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Simple Summary: Lung adenocarcinomas with mutations in the K-ras gene are hard to target
pharmacologically and highly lethal. As a result, there is a need to identify other therapeutic targets
that influence K-ras oncogenesis. One contender is STAT3, a transcription factor that is associated
with K-ras mutations and aids tumor development and progression through tumor cell intrinsic and
extrinsic mechanisms. In this review, we summarize the lung epithelial and infiltrating immune cells
that express STAT3, the roles of STAT3 in K-ras mutant lung adenocarcinoma, and therapies that may
be able to target STAT3.

Abstract: Worldwide, lung cancer, particularly K-ras mutant lung adenocarcinoma (KM-LUAD), is
the leading cause of cancer mortality because of its high incidence and low cure rate. To treat and
prevent KM-LUAD, there is an urgent unmet need for alternative strategies targeting downstream
effectors of K-ras and/or its cooperating pathways. Tumor-promoting inflammation, an enabling
hallmark of cancer, strongly participates in the development and progression of KM-LUAD. However,
our knowledge of the dynamic inflammatory mechanisms, immunomodulatory pathways, and
cell-specific molecular signals mediating K-ras-induced lung tumorigenesis is substantially deficient.
Nevertheless, within this signaling complexity, an inflammatory pathway is emerging as a druggable
target: signal transducer and activator of transcription 3 (STAT3). Here, we review the cell type-
specific functions of STAT3 in the pathogenesis and progression of KM-LUAD that could serve as
a new target for personalized preventive and therapeutic intervention for this intractable form of
lung cancer.

Keywords: STAT3; lung adenocarcinoma; TME; K-ras; tumor-promoting inflammation; mucosal
immunology; myeloid

1. Introduction

Lung cancer exerts a massive burden on public health, resulting in nearly a quarter
of global cancer deaths [1]. Lung adenocarcinoma (LUAD) is a major histological subtype
of lung cancer, and 30% of patients with LUAD harbor driver mutations in Kirsten rat
sarcoma viral oncogene (K-ras), which we refer to as K-ras mutant LUAD (KM-LUAD) [2].
K-ras mutations, most frequently in the 12th codon, result in constitutive activation leading
to overactive proliferative signaling pathways, such as the RAF cascade [3]. Targeted
inhibitors of K-ras point mutations are under development and are either in early stages or
have been complicated by emerging drug resistance [4]. The path to improved outcomes
relies on targeting factors that are downstream of or cooperate with K-ras.

KM-LUAD is notable in that K-ras activation in the setting of the lung can lead to
a chronically inflamed tumor microenvironment (TME) [5,6]. In normal inflammation,
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noxious stimuli induce various forms of cell death, and these cellular contents nourish
the recruited immune cells that clear the debris and resolve the inflammatory trigger if
possible [7,8]. Tumor-promoting inflammation differs from this transient response in that
prolonged, chronic exposure to the noxious stimuli (e.g., cigarette smoke, infection) prevents
full clearance, setting the stage for tumor initiation [8]. K-ras mutations correlate with
increased myeloid lineage immune cell infiltration, including macrophages and neutrophils
skewed towards pro-tumor phenotypes [5,9]. In addition to these cell types, the KM-LUAD
TME fosters production of interleukin 6 (IL-6), a pleiotropic cytokine with many context-
dependent effects [10–13]. IL-6 utilizes a well-known signaling pathway which results in
the activation of the signal transducer and activator of transcription 3 (STAT3) [14]. STAT3
represents a critical inflammatory transcription factor in KM-LUAD, with patients with KM-
LUAD tumors expressing high levels of STAT3 and activated phospho-STAT3 (p-STAT3),
which correlate with worse survival [15,16]. STAT3 controls the transcription of numerous
target genes that promote cell survival, angiogenesis, stemness, etc., but alarmingly, STAT3
has the ability, in concert with other transcription factors, to stimulate the production of
IL-6 [13,17,18]. This feedback mechanism ensures a repeating loop of tumor-promoting
inflammation. Moreover, STAT3 leads to the transcription of other soluble mediators that
reprogram the TME towards a pro-tumor phenotype [19].

