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A B S T R A C T   

In longitudinal clinical trials, missing data are inevitable due to intercurrent events (ICEs) such as treatment 
interruption or premature discontinuation for different reasons. The COVID-19 pandemic has had substantial 
impact on clinical trials since early 2020 as it may result in missing data due to missed visits and premature 
discontinuations. The missing data due to COVID-19 can reasonably be assumed as missing at random (MAR). 

We propose a combined hypothetical strategy for sensitivity analyses to handle missing data due to both 
COVID-19 and non-COVID reasons. We modify the commonly used missing not at random (MNAR) methods, 
reference based imputation (RBI) and tipping point analysis, under this strategy. We propose the standard 
multiple imputation approach and derive an analytic likelihood based approach to implement the proposed 
methods to improve efficiency in applications. The proposed strategy and methods are applicable to a more 
general scenario when there are missing data due to both MAR and MNAR reasons.   

1. Introduction 

The ICH E9 (R1) addendum requires a clearly defined estimand which 
can describe the quantity to be estimated to address a specific study 
objective for confirmatory clinical trials. One of the attributes in the 
construction of the estimand is to account for intercurrent events (ICEs) 
that may affect the estimand and the interpretation of the trial results. 
Different strategies for handling ICEs when defining estimand may pro-
vide different information on the trial data, thus the definition of estimand 
should be delineated with the clinical interests in clinical trials [1,2]. 

The COVID-19 pandemic has had substantial impact on planned and 
ongoing clinical trials since early 2020. Its impact on trial data may cause 
potential statistical issues and may be directly or indirectly relevant to 
the estimand and the interpretation of the analysis results [3]. FDA has 
issued a guidance and EMA has issued a “points to consider” document 
for statistical considerations in clinical trials conducted during the 
COVID-19 pandemic [4,5]. Missing data may result from ICEs associated 
with COVID-19 due to missed visits and premature discontinuations. For 
example, missing data may result from interruptions or discontinuation 
due to COVID infection, quarantine, or hospitalization, and thus the 
missingness is not associated with the unobserved measurements. 
Therefore, missing data due to COVID-19 can reasonably be assumed to 
be missing at random (MAR). As a result, missing data due to COVID-19 
can be analyzed by commonly used approaches under MAR, such as 

mixed model for repeated measures (MMRM) or multiple imputations 
(MI) [6]. However, the MAR assumption may still be difficult to justify 
for missing data due to non-COVID related reasons such as lack of efficacy 
or safety issues. Methods for missing not at random (MNAR) may be more 
appropriate to handle missing data due to non-COVID reasons for 
sensitivity analyses [7,8]. To take the MAR missingness into account, 
sensitivity analyses conducted during COVID-19 pandemic should 
incorporate missing data handling due to both COVID-19 and non-COVID 
reasons. We propose a combined hypothetical strategy to handle ICEs 
associated with COVID-19 interruptions and non-COVID dropouts to 
define estimands for clinical trials conducted during COVID-19 
pandemic. Under the combined hypothetical strategy, missing data due 
to COVID-19 reasons are handled by MAR methods and missing data due 
to non-COVID reasons are handled by MNAR methods. As we know that 
MNAR methods are usually more conservative than MAR methods, the 
combination of MAR and MNAR will be more powerful than the pure 
MNAR methods, but will be less powerful than pure MAR methods. The 
level of power gain compared to pure MNAR methods should depend on 
the proportion of missing data due to MAR/COVID-19. 

Reference-based imputation (RBI) and tipping point analysis are 
commonly used to handle MNAR missingness [9,10]. However, these 
methods only use MNAR assumptions and may not represent the 
reasonable missing mechanism for missingness due to COVID-19. In this 
paper, we propose modified RBI methods and tipping point analysis 
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method under the combined hypothetical strategy to handle missing 
data incorporating missingness due to COVID-19 interruptions and 
dropouts. Since missingness due to COVID-19 is a special case of MAR 
missingness, the proposed framework can be generalized to other sce-
narios of combined MAR and MNAR missingness mechanisms. 

