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Abstract

Aging is a complex process with poorly understood genetic mechanisms. Recent studies

have sought to classify genes as pro-longevity or anti-longevity using a variety of machine

learning algorithms. However, it is not clear which types of features are best for optimizing

classification performance and which algorithms are best suited to this task. Further, perfor-

mance assessments based on held-out test data are lacking. We systematically compare

five popular classification algorithms using gene ontology and gene expression datasets as

features to predict the pro-longevity versus anti-longevity status of genes for two model

organisms (C. elegans and S. cerevisiae) using the GenAge database as ground truth. We

find that elastic net penalized logistic regression performs particularly well at this task. Using

elastic net, we make novel predictions of pro- and anti-longevity genes that are not currently

in the GenAge database.

Author summary

Aging is a complex process with poorly understood genetic mechanisms. Recent studies

have sought to classify genes as pro-longevity or anti-longevity using a variety of machine

learning algorithms. However, it is not clear which types of features are best for optimiz-

ing classification performance and which algorithms are best suited to this task. Further,

performance assessments based on held-out test data are lacking. We systematically com-

pare five popular classification algorithms using gene ontology and gene expression data-

sets as features to predict the pro-longevity versus anti-longevity status of genes for two

model organisms (nematode worms and yeast) using the GenAge database as ground

truth. We find that elastic net penalized logistic regression performs particularly well at

this task. Using elastic net, we make novel predictions of pro- and anti-longevity genes

that are not currently in the GenAge database.

Introduction

Identifying the genetic and molecular basis of aging is a longstanding goal in medical science

[1, 2]. Advances in aging research have uncovered several common denominators of aging
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that are conserved across a wide range of organisms [3], and several drugs have been identified

that have remarkable pro-longevity effects in model organisms [4]. However, much remains

unknown about the biology of aging.

Many studies have investigated whether individual genes are pro-longevity or anti-longev-

ity on a case-by-case basis [5]. Typically, an intervention such as a knockout/knockdown or

overexpression is applied to a small number of genes in a model organism such as nematode

worm (Caenorhabditis elegans) or yeast (Saccharomyces cerevisiae) followed by quantification

of lifespan. A gene is considered pro-longevity if its expression is directly related to lifespan—

for instance, if overexpression increases lifespan or underexpression decreases lifespan [6].

Conversely, a gene is considered anti-longevity if its expression is inversely related to lifespan.

Meanwhile, many genes do not fall clearly into either category, for instance, a gene might have

no discernable effect on lifespan. The GenAge database [6] contains a catalogue of putative

pro- and anti-longevity genes based on current evidence.

Pro/anti-longevity genes can be identified by intervening on individual genes, but this is

slow and expensive. Alternatively, a common technique is to randomly knock out or disrupt

many genes in a population of organisms, screen for the longest living individuals, and then

determine which genes were disrupted in these individuals. This screening technique can rap-

idly identify anti-longevity genes, but systematically identifying pro-longevity genes is less

straightforward. Indeed, among the small number of genes annotated as having some impact

on longevity in worms and yeast, there are considerably more anti-longevity genes than pro-

longevity genes.

To prioritize which genes to investigate and speed up the discovery process, recent studies

have sought to computationally predict the effect of gene interventions on aging, using annota-

tions like Gene Ontology (GO) terms [7] as predictors. A survey of such efforts is provided by

Fabris et al [8]. However, these recent studies suffer from several limitations. First, annotations

like GO may be biased by the scope of the existing literature [9]. Second, it is difficult to com-

pare results across studies since there is a lack of consistency in the choice of algorithms, fea-

ture sets, and predictive target/outcome. Finally, most recent studies do not report predictive

performance on a held-out test dataset, leading to possible overestimation of performance.

We address these gaps by systematically assessing the performance of five popular machine

learning algorithms on the task of predicting the pro- versus anti-longevity status of genes in S.
cerevisiae and C. elegans. We use a consistent outcome in all comparisons based on GenAge

annotations [6]. We compare the efficacy of GO terms versus gene expression profiles as fea-

ture sets for prediction. Further, we predict possible pro/anti-longevity genes that are not cur-

rently annotated in GenAge to suggest directions for future experimental studies.

Results

Data sources and algorithms

We compare the performance of five machine learning classification algorithms: elastic net

penalized logistic regression (pglm) [10], support vector machine with radial basis function

(svm) [11], gradient boosted trees (xgb) [12], naive Bayes (nb) [13], and k-nearest neighbors

(knn) [14].

We define the outcome (that is, the target of prediction) to be the pro- versus anti-longevity

annotation of individual genes from GenAge. After data cleaning, we identified 398 yeast

genes and 848 worm genes with unambiguous annotations. Of these, the majority were labeled

as anti-longevity (347 for yeast and 565 for worm). For validation and comparison, in yeast,

we also consider replicative lifespan (RLS) outcome data for a comprehensive set of 4,698
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single-gene deletions [15]; we refer to this as the McCormick dataset. In yeast, it is more com-

mon to use replicative lifespan rather than chronological lifespan to study aging.

As features for prediction, we consider using GO terms [7] and ARCHS4 gene expression

profiles [16] for both yeast and worm. For yeast only, we also consider using the Deleteome

dataset [17], which contains gene expression profiles for nearly 1500 single-gene deletions. For

worm only, we also consider using the Worm Cell Atlas dataset [18], which contains gene

expression profiles for around 50,000 cells. We write GXP to signify Deleteome and Worm

Cell Atlas for yeast and worm, respectively. Altogether, we compare the performance of five

feature sets for each species: (1) ARCHS4 alone, (2) GO alone, (3) GXP alone (Deleteome for

yeast, Worm Cell Atlas for worm), (4) GO combined with ARCHS4, and (5) GO combined

with GXP. Normalization, filtering, and other preprocessing steps are described in the Meth-

ods section.