Given the difficulties in targeting K-ras driver mutations, tumor-promoting inflamma-
tion and the STAT3 pathway are gaining attention as therapeutic targets. However, STAT3
plays key functions across the body, as evidenced by the fact that STAT3 global deletion is
early lethal [20]. Furthermore, in the context of the lung environment, STAT3 is expressed
in lung resident/infiltrating immune cells and in the lung epithelium, and its functions in
these cellular compartments differ yet work in synch [21]. Future therapeutics must take
these cell types into account in order to produce maximal benefits. Here, we discuss the
principles of STAT3 signaling and how they differ across the cell types found in KM-LUAD.

2. STAT3 Structure and Signaling: The Basics

The structure of STAT3 contains several functional components: a Src 2 homology
(SH2) domain for recruitment and dimer formation, a C-terminal transactivation domain
harboring a key phosphorylation site for STAT3 activation (Y705), a nuclear localization
sequence (NLS), a DNA binding domain to recognize STAT3 inducible elements (SIEs), and
a coiled-coiled domain for protein–protein interactions [22].

STAT3 is activated downstream of a plethora of receptor/non-receptor tyrosine kinases
and G proteins, with ligands varying from growth factors to cytokines; however, STAT3
is classically regulated by IL-6 (Figure 1). IL-6 binds to a multimeric receptor complex
comprising the IL-6 receptor (IL-6R) and gp130. Janus kinases (JAKs) 1 and 2 are recruited
to the cytosolic tails of the receptors using SH2-like domains, where they transphospho-
rylate one another. STAT3 molecules then recognize the phosphorylated sites using their
SH2 domains and are themselves phosphorylated at the Y705 site. This posttranslational
modification enables STAT3 to form homodimers (or heterodimers with STAT1/5) and
translocate to the nucleus, where the dimers bind SIEs to drive transcription [22,23]. In
addition, IL-6R can be proteolytically cleaved from the cell surface to form soluble IL-6R
(sIL-6R) [24]. sIL-6R can then induce trans signaling in cells that do not endogenously
express IL-6R [24].

A host of target genes for STAT3 have been identified and have been extensively re-
viewed elsewhere [19], but the main responsive genes can be divided into several functional
categories: anti-apoptosis, angiogenesis, invasiveness, cell cycle progression, and stemness
(Figure 1). These SIE-directed programs give STAT3 signaling a decidedly pro-survival,
pro-tumor flavor, which is advantageous in the setting of KM-LUAD. However, STAT3
also has the ability to modulate immune-related genes, including a mixture of pro- and
anti-inflammatory mediators. These immune-related genes can lead to different immune
phenotypes and as such are context and cell-type dependent; we explore the immunological
specifics of these mediators in the next section. STAT3 heterodimers can also attenuate other
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immune signaling pathways indirectly. STAT1:STAT3 heterodimer formation is known to
inhibit classical STAT1/IFN-γ signaling by “soaking up” STAT1 and preventing STAT1
homodimerization [23].
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Figure 1. An overview of STAT3 signaling. Figure created in BioRender.

STAT3 transcriptional activity is also subject to other key post-translational modifica-
tions beyond p-Y705. S727 phosphorylation, usually mediated by ERK or other kinases, is
generally believed to lead to a stronger realization of STAT3 transcriptional activity [25,26].
Acetylation, methylation, and SUMOylation of STAT3 are also regular events which have
recently garnered more attention and which we will discuss in later sections [26,27]. How-
ever, it should be noted that unphosphorylated STAT3 (U-STAT3) can also translocate to the
nucleus to effect changes in gene expression as a delayed response to IL-6 signaling [28].