In practice, there are two types of missingness: intermittent miss-
ingness and monotone missingness. Intermittent missingness is often 
assumed to be MAR and then handle by MAR methods [6]. With this 
consideration, we will focus our theoretical development and investi-
gation on monotone missingness throughout the paper. 

The remainder of the manuscript is organized as following. In Sec-
tion 2, we propose modified RBI methods to handle missing data 
incorporating missingness due to COVID-19 or other MAR reasons, and 
propose MI and likelihood based analytic approaches for statistical 
inference; in Section 3, we propose a modified tipping point analysis 
method to handle missing data incorporating missingness due to COVID- 
19 or other MAR reasons, and propose MI and likelihood based analytic 
approaches for statistical inference; in Section 4, the proposed methods 
are applied to a data example for illustration; and in Section 5, we 
conclude this paper with some discussion. 

2. Modified RBI to incorporate missingness due to COVID-19 

In this manuscript, we refer to two intercurrent events, dropouts due 
to COVID-19 and due to other reasons, resulting in missing data due to 
COVID-19 and non-COVID reasons. Reference based imputation 
methods have been used for analysis of missing data under MNAR [9]. 
The RBI methods use different imputation models for missing data in 
two treatment groups: the missing data in the reference or control group 
will be imputed under MAR assumption, whereas the missing data in the 
treatment group will be imputed based on the assumption that a patient 
drop out in the treatment group will have a similar response profile to 
that of the patients in the reference group. 

The three most commonly used RBI methods are described below in 
the order from the most to the least conservative:  

• Jump to reference (J2R): it is assumed that the mean effect profile of 
the patients who discontinue the active treatment will immediately 
jump to that of patients in the reference group after discontinuation. 
Therefore, the missing data will have a distribution after dropout 
equal to that of the control group.  

• Copy reference (CR): it is assumed that the missing data in the active 
treatment group will have the conditional distribution after dropout 
equal to that in the reference group. This approach is conservative, 
but not as conservative as J2R since it still allows the treatment 
benefit received prior to dropout to be carried over to the post- 
dropout visits by using the prior observed values in active treat-
ment group as predictors. As a result, the mean effect profile of the 
patients in the active treatment group will gradually transition to 
that of patients in the reference group. 

• Copy increments in reference (CIR): it is assumed that the mean ef-
fect profile of the patients who discontinue the active treatment will 
have an increment profile equal to that of the reference group for 
visits after dropout. 

RBI is a type of pattern mixture model (PMM) and imputes missing 
data under missing patterns [11,12]. Let us consider a longitudinal trial 
with the endpoints measured at visits 0, 1, 2, …, K, where 0 is the baseline 
visit. For patient i, the change from baseline at each visit is denoted by the 
vector Yi = (Yi1, …, YiK)′. Assume the sample size is nZ in group Z, where 
Z = T for treatment group or C for reference or control group. 

Under the proposed combined hypothetical strategy, we propose 
modified RBI methods to impute missing data due to COVID-19 with MAR 
methods and missing data due to non-COVID reasons with MNAR methods. 
To facilitate our proposed imputation strategy, we need to consider missing 
patterns different from those defined in conventional RBI methods. In the 

presence of missing data due to COVID-19, there may be missingness due to 
COVID-19 and non-COVID reasons. We define the corresponding missing 
patterns due to COVID-19 and non-COVID reasons as following:  

• Missing pattern due to COVID-19: the jth missing pattern due to 
COVID-19 is for patients who have measures up to Visit j and drop 
out at Visit j + 1 due to COVID-19, j = 0, …, K − 1. Denote πZ

j,cvd the 
probability of patients in missing pattern j due to COVID-19 in group 
Z = T, C, and πZ

cvd =
∑K− 1

j=0 πZ
j,cvd is the probability of patients who drop 

out due to COVID-19 in group Z.  
• Missing pattern due to non-COVID reasons: jth missing pattern due to 

non-COVID reasons is for patients who have measures up to Visit j 
and drop out at Visit j + 1 due to non-COVID reasons, j = 0, …, 
K − 1. Denote πZ

j,ncvd the probability of patients in missing pattern j 

due to non-COVID reasons in group Z = T, C, and πZ
ncvd =

∑K− 1
j=0 πZ

j,ncvd 

is the probability of patients who drop out due to non-COVID reasons 
in group Z. 