To predict whether a particular gene g is pro- or anti-longevity, we construct features in the

following manner. Each GO term is considered a separate binary feature taking a value of one

if gene g is annotated to the term and zero otherwise. For the ARCHS4, Deleteome, and Worm

Cell Atlas data each experimental condition (e.g., a perturbation or tissue sample) is consid-

ered a feature and its value is given by the expression of gene g under that condition. Note that

this is the transpose of how gene expression data are usually investigated. However, by treating

experimental conditions as features and genes as observations, this allows us to exploit arbi-

trary gene expression data for gene g, not just data from when g is perturbed.

Comparative performance of algorithms and feature sets

To assess predictive performance, we use the following cross-validation scheme. For each of

the two species, we split the GenAge-annotated genes into five cross-validation folds, and then

for each combination of fold, algorithm, and feature set, we compute the area under the

receiver-operator curve (AUC). Thus, in total, we compute 2 × 5 × 5 × 5 = 250 AUC values, 50

for each algorithm (S1 and S2 Figs).

To summarize the relative performance of the five algorithms, Fig 1 shows how frequently

algorithm a has higher AUC than algorithm b for each pair a, b. More precisely, for each pair

of algorithms, Fig 1 shows the fraction of times algorithm a has higher AUC than algorithm b
across the 50 combinations of species, fold, and feature set. The pglm and svm algorithms con-

sistently outperform the others in terms of AUC. The ranking of algorithms is unchanged

when compared using only yeast data. Using only worm data, svm slightly outperforms pglm

(0.52 instead of 0.46 in Fig 1), and knn slightly outperforms nb (0.56 instead of 0.34 in Fig 1).

To compare the relative performance of the five different feature sets, Fig 2 shows boxplots

of the AUC values over the five cross-validation folds, stratified by species, algorithm, and fea-

ture set. For visual clarity, here we only show the results for pglm and svm (the two best algo-

rithms); see S2 Fig for the other algorithms. Generally speaking, using GO terms yields better

predictions than gene expression features alone (ARCHS4 or GXP). However, combining GO

with gene expression (GO+ARCHS4 or GO+GXP) tends to increase AUC performance com-

pared to GO alone.

Comparing gene expression feature sets, the ARCHS4 features give better performance

than GXP (Worm Cell Atlas) for worms, but for yeast, GXP (Deleteome) is superior to

ARCHS4. This could be simply due to the fact that the number of features in the worm

ARCHS4 data is much larger than in the Worm Cell Atlas data. Alternatively, it could be due

to the greater variation in experimental conditions across Deleteome features (which covers a

comprehensive set of gene knockouts) compared to Worm Cell Atlas features (which consists

of expression profiles of different cell types in normal worms).
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Fig 1. Ranking machine learning algorithms based on AUC. Numeric values indicate the fraction of times the row

algorithm has higher classification performance than the column algorithm. pglm: elastic net penalized logistic

regression, svm: support vector machine with radial basis function, xgb: gradient boosted trees, nb: naive Bayes, knn:

k-nearest neighbors.

https://doi.org/10.1371/journal.pcbi.1008429.g001

Fig 2. Combining gene expression (archs4, gxp) with gene ontology (GO) features yields improved classification

performance in terms of AUC. pglm: elastic net penalized logistic regression, svm: support vector machine with radial

basis function. An AUC value of 1 indicates perfect classification, whereas an AUC of 0.5 signifies performance no

better than random.

https://doi.org/10.1371/journal.pcbi.1008429.g002
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Overall, for worms, pglm with GO+ARCHS4 features yields the best performance, whereas

for yeast, pglm with GO+GXP is best (Fig 3).

Novel predictions of pro/anti-longevity genes

Given the encouraging performance of pglm for predicting pro/anti-longevity genes in Gen-

Age, we applied the algorithm to make novel predictions of pro/anti-longevity genes in C. ele-
gans (worm) and S. cerevisiae (yeast). To do this, for each species separately, we retrained a

pglm model on the full GenAge database, using the combined GO terms plus ARCHS4 gene

expression as features (see the Methods section for details on hyperparameter selection).

Although for yeast the GO+GXP (Deleteome) features had slightly higher median predictive

performance than GO+ARCHS4, we used the latter instead to maintain consistency across the

two species. We then used the trained model to generate a predictive score for the pro/anti-

longevity effect of each gene not in the GenAge database. Specifically, the predictive score is

defined to be the probability that the gene is pro-longevity under the trained model. A score

close to 1 indicates that the gene is predicted to be pro-longevity, whereas a score close to 0

indicates that the gene is predicted to be anti-longevity. An intermediate score indicates a gene

with unclear pro- or anti-longevity status. Table 1 shows the unannotated genes with the high-

est confidence levels of being pro- and anti-longevity for worm and yeast, respectively. These

genes do not significantly overlap with predictions from the pglm model trained using only

GO terms as features (S2–S5 Tables, S3 Fig), suggesting that these predictions are not simply

recapitulating the known biology represented in the GO terms. Complete lists of predictions

for all genes are provided in S1 and S2 Data.

To assess the accuracy of the predictions, we looked at the literature to see if there is experi-

mental evidence of pro/anti-longevity effects for these genes. Based on the existing

Fig 3. Receiver operator curves (ROC) for the best performing algorithm (pglm: Elastic net penalized logistic

regression) with the best performing feature sets (GO+GXP for yeast and GO+ARCHS4 for worm). Each curve

represents predictive performance on the held-out data from a single cross validation fold. The diagonal gray dotted

line indicates the theoretical performance of an untrained random classifier as a baseline.

https://doi.org/10.1371/journal.pcbi.1008429.g003
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experimental evidence, we find that the model predictions are remarkably good. It turns out

that—even though they are not in GenAge yet—there is experimental evidence for the pro/

anti-longevity status of most of the predicted genes.