STAT3 transcriptional targets are not limited to SIE-regulated genes. Using its coiled-
coiled domain, STAT3 can interact with other transcription factors to expand its target gene
repertoire. Famously, STAT3 interaction with the pro-inflammatory NF-κB transcription
factor leads to expression of IL-6 [18]. This ability to induce IL-6 creates a positive feedback
loop which can stimulate more and more STAT3. To counteract this loop, STAT3 also
negatively regulates its own expression by transcribing the suppressor of cytokine signaling
3 (SOCS3) [29]. Moreover, phosphatases and protein inhibitors of activated STAT (PIAS)
families work to nullify p-STAT3 signaling, the result of which is a relatively short half-life
for p-STAT3 molecules [30–32].

Now that we have an overview of the mechanisms of STAT3 signaling, we explore the
intricacies of this pathway in the cell types found in KM-LUAD.
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3. Studying STAT3 by Cell Type in KM-LUAD Models

Multiple cell types comprise the KM-LUAD TME, principally tumor and immune
cells. To study STAT3 signaling in these cell types in a preclinical setting, several models
are employed (Table 1).

Table 1. Mouse models available to study STAT3 in KM-LUAD.

Approaches Examples Induction Method

Tissue-Specific Cre Recombinase

CCSPCre: lung epithelium
SPCCre: whole lung
rtTA-tetO: dox-inducible

Germline/AdCre

LysMCre: myeloid
CD4Cre: helper T cell
CD19Cre: B cell
NCR1Cre: NK cell

Germline/Adoptive Transfer

Mutations

KrasLA2/+

KrasLSL-G12D/+

KrasLSL-G12V/+

±p53lox/lox

Germline/AdCre

COPD-like Inflammation

NTHi
LPS

Nebulization
Intranasal

Cigarette Smoke
Elastase

Smoke exposure
Intratracheal

Carcinogen

NNK
Urethane Intraperitoneal

Cigarette Smoke
eCigarette

Smoke exposure
Atomized nicotine

Xenograft Immunocompromised mouse Orthotopic, subcutaneous, or intravenous

AdCre: Adenoviral delivery of Cre and any other transgenes.

LUAD-derived cell lines, many of which display heightened STAT3 pathway activity,
can represent the tumor component of the TME in vitro [33]. Coculture and/or gel matrix
culture with immune cells can help to recapitulate the cell–cell interactions in the TME.
These cells can be engineered to knock down or overexpress STAT3, and drugs against
STAT3 or other cooperating pathways can be pioneered.

In vivo models offer a more realistic glimpse of the TME. STAT3 global knockout is
early lethal, but a variety of conditional knockout systems can be used [20]. In lung tissue,
Cre recombinase expression can be directed by the SPC or CCSP promoters, with SPC
expressed more broadly and CCSP more tightly targeted to the conducting airway epithe-
lium, where most KM-LUAD tumors arise [6,34]. The Cre can be temporally controlled
(e.g., doxycycline-induced) if there are concerns about the timing of Cre expression [35].
Mutant K-ras is then expressed in a Cre-dependent manner and will kickstart tumorige-
nesis [36]. Additional genes of interest can be floxed to conditionally delete them within
tumors and the lung epithelium. The same constructs can be introduced by viral vectors
into the airways of adult mice, with the main side effect being potential antiviral immune
artifacts [37,38]. On top of these genetic models, cigarette smoke, vaping, nicotine-derived
nitrosamine ketone (NNK), and urethane can be administered to mimic smoking [39]. Prod-
ucts of certain bacterial species (e.g., Nontypeable Haemophilus influenzae (NTHi) lysate)
can be introduced to recapitulate chronic obstructive pulmonary disease (COPD) and
the pro-tumor inflammation which it engenders [6,39,40]. To study STAT3 in immune
cells, a Cre that targets immune cell compartments can be used, most notably LysMCre, a
myeloid-specific driver [41].