• Denote πZ
K the probability of completers in group Z = T, C . Consid-

ering all patients who drop out for COVID-19, non-COVID reasons, 
and who complete the assigned therapy, 

∑K− 1

j=0
πZ

j,cvd +
∑K− 1

j=0
πZ

j,ncvd + πZ
K = πZ

cvd + πZ
ncvd + πZ

K = 1.

In the presence of missing data due to COVID-19, there are naturally two 
strategies for our proposed missing patterns: one is the general RBI for 
all missing data, and the other is our proposed modified RBI using MAR 
analysis for missing data due to COVID-19 and conventional RBI for 
missing data due to non-COVID reasons. For the two strategies, the 
corresponding probabilities of missing patterns in group Z = T, C at each 
visit are denoted as the following using what have been defined: 

pZ = (pZ
0 ,p

Z
1 ,…,pZ

K)
′
=(πZ

0,cvd+πZ
0,ncvd,πZ

1,cvd+πZ
1,ncvd,…,πZ

K− 1,cvd+πZ
K− 1,ncvd,πZ

K)
′
,

qZ = (qZ
0 ,q

Z
1 ,…,qZ

K)
′
=(πZ

0,ncvd,πZ
1,ncvd,…,πZ

K− 1,ncvd,πZ
K+πZ

cvd)
′
.

(1) 

Denote (μZ
0,μZ

1,…,μZ
K)

′ the vector of true means of change from 
baseline at Visit j = 0 (baseline), 1, …, K, where Z = T or C. Without loss 
of generality, it is assumed that a larger value favors the treatment ef-
fect. Assume μZ

0=0 for baseline mean effect. For any pattern j, denote the 
measures (YZ

o,j,YZ
m,j), where YZ

o,j is the vector of the observed measures up 
to Visit j (YZ

0 ,YZ
1 ,…,YZ

j )
′ and YZ

m,j is the vector of the missing measures 
(YZ

j+1, YZ
j+2, …, YZ

K)
′. The covariance matrix can be decomposed of block 

matrix with dimensions corresponding to YZ
o,j and YZ

m,j (Σoo,j is the 
covariance matrix corresponding to YZ

o,j and Σmm,j to YZ
m,j) 

(
Σoo,j Σom,j
Σmo,j Σmm,j

)

For missing pattern j > 0, denote μZ
j = (μZ

0, μZ
1,…, μZ

j )
′ the vector of 

true means of the observed measures up to Visit j. The missing data for 
the treatment group will use the imputation model built from the mean 
profile in the reference group as specified by the specific assumption of 
RBI, and the imputed mean vector for missing data using RBI at post- 
dropout Visit k, j < k ≤ K becomes: 

μk
j,imp− RBI =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

μC
k , J2R

μC
k + [Σmo,jΣ− 1

oo,j(μT
j − μC

j )]k− j, CR

μC
k + μT

j − μC
j , CIR,

(2)  

where [Σmo,jΣ− 1
oo,j(μT

j − μC
j )] is a vector with dimension (K − j) × 1 and 

[Σmo,jΣ− 1
oo,j(μT

j − μC
j )]k− j is the (k − j)th element of the vector. 
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For missing pattern j = 0, μk
j,imp− RBI = μC

k because there are no post- 
baseline effects. 

By the general RBI methods, the true treatment difference between 
the treatment groups at Visit K can be derived by averaging the mean 
difference across all missing patterns [15,16]: 

βRBIg
K =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

pT
K(μT

K − μC
K), J2R

pT
K(μT

K − μC
K) +

∑K− 1

j=1
pj[Σmo,jΣ− 1

oo,j(μT
j − μC

j )]K , CR

∑K

j=1
pT

j (μT
j − μC

j ), CIR.