Predicted pro-longevity worm genes. For many of the predicted pro-longevity genes in

Table 1, there already exists direct experimental evidence of pro-longevity status. Note that

Table 1. Top pro-longevity and anti-longevity genes not in GenAge predicted using GO terms and ARCHS4 gene expression for worm and yeast with the pglm

(GLM-Net) algorithm.

Species Effect Gene Prob ID Description from ENSEMBL

worm pro-longevity CLEC-196 0.868 WBGene00009156 C-type LECtin

F44E5.4 0.866 WBGene00009691

CEH-13 0.859 WBGene00000437 Homeobox protein ceh-13

LPR-3 0.853 WBGene00012261 LiPocalin-Related protein

HIL-7 0.845 WBGene00001858 HIstone H1 Like; Histone H1.Q

W04A8.4 0.836 WBGene00012239

TTH-1 0.816 WBGene00006649 Thymosin beta

GST-1 0.814 WBGene00001749 Glutathione S-transferase P

F44E5.5 0.812 WBGene00009692

F20C5.6 0.807 WBGene00008971

worm anti-longevity RPL-34 0.986 WBGene00004448 Ribosomal Protein, Large subunit

MSP-59 0.985 WBGene00003452 Major sperm protein

Y59E9AR.7 0.982 WBGene00022002 Major sperm protein

RPL-39 0.982 WBGene00004453 60S ribosomal protein L39

MSP-57 0.981 WBGene00003450 Major sperm protein

MSP-81 0.981 WBGene00003467 Major sperm protein

MSP-113 0.979 WBGene00003468 Major sperm protein

MSP-19 0.978 WBGene00003426 Major sperm protein

NLP-27 0.977 WBGene00003765 Neuropeptide-Like Protein

RPL-11.1 0.977 WBGene00004422 60S ribosomal protein L11-1

yeast pro-longevity ACS1 0.882 YAL054C Acetyl-coA synthetase isoform

UBC5 0.863 YDR059C Ubiquitin-conjugating enzyme

ETR1 0.824 YBR026C 2-enoyl thioester reductase

UBI4 0.779 YLL039C Ubiquitin

PDI1 0.72 YCL043C Protein disulfide isomerase

PRE3 0.713 YJL001W Beta 1 subunit of the 20S proteasome

POR1 0.705 YNL055C Mitochondrial porin (voltage-dependent anion channel)

PRE7 0.701 YBL041W Beta 6 subunit of the 20S proteasome

HSP12 0.698 YFL014W Plasma membrane protein involved in maintaining membrane organization

SBA1 0.695 YKL117W Co-chaperone that binds and regulates Hsp90 family chaperones

yeast anti-longevity RPS30B 1 YOR182C Protein component of the small (40S) ribosomal subunit

TMA23 1 YMR269W Nucleolar protein implicated in ribosome biogenesis

URA3 1 YEL021W Orotidine-5’-phosphate (OMP) decarboxylase

RPS29B 0.999 YDL061C Protein component of the small (40S) ribosomal subunit

RLP24 0.999 YLR009W Essential protein required for ribosomal large subunit biogenesis

COX9 0.999 YDL067C Subunit VIIa of cytochrome c oxidase (Complex IV)

HOR7 0.999 YMR251W-A Protein of unknown function

TOM7 0.999 YNL070W Component of the TOM (translocase of outer membrane) complex

MFA1 0.999 YDR461W Mating pheromone a-factor

TAR1 0.999 YLR154W-C Protein potentially involved in regulation of respiratory metabolism

https://doi.org/10.1371/journal.pcbi.1008429.t001
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this evidence was not used in making the predictions, implying that the model is producing

reliable out-of-sample predictions. We discuss what is known about the top 10 predicted pro-

longevity genes: CLEC-196, F44E5.4, CEH-13, LPR-3, HIL-7, W04A8.4, TTH-1, GST-1,

F44E5.5, and F20C5.6.

F44E5.4 and F44E5.5 encode members of the hsp70 family of heat shock proteins. The heat

shock response is well-known to have strong pro-longevity effects in C. elegans. Indeed, knock-

ing in extra copies of hsp70 extends lifespan [19] and knocking down hsp70 via RNAi decreases

lifespan and leads to rapid aging phenotypes [20]. GST-1 (Glutathione S-transferase P) is also

involved in stress response—particularly, immune response—and GSTs are well-known to be

pro-longevity. Overexpression (underexpression) of GSTs has been found to increase

(decrease, respectively) lifespan and stress resistance [21, 22]. W04A8.4 is an uncharacterized

protein that is involved in the pro-longevity effect of metformin on C. elegans [23]; specifically,

knockdown of W04A8.4 leads to metformin resistance. This is intriguing, since metformin

treatment has been shown to promote health and extend lifespan in many organisms.

Homeobox protein CEH-13 exhibits pro-longevity characteristics based on experimental evi-

dence—specifically, a ceh-13 mutant strain has decreased lifespan compared to wildtype con-

trols [24]. LPR-3 (LiPocalin-Related protein) is known to be involved in nematode worm

locomotion, and appears to mediate the longevity-inducing effect of daf-7 mutation [25]; addi-

tionally, expression of lpr-3 is increased in worms fed with rBm αTX14, an α-neurotoxin that

increases worm lifespan [26].

For the remainder of the genes in Table 1, there is suggestive experimental evidence of pro-

longevity status based on associations. C-type Lectin clec-196 expression increases and lifespan

increases when hsb-1 is knocked out [27]. Also, clec-196 is directly adjacent to hsp-1 on chro-

mosome IV, suggesting possible co-involvement, and hsp-1 (heat shock protein) is well-

known to be pro-longevity. HIL-7 (Histone H1 Like) gene expression may be associated with

Ethosuximide treatment, a drug that increases worm lifespan and affects DAF-16/FOXO target

gene expression [28]. TTH-1 (Thymosin beta) is significantly increased in daf-2 mutants,

which are very long-lived, suggesting possible pro-longevity status by association [29].