These models have been used to a great extent to dissect the cell type-specific roles of
STAT3 in KM-LUAD and are referenced in the sections that follow as we look at STAT3
functions cell by cell within the TME (Figure 2).
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4. Cell-Specific Functions of STAT3 in KM-LUAD
4.1. Lung Epithelium/Tumor Cells

In healthy lung tissues, STAT3 plays important roles in lung development and differ-
entiation, including branch morphogenesis and lung epithelial cell identity [42,43]. STAT3
is also a crucial component of the epithelial response to infection. STAT3 activation engages
pro-survival machinery to reduce cell death while simultaneously triggering immune re-
sponses. The epithelium itself shows STAT3-mediated protective effects against a wide
array of pathogens, but it is also able to secret immune mediators that activate features of
both mucosal and suppressive immunity to preserve lung architecture and, consequently,
lung function [44,45].

LUAD arises from distal regions of lung epithelium [46]. Once K-ras is mutated,
cellular proliferation runs rampant as pathways such as RAF are hyperactivated [3]. At
this time, STAT3 can be activated intrinsically via K-ras downstream kinase activity at the
S727 site or extrinsically by cytokine signaling [26,47–49].

STAT3 target genes can improve the survival, proliferation, and immune evasion of
early cancer cells. The Bcl and cyclin D family of genes are downstream of STAT3 and
block apoptosis and drive cell cycle progression, respectively [50,51]. Moreover, the self-
renewal ability of lung cancer stem cells appears to be driven in part by STAT3 [19]. STAT3
also increases the expression of immune checkpoint molecules including PD-L1, which
serves to shield the cancer from antigen-specific T cell immunity [52]. Additionally, there
is increasing interest in the ability of phosphorylated and acetylated STAT3 to localize
to the mitochondria (Figure 1), where it increases mitochondrial gene transcription and
ATP production, aiding the Warburg Effect in cancer cells [53]. Moreover, STAT3, in
conjunction with NF-κB, can activate the IL-6 positive feedback loop and potentiate an
autocrine signaling cycle [13]. At the same time, lung cancer cells often downregulate
STAT3 inhibitor SOCS3 which exacerbates the IL-6/STAT3 loop; overexpression of SOCS3
and PIAS can restore normal tumor suppression ability [54,55]. Studies have shown that
overexpression of constitutively active STAT3 in murine alveolar type II cells is sufficient to
induce a strong inflammatory response and produces LUAD-like tumors [56,57].

Hyperactivation of STAT3 signaling also leads to the paracrine secretion of many
STAT3-regulated elements and, in turn, a shift in the TME. Matrix metalloproteinases
(MMPs) are able to break down the extracellular matrix to improve invasion and metastasis,
and nascent tumors gain increased blood flow through VEGF-induced angiogenesis [19].
STAT3 also directly binds to the promotors of two immunosuppressive cytokines, IL-10 and
TGF-β, which skew several immune cell populations from pro- to anti-inflammatory [19].
Simultaneously, pro-inflammatory IL-23 is produced and alters T cell functional phenotypes
towards pro-tumor, which we explore later [19].

While STAT3 hyperactivation is largely believed to encourage tumor development
and progression, this paradigm is clouded by some data suggesting a tumor suppressor
role for STAT3. One study has found that STAT3 in the lung epithelium maintains epithelial
characteristics and discourages epithelial-to-mesenchymal transition (EMT) [43]. Another
group, using an adenoviral Cre model, observed a tumor suppressor function for STAT3 [58].
Still, other work suggests that STAT3 functions as a tumor suppressor in lung tumor
initiation but behaves as an oncogene in established tumors [59]. Our group has also
identified a sex disparity in which STAT3 deletion in the lung epithelium of a KM-LUAD
mouse model is beneficial for females but harmful for males [60]. This sex disparity is
characterized by increased NF-κB signaling in males lacking epithelial STAT3, which drives
tumor-promoting inflammation. Introducing exogenous estrogen improved outcomes for
males, indicating a potential mechanism for estrogen and estrogen receptors to mitigate
NK-κB-modulated inflammation [61]. Correlations have been made with LUAD incidence
by sex, with female patients experiencing a greater incidence of lung cancer but better
overall survival compared to males [62]. Additionally, a recent study suggests that U-STAT3
can suppress lung cancer tumorigenesis through heterochromatin silencing of cell growth
genes [63]. While these stories are still unfolding, it is necessary to avoid a purely negative
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view of STAT3 and pay attention to chronology, sex, or other factors that may influence the
role of STAT3 in tumor development and progression.