(3) 

Using the proposed modified RBI methods with the combined 
imputation strategy, for missing pattern j, the treatment difference using 
MAR imputation at Visit K becomes: 

βK
j,imp− MAR = μT

K − μC
K ,

and the treatment difference using RBI at Visit K is (3). 
Therefore, we can derive the treatment difference at Visit K using the 

modified RBI methods which can incorporate missingness due to 
COVID-19 or other MAR reasons as follows: 

βRBIm
K =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

qT
K(μT

K − μC
K), J2R

qT
K(μT

K − μC
K) +

∑K− 1

j=1
qj[Σmo,jΣ− 1

oo,j(μT
j − μC

j )]K , CR

∑K

j=1
qT

j (μT
j − μC

j ), CIR.

(4)  

From the probabilities of missing patterns with or without consideration 
of missingness due to COVID-19 in Eq. (1), it is straightforward that 

pT
j ≥ qT

j , j = 1,…,K − 1,

and 

pT
K ≤ qT

K .

Therefore, the true treatment difference at Visit K under the modified 
RBI is less conservative than the general RBI: 

βRBIm
K ≥ βRBIg

K .

We propose two approaches for the estimators and variances to imple-
ment the modified RBI methods: MI approach and likelihood based 
analytic approach. 

2.1. Modified RBI by MI 

Multiple imputation (MI) can be applied to obtain the estimators and 
variances of an imputation method. The first step of multiple imputation 
is to impute the missing values using a model under RBI multiple times 
to obtain m completed datasets, and the second step is to analyze each of 
the m datasets and combine the results using Rubin’s rules [13]. 

Tang (2017) proposed an efficient MI approach for RBI by using proc 
MI in SAS, which imputes the missing data by adjusting the mean dif-
ference in the posterior predictive distributions of missing data from the 
imputed values by MMRM under MAR [14]. We propose the following 
MI approach for the modified RBI methods:  

• Impute all missing data assuming MAR by MI, then get m complete 
datasets;  

• Calculate the mean difference of the missing data between MMRM 
and RBI, from MMRM on imputed data and formula (2).  

• Adjust the imputed values under MAR for those who drop out in the 
treatment group due to non-COVID reasons by subtracting the dif-
ference from the MAR imputation to yield the imputed values for RBI. 

The SAS code for the modified RBI methods by MI is provided in 
Appendix A1.1. 

2.2. Modified RBI by likelihood based analytic approach 

The MI approach using Rubin’s rules tends to be conservative to 
estimate the variance [15,16]. Liu and Pang (2016) proposed an analytic 
likelihood based approach for the estimators and variances of the gen-
eral RBI methods. Here we extend the framework of analytic approach 
for our modified RBI methods in presence of missing data due to 
COVID-19. 

From our derived Eq. (4), the estimator can be obtained as following: 

β̂
RBIm

K =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

q̂T
K(μ̂

T
K − μ̂C

K), J2R

q̂T
K(μ̂

T
K − μ̂C

K) +
∑K− 1

j=1
q̂j[Σ̂mo,j Σ̂

− 1
oo,j(μ̂

T
j − μ̂C

j )]K , CR

∑K

j=1
q̂T

j (μ̂
T
j − μ̂C

j ), CIR,

(5)  

where q̂T
j is the estimator of qT

j by sample proportions in the treatment 

group T, and μ̂T
j , μ̂C

j are least-square (LS) means of the treatment effects 
obtained from the MMRM. 

The variance can be estimated as following: 

Var(β̂
RBIm

K ) = E[Var(β̂
RBIm

K |q̂T
)] + Var[E(β̂

RBIm

K |q̂T
)]. (6) 

The first term can be approximated by the estimated variance- 
covariance matrix of the parameters obtained from the MMRM, and the 

second term can be calculated using the point estimate of ̂β
RBIm
K and variance 

of the sample proportion ̂qT. The SAS code for the modified RBI methods by 
the analytic likelihood based approach is provided in Appendix A1.2. 