F20C5.6 is affected by the well-known longevity genes clk-1 and sir-2.1, as well as by treatment

with 1-methylnicotinamide and rotenone, which are well-known for increasing worm

lifespan.

This validating evidence from the literature indicates that the model predictions are surpris-

ingly accurate. The predicted pro-longevity genes CLEC-196, HIL-7, TTH-1, and F20C5.6 are

candidates for further experimental exploration.

Predicted anti-longevity worm genes. Similarly to the predicted pro-longevity genes,

there exists experimental evidence of anti-longevity status of most of the predicted anti-lon-

gevity genes in Table 1. We discuss what is known about the top 10 predicted anti-longevity

genes: MSP-59, Y59E9AR.7, RPL-39, MSP-57, MSP-81, MSP-113, MSP-19, NLP-27, and RPL-

11.1.

Major sperm proteins appear to be anti-longevity based on the experimental evidence. A

mutation reducing sperm production leads to significantly increased lifespan [30]. Addition-

ally, the expression of sperm-related genes—especially major sperm protein (MSP) genes—is

decreased in adult daf-2 mutants, providing further support for an anti-longevity role of MSP

genes [31].

RSP-39 and RPL-11.1 are 60S ribosomal proteins. RNAi knockdown of genes encoding

ribosomal proteins consistently increases lifespan in C. elegans, both in the case of 40S and 60S

ribosomal proteins [32]. This supports the predicted anti-longevity status.

NLP-27 (Neuropeptide-Like Protein) is the only other predicted anti-longevity gene in the

top 10 list. Expression of nlp-27, along with other nlp genes, is increased in long-lived daf-2
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mutants. Further, nlp-27 expression is reduced in a short-lived mir-71 deletion strain. This

indirect evidence by association suggests a possible pro-longevity role of NLP-27—which

would contradict the predicted anti-longevity—but direct over/under-expression of nlp-27
would be needed to establish its pro/anti-longevity status.

Predicted pro-longevity yeast genes. Table 1 lists the top 10 predicted pro-longevity

yeast genes. Several of these predictions are borne out by direct experimental evidence via sin-

gle-gene deletions—specifically, Marek & Korona [33] found that deletion of ACS1, ETR1,

UBI4, and POR1 leads to decreased lifespan. Marek & Korona did not find a significant pro-

or anti-longevity effect for UBC5, HSP12, or SBA1, and they do not report results for the

remainder of the top 10 genes. However, UBC5 is a strong pro-longevity candidate, since it is

involved in cellular stress response and mediates selective degradation of short-lived and

abnormal proteins [34]. HSP12 (heat shock protein) is required for the lifespan-extending

effect of dietary restriction in yeast [35], validating the pro-longevity prediction. SBA1 is also a

strong pro-longevity candidate, as a chaperone-binding protein that is involved in heat shock

response and is required for telomere length maintenance [36, 37]. PRE3 and PRE7 are part of

the proteasome, and it is known that increased proteasome capacity extends lifespan [38], pro-

viding indirect validation of their predicted pro-longevity status. PDI1 is a downstream target

of the unfolded protein response (UPR), which is well-known to be pro-longevity [39].

Predicted anti-longevity yeast genes. Table 1 lists the top 10 predicted anti-longevity

yeast genes. As in worms, depletion of ribosomes increases lifespan [40], validating the predic-

tions of the ribosome-biogenesis proteins RPS30B, TMA23, RPS29B, and RLP24 as anti-lon-

gevity. HOR7 is reported to influence lifespan, but the direction of the effect may be context-

dependent: HOR7 deletion increases lifespan [15], whereas Schleit et al [41] find that HOR7

deletion decreases lifespan under dietary restricted conditions.

For URA3, COX9, TOM7, MFA1, and TAR1, we do not find pre-existing corroboration of

the predicted anti-longevity status in the literature. TOM7 deletion has been reported to

decrease chronological lifespan [42], and it does not appear to have a strong effect on replica-

tive lifespan [33]. TOM7 is part of the translocase of the outer mitochondrial membrane

(TOM) complex, and the mitochondrial membrane is well-known to be important in yeast

longevity [43]. Marek & Korona [33] report a pro-longevity effect for COX9, contrary to the

model prediction. (Except for COX9, the results of Marek & Korona are inconclusive for all of

the genes in Table 1). Further investigation of URA3, COX9, TOM7, MFA1, and TAR1 might

be interesting to pursue.

Validation on a secondary dataset

To further evaluate the predictive accuracy of the trained pglm model, we compare the model

predictions to actual lifespan measurements from a non-GenAge validation dataset. For this

purpose, we use the McCormick et al [15] dataset of replicative lifespan for a comprehensive

set of 4,698 single-gene deletions in yeast. Since the McCormick dataset contains lifespan mea-

surements for deletions of many genes that do not appear in GenAge, in principle it should be

well-suited as a secondary validation dataset. Using the pglm model trained on the full GenAge

database for yeast with the GO+ARCHS4 feature set as predictors, we made predictions of the

longevity effect of all 4,698 genes in the McCormick dataset.

First, as a sanity check, we observe that among genes in GenAge, the predicted probability

of a gene being pro-longevity is clearly inversely related to the change in lifespan after deletion

(Fig 4, left panel). This is not surprising since it simply means that the GenAge annotations are

roughly consistent with the McCormick data, and the model was able to fit the GenAge-based

training data. More interestingly, we see that the model is able to predict which genes have a
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larger or a smaller effect on lifespan (Fig 4, left panel). For instance, among pro-longevity

genes, the genes with predicted probability near 1 do indeed tend to lead to a larger decrease in

lifespan. Meanwhile, among anti-longevity genes, the genes with predicted probability near 0

do indeed tend to lead to a larger increase in lifespan. Since the training data contain no infor-

mation about the magnitude of the effect on lifespan, this indicates that the model is not sim-

ply recapitulating the training data, but is indeed making generalizable predictions.