On the whole, STAT3 hyperactivation in KM-LUAD cancer cells confers survival advan-
tages and initiates a cascade of autocrine and paracrine signaling that alters the TME. Secreted
factors in the TME interact with and recruit immune cells, where STAT3 signaling also plays
crucial roles in generating tumor-promoting inflammation and immunosuppression.

4.2. Cancer-Associated Fibroblasts

Cancer-associated fibroblasts (CAFs) are stromal, non-malignant, non-immune lineage
cells that contribute to the composition of the TME [64]. IL-6/STAT3 signaling is known
to be active in CAFs, and a portion of the IL-6, VEGF, and MMPs produced in the TME is
CAF-derived [65,66]. In vitro work suggests that STAT3 CAF signaling can enhance the
metastatic potential of lung cancer cells, and IL-11/STAT3 signaling may play a role in
cisplatin chemoresistance [66,67].

4.3. Macrophages

Macrophages comprise a major portion of the immune cell compartment in the lung.
In homeostatic conditions, macrophages are responsible for clearing debris and pathogens
to maintain gas exchange function [45]. Lung macrophages are classified based on their
physical location within the lung (alveolar or interstitial) and whether or not they are
classically or non-classically activated (M1 or M2 respectively) [68,69]. As the front lines of
mucosal immunity, lung macrophages are programmed differently than in other tissues: to
maintain lung homeostasis, lung macrophages phagocytose debris and pathogens without
producing pro-inflammatory mediators, in line with an M2-like phenotype. In fact, these
macrophages are major sources of the immunosuppressive cytokines IL-10 and TGF-β in
the lung milieu [68].

While IL-10 and TGF-β are important in lung homeostasis, they are a decidedly
pro-tumor component in the context of the TME. As previously mentioned, STAT3 sig-
naling in tumor cells leads to the secretion of IL-10 and TGF-β, and this combined with
tumor-associated macrophage (TAM) signaling creates a strongly immunosuppressive envi-
ronment for existing and newly recruited immune cells. Moreover, these M2 macrophages
produce VEGF, growth factors, and T cell metabolic inhibitors: arginase-1 and indoleamine
2,3-dioxygenase (IDO) [70,71].

Studies suggest that M2 polarization is in part driven by STAT3 expression. STAT1:STAT3
heterodimerization hampers the anti-tumor M1 phenotype [71]. Genetic ablation of STAT3
in macrophages results in increased pro-inflammatory cytokine production and increased
antigen presentation to T cells [72]. In a urethane-induced lung cancer model, myeloid STAT3
deletion resulted in improved anti-tumor immunity, with M2 macrophages replaced by the
M1 phenotype [73]. However, at least one study reports that macrophage and myeloid
STAT3 hyperactivation offers anti-tumor benefits. In this study, the authors deleted the STAT3
negative regulator SOCS3, which resulted in unchecked STAT3 signaling in macrophages but
overall anti-tumor effects [74]. These experiments, however, utilized a metastatic melanoma
model rather than an in situ model of lung cancer. As such, the results may not translate to
lung cancer development and progression in the context of tumor-promoting inflammation.
In our KM-LUAD model, we see the majority of immune cells in the lung are macrophages
and that they skew towards an M2 phenotype [15].