3. Modified tipping point analysis to incorporate missingness 
due to COVID-19 

The tipping point analysis has been suggested in the literature for 
analysis of missing data under MNAR [10]. It is a method of exploring the 
influence of missingness on the overall conclusion of the treatment differ-
ence by shifting imputed missing values in the treatment group towards the 
reference group until the result becomes non-significant. The “tipping 
point” is the minimum shift needed to make the result non-significant. In 
other words, the tipping point method is to assess how much the distribution 
of the missing values need to deviate from MAR assumption to make the 
primary analysis non-significant. This method provides more confidence 
about what it would take to change the study conclusion with different 
assumptions for missing data. A plausible tipping point to reverse the study 
conclusion indicates that the MAR assumption may not be reasonable. 

Tipping point method is a special application of the delta-adjust 
method, but it is evaluated based on a series of shift parameters. 

For the general tipping point method, it is straightforward to derive 
the true mean difference between groups at Visit K by a given single shift 
parameter δ as following: 

βTIPg
K = pT

K(μT
K − μC

K) + (1 − pT
K)(μT

K − μC
K + δ) = μT

K − μC
K + (1 − pT

K)δ. (7) 

Recently, there is interest to shift both the treatment group and 
reference group for tipping point analysis from regulatory perspective 
[17]. Under the framework of 2-dimension of shift parameters, the true 
mean difference between groups at Visit K by given shifts δZ, Z = T, C is 
derived as following [17]: 

βTIP2g
K = μT

K + (1 − pT
K)δ

T − [μC
K + (1 − pC

K)δ
C]. (8) 

It can be seen that the single-shift tipping point method is a special 
case of the 2-dimension tipping point method, when the shift parameter 
in the reference group is set to 0. 

M. Jin et al.                                                                                                                                                                                                                                      



Contemporary Clinical Trials 110 (2021) 106575

4

We propose a modified tipping point method, which imputes the 
missingness due to COVID-19 by MAR method and imputes the missing-
ness due to non-COVID reasons by tipping point method. The true mean 
difference between groups at Visit K by a given single shift parameter δ is: 

βTIPm
K = qT

K(μT
K − μC

K) + (1 − qT
K)(μT

K − μC
K + δ) = μT

K − μC
K + (1 − qT

K)δ. (9) 

Under the framework of 2-dimension of shift parameters, the true 
mean difference between groups at Visit K by given shifts δZ, Z = T, C is: 

βTIP2m
K = μT

K + (1 − qT
K)δ

T − [μC
K + (1 − qC

K)δ
C]. (10)  

Since it is assumed that a larger value favors the treatment effect, then 
usually δ ≤ 0 is used toward the reference group. Therefore, for the 
tipping point method with a single shift parameter, 

βTIPg
K ≤ βTIPm

K .

Under the framework of 2-dimension of shift parameters, it is not 
straightforward to draw the same conclusion because the 2-shift mean 
difference (8) and (10) depends on 2 shift parameters and the proba-
bilities of missingness in both groups. 

3.1. Modified tipping point analysis by multiple imputation 

Tipping point analysis can be implemented by SAS PROC MI with 
MNAR statement. For our modified tipping point analysis, we impute 
missingness due to COVID-19 by MAR methods and impute missingness 
due to non-COVID reasons by general tipping point method. The SAS code 
for the modified tipping point analysis by MI is provided in Appendix A2. 

3.2. Modified tipping point analysis by likelihood based analytic approach 

Here we propose an analytic likelihood based approach for our 
modified tipping point analysis to improve the estimated variance. For 
the tipping point method with a single shift parameter, the estimator can 
be obtained by 

β̂K
TIPm

= μ̂T
K − μ̂C

K + (1 − q̂T
K)δ. (11)  

Using the LS means and SEs from MMRM and the sample proportions for 
the missingness, the variance is derived as following: 

Var

⎛

⎝β̂K
TIPm

⎞

⎠ = Var

⎛

⎝μ̂T
K − μ̂C

K

⎞

⎠+

q̂T
K

(

1 − q̂T
K

)