Next, we compare the model predictions to the lifespan data for genes outside the GenAge

database. Fig 4 (right panel) shows the change in lifespan versus the predicted probability of a

gene being pro-longevity, for genes in the McCormick dataset that are not in GenAge. A

downward trend in this plot would indicate concordance between model predictions and the

validation data. There is an extremely slight but not convincing downward trend; thus, while

suggestive, this does not provide a compelling out-of-sample validation of the model predic-

tions. Note that the pglm classifier trained on GenAge has a strong bias toward predicting

genes to be anti-longevity; see Fig 4 (right panel) and S4 Fig. This bias is due to class imbalance

in the training data, since the majority of genes annotated in GenAge are anti-longevity. This

is common when the training data are imbalanced, and can easily be addressed by selecting

the classification threshold to yield appropriately balanced predictions.

The lack of concordance between the out-of-sample model predictions and the McCormick

lifespan data may be attributable to the fact that for many genes, the McCormick data are not

in agreement with the GenAge annotations of pro/anti-longevity. Specifically, many putatively

pro-longevity genes led to large increases in lifespan when deleted, and many putatively anti-

longevity genes led to large decreases in lifespan when deleted (Fig 4, left panel). It is not clear

whether this discrepancy is primarily due to limitations of the GenAge database (e.g., bias and

relatively small sample size) or limitations of the McCormick assay. Focusing on the latter pos-

sibility, recent studies have identified mechanisms by which disruption of a gene through

knockout can activate compensatory mechanisms leading to a dramatically different

Fig 4. Predicted probability of a gene being pro-aging versus effect of deletion on replicative lifespan (RLS) in

yeast. Probabilities are from the pglm classifier trained on the full GenAge dataset. Solid curve is a nonparametric

smoother.

https://doi.org/10.1371/journal.pcbi.1008429.g004
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phenotype than disruption of the same gene through knockdown, which reduces but does not

eliminate expression [44]. If deletion of a single gene activates similar compensatory mecha-

nisms in yeast, then this could explain the lack of concordance, since it would imply that the

change in lifespan under a single-gene deletion is not necessarily related to that gene’s pro/

anti-longevity status. A comprehensive assay of knockdowns (rather than deletions or knock-

outs) would shed light on this intriguing question. The discrepancy between GenAge and

McCormick could also partially be due to the fact that GenAge includes results for both repli-

cative and chronological lifespan. However, this does not fully explain the discrepancy since

many of the most discordant genes were annotated as affecting replicative lifespan in GenAge.

Functional interpretation of model predictions

To interpret the biological basis for the model predictions in terms of functional categories, for

each species we retrained the pglm model on the full GenAge dataset using only GO terms as

features. We extracted the 20 most influential GO terms from the trained model by ranking

the regression coefficients from largest to smallest in absolute value (Table 2). Note that in this

model, the coefficient is equal to the log-odds ratio (logOR) of a gene being pro-longevity

when it is annotated to a GO term versus when it is not annotated to that GO term. If a GO

term has a positive logOR value, then genes annotated with that GO term are more likely to be

pro-longevity under the model. Conversely, a negative logOR indicates that genes annotated

with that GO term are more likely to be anti-longevity.

Top GO terms for worm. The current literature supports a strong longevity effect for

many of the top categories in Table 2. Translation inhibition is known to increase lifespan

[32], so a large negative coefficient for the translation and ribosome GO terms makes sense.

Protein homeostasis is known to be key to longevity [45], so it makes sense that the model has

positive coefficients for protein transport, endoplasmic reticulum membrane, and endoplasmic
reticulum. Ubiquitin-mediated proteolysis is known to be important for promoting longevity,

implying that a positive coefficient for ubiquitin-dependent protein catabolic process makes

sense. Heat shock response is known to extend lifespan, and indeed, the model has a positive

coefficient for response to heat. Activation of the mitochondrial unfolded protein response is

known to promote longevity [46], so a positive coefficient for protein import into mitochon-
drial matrix makes sense. Mitochondria are known to be important for longevity [47], so a

large coefficient for mitochondria makes sense; further, inhibition of mitochondrial respiration

is known to extend lifespan [48], so a negative sign for the coefficient could make sense. Simi-

larly, the importance of DNA repair makes sense, and surprisingly, in some cases, DNA repair

gene knockdown increases lifespan, possibly due to compensatory biological mechanisms

[49]; thus, a negative coefficient is, in fact, consistent with the literature.

Top GO terms for yeast. For yeast, Table 2 shows the top longevity-related GO terms in

the model. The importance of these terms is consistent with the current literature, but the

appropriate sign of the coefficient is not always clear, since the genes annotated to each GO

term may have contradictory pro/anti-longevity effects and further, there may be compensa-

tory relationships between terms due to correlated predictors.

Replicative cell aging, apoptotic process, and cell cycle obviously make sense as related to

yeast aging and longevity. Mitochondrial membrane maintenance is known to be important in

yeast longevity [43], and other membranes (e.g., the vacuole membrane) may also be impor-

tant [50]; thus, large coefficients for mitochondrion, integral component of mitochondrial outer
membrane, mitochondrial intermembrane space, membrane, membrane fraction, and trans-
membrane transport are consistent with the literature. Depletion of ribosomes is known to

increase lifespan [40], so a negative coefficient for chromatin silencing at rDNA is appropriate.
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Telomeres are known to be important in yeast longevity [51, 52], so a large coefficient for telo-
mere maintenance makes sense. Longevity effects of cellular response to oxidative stress are cor-

roborated in the literature [53]. Finally, a negative coefficient for zinc ion binding is consistent

with experimental evidence that zinc limitation extends chronological lifespan [54].

Table 2. Top GO terms identified by the pglm (GLM-Net) algorithm. logOR: log-odds ratio. OR: odds ratio. Positive logOR indicates a gene annotated to that GO term

is more likely to be pro-longevity. BP: biological process, CC: cellular component, MF: molecular function.