4.4. Neutrophils

Neutrophils are the first recruited immune cells during lung infection and are spe-
cialists in phagocytosis; however, they become a hinderance in the context of LUAD.
Neutrophils are an abundant immune cell type in lung cancers, and we and others found a
correlation with K-ras mutations and neutrophil recruitment in KM-LUAD models and
non-small cell lung cancer (NSCLC) at large [6,75,76]. Like macrophages, neutrophils
can skew between N1 and N2 phenotypes, with N2 producing TGF-β and representing
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a pro-tumor phenotype [77]. N2 neutrophils also parallel M2 macrophages and produce
VEGF, MMPs, and reactive oxygen species (ROS) to promote tumor survival [78–80]. Addi-
tionally, neutrophils produce a unique immunosuppressive molecule: neutrophil elastase
(NE). NE, along with heparanase and collagenase IV, remodel the extracellular matrix
to promote invasion and metastasis [81]. Genetic deletion of NE in a KM-LUAD model
reduced immunosuppression in the TME and reduced tumor burden [75,82].

4.5. Myeloid-Derived Suppressor Cells

Myeloid-derived suppressor cells (MDSCs) represent a heterogeneous group of imma-
ture myeloid immune cells which possess anti-inflammatory functions. They are further
sub-characterized as either polymorphonuclear (PMN-MDSCs) or monocytic (M-MDSCs),
based on their phenotypic and functional overlap with neutrophils and monocytes, respec-
tively [83]. MDSCs are recruited by various tumor-derived chemotactic factors, including
IL-8, IL-17A, and CCL3 [84]. The leading consensus is that STAT3 functions as a master
transcription factor in MDSC development and function [85]. Much like M2 macrophages,
MDSCs produce STAT3 transcriptional targets, including IL-10, TGF-β, VEGF, arginase-1,
and IDO, to generate an immunosuppressed, pro-tumor TME [86,87]. Moreover, MDSCs
induce immunosuppression with nitric oxide (NO), ROS, and PD-L1 [88–90]. Studies in
which myeloid STAT3 is ablated show that the myeloid compartment shifts from STAT3- to
STAT1-driven signaling, thereby skewing to an anti-tumor response [72].

4.6. T Cells

T cells are adaptive immune cells that are tailored to recognize specific targets. There
are two broad classes: CD4+ helper T (Th) and CD8+ cytotoxic T lymphocytes (CTLs). While
CTLs perform the actual work of killing tumors cell by cell, Th cells produce specialized cy-
tokines that support different flavors of immune responses: Th1 (antiviral/anti-tumor), Th2
(anti-parasite/allergy), Th17 (mucosal immunity), Treg (immunosuppression). Favorable
cell types for targeting tumors are CTLs and Th1, which elicit high STAT1 signaling. These
cells can directly induce tumor apoptosis via granzyme B (CTLs only) and production
of IFNγ and TNFα, two cytokines which broadly reprogram the TME and can induce
apoptosis in tumor cells [91,92]. On the other hand, Th2, Th17, and Tregs are generally
pro-tumor. Within these diverse subtypes, STAT3 signaling is a crucial factor that skews T
cells towards pro-tumor Th17 and Treg immunity while also increasing PD-L1 expression,
yielding functional exhaustion [52,93].

Th17 differentiation is triggered in response to IL-6 and TGF-β, two cytokines which
are downstream of STAT3 and which are found in abundance in the KM-LUAD TME [93].
These cytokines lead to activation of STAT3, which activates the ROR family of transcription
factors to drive Th17 fate [94]. T cells that lack STAT3 cannot become Th17 cells and instead
differentiate into Th1 cells [95]. Fully fledged Th17 cells are later maintained by IL-23,
another STAT3-controlled cytokine found in the TME [96].

True to their name, Th17 cells produce IL-17A, a cytokine which leads to produc-
tion of IL-8 [97]. Both IL-17A and IL-8 are major chemotactic factors for neutrophils and
MDSCs [84,98,99]. Moreover, IL-17A signaling contributes to paracrine TME reprogram-
ming, increased inflammation, and angiogenesis [100,101]. In our own studies, deletion of
IL-17A in a KM-LUAD mouse model reduced tumor burden, inflammation, and pro-tumor
myeloid cell recruitment and infiltration [102]. Th17 cells can also inhibit other anti-tumor
T cells by cleaving extracellular ATP into adenosine, which is immunosuppressive [103].

