some pathomechanisms of Alzheimer’s disease have not

been addressed in this article. Those mechanisms not

addressed include: pathogenic role of some bacteria, such

as P. gingivalis, in the induction of neuroinflammation

(Dominy et al., 2019), as well as potentially pathogenic role

of some metals—especially aluminum—in promoting Aβ

aggregate oligomerization (Zhang et al., 2019). Similarly,

we have not discussed the detailed mechanisms of

neurotoxicity of misfolded proteins, such as tau proteins. In

spite of that, it can be assumed that neuroinflammation

etiology does not take part in the mechanisms of

neuroinflammation-alleviating action of sirtuins. In other

words, sirtuins can alleviate neuroinflammation regardless

of its cause, since they inhibit an essential pro-

inflammatory signaling pathway dependent on NF-κB.
Although eradication of pro-neuroinflammatory bacterial

infections is useful and desired, detailed microbiology of

those infections is not a topic of this paper, while AD-

promoting effect of such infections may occur either

through stimulated production of pro-inflammatory

cytokines in some regions adjacent to the CNS, so that

those pro-inflammatory cytokines can act on the CNS in a

paracrine manner, or through penetration of some bacterial

toxins through the blood-brain barrier, thus exerting a direct

neurotoxic effect.

As to the role of aluminum in the pathogenesis of

Alzheimer’s disease, it seems to basically consist in

promoting the oligomerization of peptides produced from

APP by β- and γ-secretases, which raises the risk of Aβ

aggregate formation. Since SIRT1 induction stimulates α-

secretases, thus reducing the risk of APP processing by β-

and γ-secretases, it can neutralize aluminum influence on the

CNS, because aluminum excess seems to be harmful only if

there is an already existing excess of β- and γ-secretase
products.

Another matter is de facto lack of empirical, measurable

effects of applying sirtuin boosters discovered so far on the course

of Alzheimer’s disease in hitherto performed clinical trials.

However, it should be taken into consideration that sirtuin

allosteric activators discovered so far do not cross blood-brain

barrier with 100% efficacy, while sirtuin activity boosters in the

form of close NAD+ precursors are not widely available in

pharmacy retail trade—either as medications or as dietary

supplements, which limits their use. In addition, it is worth

remembering that beneficial effects of sirtuins towards the course

of Alzheimer’s disease, discussed in this paper, are mainly

preventive, which means that empirical and measurable

confirmation of the sirtuins’ actions assumed may require

introducing the treatment with sirtuin activity boosters

15–20 years prior to the onset of AD clinical symptoms, in

case of detection of AD risk factors (e.g., Aβ deposits or Aβ-

associated alterations in neuroimaging). Moreover, hitherto

known allosteric activators of sirtuins, such as resveratrol

(SIRT1 activator), honokiol (SIRT3 activator), or

SRT1720 may require chemical modifications to improve their

crossing through blood-brain barrier, while sirtuin activity

boosters in the form of close NAD+ precursors require

introducing to the pharmaceutical retail market to provide

their broad availability for people who would like to use them

within the frames of AD prevention. Summing up: even if sirtuin

boosters as a possible method of AD prevention were introduced

today, their beneficial effects might be observed in a time interval

equivalent to the time amount usually required for a progression

of AD from its initial pathological and molecular manifestations

to its clinical stage.

Someone could ask whether a preventive action of sirtuin

activation refers to all sirtuins, or merely to those widely

described as neuroprotective. The answer is: probably such a

beneficial effects refer to all sirtuins, with only SIRT2 being a

possible exception, although even this is uncertain, since there are

some results of research studies indicating anti-inflammatory

actions of SIRT2 (Rothgiesser et al., 2010; Pais et al., 2013; Yuan

et al., 2016).

Another possible question is whether sirtuins are the only

enzymes using NAD+ as a coenzyme/co-substrate. According to

current knowledge, the answer is “no”, because there are strong

premises to claim that beneficial effects of NAD+ replenishment

are strictly correlated exactly with boosting the activity of sirtuins

(Imai and Guarente, 2016), while focusing on all enzymes using

NAD+ as a coenzyme would largely exceed the scope of this

paper.

The question related to the previous one is whether using

close metabolic precursors of NAD+ affects the activity of

enzymes other than sirtuins. The answer is “yes”, and thus it

cannot be excluded that at least some beneficial effects of NAD+

replenishment strategies are mediated by affecting enzymes other
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than sirtuins (e.g., poly-ADP-ribosyltransferases,

glycohydrolases, mitochondrial enzymes coupling TCA

reactions with oxidative phosphorylation and ATP

biosynthesis). In other words, it is possible that NAD+

replenishment exerts its beneficial effects through affecting the

activity of enzymes other than sirtuins. Although there are some

premises that NAD+ precursors exert their beneficial effects

indeed through sirtuin activation (Guarente, 2013; Imai and

Guarente, 2016), additional research studies should be made

to pinpoint the mechanisms of action of NAD+ replenishment

strategies by comparing the phenotypic beneficial effects related

to NAD+ replenishment with the effects achieved through

selective overexpression of particular sirtuins. This kind of

research studies may be necessary to verify whether NAD+

replenishment effects are sirtuin-specific or not.
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