Species ID logOR OR Type Description

worm GO:0006412 -0.98 0.38 BP translation

GO:0005634 0.89 2.4 CC nucleus

GO:0015031 0.82 2.3 BP protein transport

GO:0005789 0.77 2.1 CC endoplasmic reticulum membrane

GO:0005840 -0.73 0.48 CC ribosome

GO:0009792 0.68 2 BP embryo development ending in birth or egg hatching

GO:0006511 0.66 1.9 BP ubiquitin-dependent protein catabolic process

GO:0009408 0.66 1.9 BP response to heat

GO:0043005 0.65 1.9 CC neuron projection

GO:0030150 0.6 1.8 BP protein import into mitochondrial matrix

GO:0055120 -0.6 0.55 CC striated muscle dense body

GO:0005783 0.6 1.8 CC endoplasmic reticulum

GO:0046872 -0.53 0.59 MF metal ion binding

GO:0005739 -0.52 0.59 CC mitochondrion

GO:0006281 -0.52 0.59 BP DNA repair

GO:0035556 -0.52 0.59 BP intracellular signal transduction

GO:0045893 0.52 1.7 BP positive regulation of transcription; DNA-templated

GO:0008289 0.52 1.7 MF lipid binding

GO:0048477 0.5 1.6 BP oogenesis

GO:0003824 0.49 1.6 MF catalytic activity

yeast GO:0001302 1.8 5.8 BP replicative cell aging

GO:0006915 0.87 2.4 BP apoptotic process

GO:0016020 -0.82 0.44 CC membrane

GO:0005634 0.73 2.1 CC nucleus

GO:0000183 0.72 2.1 BP chromatin silencing at rDNA

GO:0005624 0.71 2 CC membrane fraction

GO:0007049 0.67 1.9 BP cell cycle

GO:0005739 0.64 1.9 CC mitochondrion

GO:0005515 -0.64 0.53 MF protein binding

GO:0003824 0.61 1.8 MF catalytic activity

GO:0031307 0.56 1.7 CC integral component of mitochondrial outer membrane

GO:0000723 0.55 1.7 BP telomere maintenance

GO:0005758 0.53 1.7 CC mitochondrial intermembrane space

GO:0055085 0.53 1.7 BP transmembrane transport

GO:0017111 0.52 1.7 MF nucleoside-triphosphatase activity

GO:0006811 0.51 1.7 BP ion transport

GO:0006281 0.5 1.7 BP DNA repair

GO:0034599 0.48 1.6 BP cellular response to oxidative stress

GO:0008270 -0.48 0.62 MF zinc ion binding

GO:0045861 0.47 1.6 BP negative regulation of proteolysis

https://doi.org/10.1371/journal.pcbi.1008429.t002
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Pathway enrichment analysis of model predictions

To further interpret the model predictions in terms of known biology, we performed pathway

enrichment analysis. First, we took the list of non-GenAge genes that were predicted to be pro-

longevity and tested for enrichment of KEGG pathways using the Database for Annotation,

Visualization and Integrated Discovery (DAVID) v6.8 [55, 56]. Adjusting for multiple testing

using the Benjamini–Hochberg correction, we found that the “Proteasome” pathway was signif-

icantly enriched (corrected p-value 0.0031). The KEGG pathway diagram in S5 Fig (used with

permission from Kanehisa Laboratories [57]) indicates that several of the predicted pro-longev-

ity genes are in the 20S proteasome core particle, particularly in β subunits. This is intriguing,

since the proteasome is a protein complex that breaks down unneeded or damaged proteins by

proteolysis, and the β subunits play a central role in this process [58]. Sustained proteasome

activity appears to be associated with longevity based on studies of long-lived humans and

rodents, and directly elevating proteasome activity increases longevity in yeast [38].

We performed the same enrichment analysis using the top predicted anti-longevity genes

for yeast, and separately, the pro- and anti-longevity genes for worm. In each case, we capped

the number of genes at 100. S6 Table shows the top KEGG pathway hit in each case. Notably,

in both yeast and worm, the “Ribosome” pathway was highly significantly enriched with pre-

dicted anti-longevity genes (corrected p-values 7.1 × 10−15 and 8.1 × 10−27, respectively). These

results are consistent with known aging biology, and since these genes are not currently in

GenAge, the model predictions may offer new avenues of research.

Discussion

Limitations

A limitation of our models is that the pro/anti-longevity status of a gene is predicted based on

how similar its GO terms and/or gene expression pattern are to genes with known pro- or

anti-longevity status. This similarity does not necessarily imply that manipulation of these

genes will have the predicted effect on lifespan, and further, the predictions are limited by the

accuracy of the input data. This is illustrated by SIR2 and DNL4, the top two hits in S4 Table

for yeast when using the GO-only model. Both SIR2 and DNL4 are annotated with the “repli-

cative cell aging” GO term, which is strongly indicative of pro-longevity status in this model,

as indicated by the odds ratio of 5.8 in Table 2. Experimental evidence is consistent with the

SIR2 prediction, but not the DNL4 prediction [59]. This appears to be due to the interesting

fact that although DNL4 is required for DNA repair by nonhomologous end joining (NHEJ),

apparently NHEJ does not affect replicative aging in yeast [59]. Thus, in the case of DNL4, the

discrepancy between prediction and experiment may be viewed as an inadequacy of this par-

ticular GO term annotation.

Another limitation is that although S. cerevisiae (yeast) can be haploid or diploid, our mod-

els are not ploidy-specific since much of the data we use (GenAge, GO terms, and gene expres-

sion) are not annotated in a way that indicates whether they pertain to haploid or diploid.