It is important to note that non-classical γδ T cells and type 3 innate lymphoid cells
(ILC3s) are major producers of IL-17A [104]. However, ILC3s have been reported to form
tertiary lymphoid structures (TLSs) in lung cancer that are positively prognostic [105]. It
should be noted that IL-17A can also play an anti-tumor role, depending on the type of
cancer [106]. In additional to making IL-17A, CD4+ and γδ T cells also produce IL-22, a
cytokine which acts on non-immune cells and heavily activates the STAT3 pathway [107].
Lung cancer patients present with elevated IL-22 in lung lavage samples [108]. We have
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shown that deletion of IL-22 in a KM-LUAD mouse model suppressed tumorigenesis,
altered the TME to an anti-tumor phenotype, and reduced stemness properties of tumor
cells [109].

Treg differentiation is driven by exposure to TGF-β and subsequent activation of
FoxP3, a transcription factor that induces and maintains the Treg subtype [110]. Tregs can
express immune checkpoint molecules that directly inactivate neighboring effector T cells.
They can release immunosuppressive molecules including IL-10, TGF-β, adenosine, etc.
They also metabolically compete with anti-tumor immune cells [111]. Treg infiltration is
almost universally a negative prognostic marker across cancer types [112]. When knocking
down STAT3 in T cells, Tregs are less abundant, indicating a reliance on STAT3 [113].

4.7. Dendritic Cells

Dendritic cells (DCs) are a key bridge between innate and adaptive immunity and
prime antigen-specific T cells [114]. The various DC subtypes and their roles in cancer and
immunotherapy have been extensively reviewed elsewhere [115], but the principal DC
subtypes of relevance are classical DC type 1 (cDC1) and 2 (cDC2). These cDC types largely
correlate with Th subsets: cDC1s are considered anti-tumor and prime tumor-specific
CTL and Th1 responses. cDC2s, on the other hand, are more heterogeneous in function,
but they are largely thought to prime Th2, Th17, and Treg responses, which represents a
pro-tumor skewing.

DC maturation often depends on STAT3 [116,117]. However, deletion of STAT3 in the
DC compartment leads to fewer but more functional DCs capable of activating robust T
cell responses [41]. STAT3-ablated DCs demonstrate increased IL-12 secretion necessary for
Th1 differentiation, and tumors with STAT3 inhibited DCs show decreased Treg infiltration
with commensurate increases in intratumoral CTLs and repolarization toward type I
immunity [41,118]. Interestingly, acetylated STAT3 has been implicated as a precursor
to IDO production in DCs, suggesting an additional immunosuppressive mechanism for
STAT3 [119].

4.8. Natural Killer Cells

Natural killer (NK) cells are directly cytotoxic immune cells that recognize their targets
independent of MHC presentation [120]. NK function is largely inhibited in KM-LUAD by
immunosuppressive factors such as IL-10, TGF-β, and IDO [121]. Deletion of STAT3 in the
NK compartment drastically improved tumor rejection, immune surveillance, and IFN-γ
secretion abilities, and targeting STAT3 with microRNA-130a augmented NK cytotoxicity
against NSCLC cells [122,123]. Similarly, deletion of lung epithelial STAT3 in a urethane-
induced LUAD model improved NK cell tumor killing function [57].

4.9. B Cells

B cells have recently come under investigation in lung cancer, displaying both pro-
and anti-tumor traits. STAT3 appears to be necessary for regulatory B (Breg) cells, a B
cell counterpart to Tregs that produces anti-inflammatory IL-10 and is pro-tumor [124].
B cell-specific deletion of STAT3 causes severe autoimmunity in mice, so we can infer
potential anti-tumor benefits from targeting STAT3 signaling in B cells [125]. Moreover,
Bregs are found more frequently in lung cancer patients [126]. One study suggests that
STAT3-regulated CD5 expression on B cells drives IL-6 signaling and disease progression
in lung cancer [127].