δ2

nT . (12)  

Under the framework of 2-dimension of shift parameters, the estimator 
can be obtained by [17] 

β̂K
TIP2m

= μ̂T
K + (1 − q̂K

T
)δT − [μ̂C

K + (1 − q̂C
K)δ̂

C
. (13)  

Using the LS means and SEs obtained from MMRM and the sample 
proportions for the missingness, the variance is derived as following 
[17]: 

Var

⎛

⎜
⎝β̂K

TIP2m

⎞

⎟
⎠ = Var

⎛

⎜
⎝μ̂T

K − μ̂C
K

⎞

⎟
⎠+

q̂T
K

(

1 − q̂T
K

)

δT 2

nT +

q̂C
K

(

1 − q̂C
K

)

δC2

nC .

(14)  

The SAS code for the modified tipping point analysis by the analytic 
likelihood based method is provided in Appendix A1.2. 

4. Simulations 

The tipping point method is to find the shift point against the MAR 
assumption to make the results non-significant, so there is no need to run 

simulation. There is extensive simulation for RBI methods in the liter-
ature [15,14] and the property of RBI methods are well known. The 
simulation for RBI methods using MI is time-consuming. Since our 
proposed modified RBI methods follow the same principal as the general 
RBI methods with adjustment for MAR missingness due to COVID-19, we 
conduct some simulation using J2R methods as a demonstration of the 
modified method and general method. 

4.1. Settings 

We conduct the following simulation studies with sample size N = 65 
per arm with baseline and 6 post-baseline visits. The data are generated 
from a multivariate normal distribution with means in the control group 
and treatment group as follows 

μp = (9.4, 10.4, 10.65, 10.9, 10.94, 10.97, 11.04)

and 

μd = (9.4, 10.9, 11.4, 11.9, 12.15, 12.4, 12.9).

The standard deviation for each visit is 2.9, and the covariance 
matrix used for data generation is 
⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 0.4 0.1 0.2 0.2 0.1 0.3
0.4 1 0.5 0.6 0.4 0.5 0.6
0.1 0.5 1 0.5 0.4 0.4 0.6
0.2 0.6 0.5 1 0.5 0.3 0.6
0.2 0.4 0.4 0.5 1 0.6 0.4
0.1 0.5 0.4 0.3 0.6 1 0.4
0.3 0.6 0.6 0.6 0.4 0.4 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

The probability for a subject to drop out at Visit j is generated by the 
following logistic model: 

logit(P(drop out at j or Visit j is missing)|j > 0) = φ1 + φ2Yj− 1 + φ3Yj.

(15)  

In the logistic model (15), φ2 is the parameter associated with the 
observed values at last visit j − 1, φ3 is the parameter associated with the 
values at Visit j. When φ2 = 0, the probability of missingness of the Visit j 
value depends only on the unobserved value which is the MNAR 
mechanism. When φ3 = 0, the probability of missingness of the Visit j 
value depends only on the observed value which is the MAR mechanism. 
The following missing data scenarios with combined MAR and MNAR 
missingness are considered in the simulations:  

• Scenario 1: The total missing rate is 20% in each group; and among 
the missingness, 5% is MAR missingness which is assumed to be 
missing due to COVID-19, and the other is MNAR missingness.  

• Scenario 2: The total missing rate is 20% in treatment group and 30% 
in control group; and among the missingness, 5% is MAR missingness 
which is assumed to be missing due to COVID-19, and the other is 
MNAR missingness.  

• Scenario 3: The total missing rate is 30% in treatment group and 20% 
in control group; and among the missingness, 5% is MAR missingness 
which is assumed to be missing due to COVID-19, and the other is 
MNAR missingness.  

• Scenario 4: The total missing rate is 30% in each group; and among 
the missingness, 5% is MAR missingness which is assumed to be 
missing due to COVID-19, and the other is MNAR missingness. 