Significant differences have been observed between haploid and diploid yeast aging [59, 60],

making it difficult to know whether results for one would extend to the other. That said, overall

we would expect the set of genes that are strongly involved in longevity to be similar for hap-

loid and diploid, although the magnitude (and possibly the direction) of the pro/anti-longevity

effect may vary.

Similarly, our models do not distinguish between chronological lifespan and replicative life-

span in yeast. In future work, it would be interesting to analyze chronological lifespan sepa-

rately from replicative lifespan since there may be major differences.
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By a fortunate coincidence, the best performing algorithm, pglm (GLM-Net), enabled us to

perform functional interpretation of the results by simply considering the largest regression

coefficients. In future studies on alternative datasets, higher predictive performance might be

obtained with other algorithms lacking easily understandable coefficients. Under that scenario,

we would recommend researchers consider alternative feature importance metrics such as

those provided by the caret R package [61].

Conclusions and future directions

We systematically compared the performance of popular machine learning algorithms in clas-

sifying genes as pro- or anti-longevity using the GenAge database and combinations of gene

expression and gene ontology (GO) feature sets. We identified elastic net penalized logistic

regression (pglm) as the most effective classifier and made predictions for unannotated genes.

We offer our predictive probability scores as one possible tool to prioritize future experimental

studies which can validate individual genes as pro-longevity mechanistically. Our approach of

combining feature sets to improve predictive performance is generalizable in principle to a

wider variety of model organisms as more annotations and datasets become available over

time.

We encourage other computational researchers to use metrics such as area under receiver-

operator curve (AUC) on held-out data from standard databases such as GenAge to assess clas-

sification performance and facilitate comparisons across studies. We suggest that future com-

prehensive longevity assays consider using knockdowns instead of deletions and knockouts,

due to the existence of compensatory mechanisms that are known to mitigate the effects of

knockouts [44]; this may improve the concordance between predictions and experimental evi-

dence. Additionally, there appears to be a need for increased focus on pro-longevity genes as

opposed to anti-longevity genes, since pro-longevity genes are much less common in the Gen-

Age database.

In addition to genetic variation, environmental factors such as exposure to drugs or other

chemical compounds are known to influence longevity [4, 62, 63]. Future studies may benefit

from our computational framework in this context, for example, by using outcome variables

from the DrugAge database [64] to train classifiers or regression models. However, a key chal-

lenge will be to identify suitable covariates analogous to gene expression or GO terms. One

intriguing possibility would be to convert the molecular structure of each drug into a vector of

continuous features [65].

Finally, it is clear that genes act in networks rather than individually—for instance, top-

down analysis has identified the nutrient sensing pathway, the mitochondrial effector pathway,

and the proteostasis pathway as collectively regulating single-cell longevity [66]. Thus, net-

work-based approaches are likely to yield further insights into the molecular mechanisms of

aging. In particular, while we have considered only single-gene manipulations, it would be

valuable to be able to predict the effect of multiple simultaneous interventions. This is very

challenging in general, but it might be possible to exploit special structure in the mechanisms

of aging—for instance, recent papers have argued that aging may be governed by a single

global state variable, based on the finding that many diverse interventions lead to a temporal

scaling of survival curves in C. elegans and S. cerevisiae [67, 68].

Methods

Acquisition and preprocessing of datasets

Binary pro/anti-longevity annotations were accessed from the GenAge model organisms data-

base build 19 [6], available at http://genomics.senescence.info/genes. We used the subset of
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genes for yeast and worm, and we excluded ambiguous annotations (e.g., if GenAge lists two

studies for a gene, one finding it to be pro-longevity and the other finding it to be anti-longev-

ity). GO annotations for all genes were downloaded from the BioMart ENSEMBL database

(release 93, July 2018) using the biomaRt package in Bioconductor (version 3.7). For both spe-

cies, gene expression data in the form of RNA-Seq read counts were obtained from the

ARCHS4 database version 1 [16], currently available at https://amp.pharm.mssm.edu/archs4/

archs4zoo.html. For yeast only, we acquired the Deleteome gene expression microarray dataset

[17], currently available at http://deleteome.holstegelab.nl (no version available but last

updated May 2014). For worm only, we obtained gene expression data from the single-cell

RNA-Seq Worm Cell Atlas [18], currently available at http://atlas.gs.washington.edu/worm-

rna (no version available but last updated August 2017). We reduced the dimensionality of the

Worm Cell Atlas data by summing the unique molecular identifier (UMI) counts across all

cells within the same tissue, so that each feature is a “pseudobulk” tissue rather than a single

cell.

Replicative lifespans (RLS) for 4,698 single-gene deletion yeast strains were obtained from

McCormick et al [15] in June 2017. Perturbation genotypes with percent_change greater than

30 and set_lifespan_count less than or equal to 5 were excluded based on the authors’ recom-

mendations. We merged results for the same genotype across replicate experiments in the fol-

lowing way. The outcome for each genotype in a single replicate was quantified as the mean of

RLS in the perturbation group minus the mean of RLS in the control group. To obtain a single

value for the genotype across all replicates, we then computed a weighted average of the out-

come values from each replicate, where the weights corresponded to the sample sizes in each

group. This ensured that replicates with more observations contributed more to the final

value. We refer to this as the McCormick dataset.

Data normalization and quality control

All gene expression measurements were normalized to account for sample-specific biases. Spe-

cifically, the Deleteome data were already normalized, the ARCHS4 read counts were con-

verted to transcripts-per-million (TPM), and the Worm Cell Atlas UMIs were converted to

counts-per-million (CPM). The normalized counts were then log transformed with a pseudo-

count of one. For Deleteome, genes that were variable in controls and non-responsive mutants

were excluded, since these data were likely to contain mostly noise. For each species, we used

the subset of genes with no missing values across all feature types (GO features and the two

sources of gene expression features), resulting in 703 worm genes (246 pro-longevity, 457 anti-

longevity) and 368 yeast genes (46 pro-longevity, 322 anti-longevity). Features with no varia-

tion across the included genes were discarded. For yeast, the number of retained features was

3268, 700, and 1390 for ARCHS4, Deleteome, and GO terms, respectively. For worms, the

number of features was 2935, 270, and 2051 for ARCHS4, Worm Cell Atlas, and GO terms,

respectively. All gene expression features were centered and scaled to have mean zero and stan-

dard deviation 0.5 as suggested by [69], while binary features (GO) were not centered and

scaled. The five sets of features considered for each species were (1) ARCHS4 alone, (2) GO

alone, (3) GXP alone (Deleteome for yeast, Worm Cell Atlas for worm), (4) GO combined

with ARCHS4, and (5) GO combined with GXP.