On the other hand, B cells have the ability to form structures which histologically
and functionally resemble lymph nodes and lymphoid tissue, so-called tertiary lymphoid
structures (TLSs). TLSs are associated with increased Th1 polarization, CTL infiltration,
and DCs in NSCLC. Much like true lymphoid tissue, TLSs develop germinal centers, a
process which depends on STAT3 [128].
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5. STAT3 Inhibition

In light of the many negative effects of hyperactive STAT3 in the TME, a number
of therapeutic interventions have been developed that target different stages of STAT3
signaling. Many of these drugs are already in or finishing clinical trials and have been
extensively reviewed elsewhere [129,130]. However, we want to touch on a few of these
which hold the most promise.

Multiple small molecule STAT3 inhibitors have been tested in the last decade, and there
are still many novel inhibitors which may one day reach clinical application [130,131]. One
such STAT3 inhibitor, TTI-101, binds to the SH2 domain to prevent STAT3 homodimeriza-
tion [132]. TTI-101 has shown preclinical benefits in various mouse cancer models including
lung cancer xenografts, and recruitment for clinical trials has begun (NCT03195699) [133].
AZD9150 is an anti-sense oligonucleotide therapy targeting STAT3 on the RNA level.
AZD9150 improves anti-tumor immunity in patient-derived lung cancer xenografts [134].
Multiple clinical trials are underway to combine AZD9150 with an immune checkpoint
blockade (NCT02983578, NCT03334617, NCT03421353).

It is easier to block cytokines than to target a transcription factor. Guided by this
philosophy, a monoclonal antibody (mAb) against IL-6, ALD518, completed phase II trials in
2011 in patients with advanced NSCLC (NCT00866970). ALD518 helped patients maintain
body weight while reducing fatigue and cancer-related anemia [135]. A forthcoming clinical
trial will test the synergistic effects of Tocilizumab (anti-IL-6) and Atezolizumab (anti-PD-
L1) in patients with NSCLC who have previously failed immune checkpoint blockade and
are experiencing advanced or metastatic disease (NCT04691817).

6. Conclusions

Despite advances in cancer therapies, there is rarely a one-treatment solution, and
KM-LUAD is no exception. To study the complex cell types, signaling pathways, and
possible treatment combinations, we need to make full use of the available models that
exist and to test treatments that attack multiple aspects of the TME. KM-LUAD models are
vital to understanding the mechanisms of STAT3 and to appraise therapies that block the
IL-6/STAT3 signaling pathway across the variety of cancer and immune cells within the
TME. The importance of cell types will feature prominently in future treatment strategies.
For instance, global STAT3 targeting in the TME may be beneficial in the T cell compartment
but harmful for B cells; ways to deliver treatments in a targeted manner will take advan-
tage of the diversity within the TME to yield optimal anti-tumor responses. In our own
group, we have also seen that targeting STAT3 in tumors depends greatly on the biological
context, with sex hormones playing a greater role than we foresaw. By cell type-specific
interrogation of the TME, we are creating a mosaic map and learning how to better tailor
future interventions.

Author Contributions: Conceptualization, M.J.C. and S.J.M., writing—original draft preparation,
M.J.C.; writing—review and editing, M.J.C. and S.J.M.; project administration, S.J.M. All authors have
read and agreed to the published version of the manuscript.

Funding: The authors were supported by the National Cancer Institute (NCI) grant R01CA225977
(to S.J.M.).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Siegel, R.L.; Miller, K.D.; Fuchs, H.E.; Jemal, A. Cancer Statistics, 2021. CA Cancer J. Clin. 2021, 71, 7–33. [CrossRef] [PubMed]
2. Goldstraw, P.; Ball, D.; Jett, J.R.; Le Chevalier, T.; Lim, E.; Nicholson, A.G.; Shepherd, F.A. Non-small-cell lung cancer. Lancet 2011,

378, 1727–1740. [CrossRef]
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