Comparison of predictive performance by algorithm and feature set

To assess predictive performance of different combinations of feature sets, each dataset (con-

sisting of the binary GenAge outcome for a single species matched with one of the five feature

sets) was split into 5 external cross-validation (CV) folds. Within each fold, machine learning
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classifiers were fit to the training data using the caret package version 6.0 [61] in the R pro-

gramming environment (version 3.5). The same partitioning of the data was preserved across

algorithm runs to ensure identical training and test conditions. The algorithms used were k-

nearest neighbors (knn, R package kknn version 1.3.1), naive Bayes (nb, R package naivebayes

forked at version 0.9.2 and modified for numerical stability, https://github.com/willtownes/

naivebayes), gradient boosted trees (xgb, R package xgboost version 0.8.0), support vector

machine with radial basis function (svm, R package kernlab version 0.9), and logistic regres-

sion with elastic net penalty (pglm, R package glmnet version 2.0). Hyperparameters (S1

Table) were selected by grid search using repeated 10-fold internal CV with two repeats within

each training fold using the Kappa criterion. Note that this means each algorithm could poten-

tially use different hyperparameter values across the five external CV folds. For all algorithms

except naive Bayes, the grid consisted of default caret values. For naive Bayes, the Laplace cor-

rection was set to zero, kernel smoothing was always used, and the adjustment to the probabili-

ties was chosen between 0.5 and 1.0. Additionally, for naive Bayes only, many features with

near-zero variance caused numerical instabilities and were excluded. Having chosen a final set

of hyperparameters for each training fold, the predicted probabilities were computed for the

held-out test data and the area under the receiver-operator curve (AUC) was computed to

quantify prediction performance (discrimination). An AUC value of 1 indicates perfect classi-

fication performance, whereas an AUC of 0.5 signifies performance no better than random, or

simply always predicting the majority class.

Model fitting for novel predictions and validation

For the results in sections ‘Novel predictions of pro/anti-longevity genes’ and ‘Validation on a

secondary dataset’, the best-performing algorithm (pglm) was retrained on all of the GenAge

data for each species with the combined GO plus ARCHS4 feature set. The hyperparameter

grid was expanded to 21 alpha values (evenly spaced between zero and one, inclusive), and 97

automatically selected lambda values using five-fold CV. For worm, the optimal alpha was 0.05

(close to an L2 ridge penalty). For yeast, the optimal alpha was 0.5 (an even mix between ridge

and the L1 lasso penalty). Using the optimal hyperparameters, predictive probabilities were

computed for all genes.

Model fitting for functional interpretations

For the results in section ‘Functional interpretation of model predictions’, for each species the

pglm algorithm was retrained on the full GenAge dataset using GO features only. This choice

of feature set was used to enable interpretation of regression coefficients. Here, the hyperpara-

meter grid was the same 21 alpha values and 97 automatically selected lambda values with five-

fold CV. The optimal alpha values were 0.15 for worm and 0.10 for yeast (both closer to ridge

than lasso).

Supporting information

S1 Fig. Comparison of predictive performance of machine learning algorithms on classify-

ing genes as pro- or anti-longevity. pglm: elastic net penalized logistic regression, svm: sup-

port vector machine with radial basis function, xgb: gradient boosted trees, nb: naive Bayes,

knn: k-nearest neighbors, gxp: gene expression, ROC: receiver-operator curve.

(EPS)

S2 Fig. Comparison of predictive performance of different feature sets on classifying genes

as pro- or anti-longevity. pglm: elastic net penalized logistic regression, svm: support vector
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machine with radial basis function, xgb: gradient boosted trees, nb: naive Bayes, knn: k-nearest

neighbors, gxp: gene expression, ROC: receiver-operator curve.

(EPS)

S3 Fig. Predictive probabilities of genes being pro-longevity under GO+ARCHS4 feature

set versus GO only feature set.

(EPS)

S4 Fig. Distribution of predictive probabilities after training elastic net penalized logistic

regression (pglm) on the full GenAge dataset with GO terms and ARCHS4 gene expression

as features.

(EPS)

S5 Fig. Proteasome KEGG pathway schematic [57]. Subunits containing predicted pro-lon-

gevity genes are indicated with red stars. (Copyright of Kanehisa Laboratories, used with per-

mission.).

(TIFF)

S1 Table. Hyperparameters used. pglm: elastic net penalized logistic regression, svm: support

vector machine with radial basis function, xgb: gradient boosted trees, nb: naive Bayes, knn: k-

nearest neighbors.

(CSV)

S2 Table. Top worm pro-longevity genes not in GenAge predicted using only GO terms as

features.

(CSV)

S3 Table. Top worm anti-longevity genes not in GenAge predicted using only GO terms as

features.

(CSV)

S4 Table. Top yeast pro-longevity genes not in GenAge predicted using only GO terms as

features.

(CSV)

S5 Table. Top yeast anti-longevity genes not in GenAge predicted using only GO terms as

features.
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S6 Table. Top KEGG pathway hits from DAVID enrichment analysis.
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S1 Data. All genes pglm predictions for yeast with GO+ARCHS4 features.
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S2 Data. All genes pglm predictions for worm with GO+ARCHS4 features.

(XLSX)
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