Under each missing data scenario, the MMRM and the J2R methods 
using MI and the likelihood based analytic approach are evaluated by 
mean estimator, standard error (SE) and power. For the MI approaches, 
50 imputations are used and the analysis results are combined by 
Rubin’s rule. Specifically, we evaluate the J2R methods by the general 
J2R methods without COVID adjustment and by the modified J2R 
methods with adjustment COVID. 
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4.2. Results 

The estimates of treatment difference, standard error (SE), and 
power are reported from the simulated data in Table 1. The findings are:  

• MMRM method is unbiased and more powerful then the J2R method, 
which is consistent with the literature [15,14].  

• The modified J2R Methods with adjustment for COVID generate 
larger treatment difference and are more powerful than the general 
J2R method without adjustment, by both MI and analytic 
approaches.  

• The Type I errors are also simulated using data setting μd = μp, and 
there is no inflation from all methods (the results are not reported 
here). This is consistent with the literature [15,14]. 

5. Illustration using a data example 

We use an anti-depression trial to illustrate the proposed methods 
[18]. The dataset was provided in the online supporting information 
from a paper [19], and it was used to illustrate the proposed missing 
data methods in that paper. A total of 172 patients were randomized to 
the drug (n = 84) or placebo (n = 88) groups. The dataset includes 
Hamilton 17-item rating scale for depression (HAMD-17) at baseline, 
and Visits 4, 5, 6, and 7 after randomization. The primary endpoint we 
are interested in is the change from baseline at Visit 7. A lower change 
from baseline implies better effect here. About 25% of patients dis-
continued prior to Visit 7 in the drug and placebo groups. 

We applied MMRM to the observed change from baseline in HAMD- 
17 as a benchmark for comparison. To demonstrate the proposed 
methods with missingness due to MAR reasons such as COVID-19, we 
generate a 10% random sample of patients out of those who discontinued 
prior to Visit 7 and assume their discontinuation is due to MAR reasons, 
while the total proportion of discontinuation is not changed. 

The results of LS mean, SE and 95% confidence interval (CI) using the 
general RBI and the proposed modified RBI methods are reported in 
Table 2. As seen from Table 2, for both general RBI and modified RBI 
methods, J2R approaches gave the most conservative estimates of 
treatment difference at Visit 7, and then CR and CIR. The estimated SEs 
from the analytic approaches are smaller than those from MI. The 
modified RBI methods gave larger estimates of the treatment difference. 

The results using the general tipping point analysis and the modified 
tipping point analysis methods by MI are reported in Table 3. As dis-
cussed in Section 3, the single-shift tipping point method is a special case 
of the 2-dimension tipping point method by setting the shift parameter in 
the placebo group as 0. Because of this, we apply the 2-dimension tipping 
point method by a given shift parameter and set the shift parameter in the 
placebo group as 0. From the general tipping point method by setting the 
shift parameter in the placebo group as 0, the tipping point is between 2.0 
and 2.5, which means the study conclusion under MAR is reversed when 
the shift parameter is between 2.0 and 2.5. Thus, the clinical plausibility 
needs to be assessed for the tipping point to assess the robustness of the 
MAR assumption. From the modified tipping point method, the tipping 
point is between 4.0 and 4.5, more implausible to reverse the study 
conclusion than the general tipping point method, which is reasonable 
because the missingness under MNAR is less severe by handling miss-
ingness due to COVID-19 using MAR methods. 

The results using the modified tipping point analysis by the analytic 
approach are consistent with those from the MI approach, which are 
reported in Table 4. 

6. Discussion 

The COVID-19 pandemic has had substantial impact on planned and 
ongoing clinical trials since early 2020 and will continue to impact 
clinical trials. How to handle the ICEs associated with COVID-19 that 
result in missing data is critical for estimand definition, analytic 
methods, and results. 

The methods for sensitivity analyses in the current literature do not 
differentiate ICEs due to COVID-19 or due to other reasons. In this 
article, we have proposed a combined hypothetical strategy for handling 
the ICEs resulting in missingness due to COVID-19 and other non-COVID 
reasons, and it is a reasonable strategy since missingness due to COVID- 
19 are usually assumed to be MAR. Under this strategy, we have pro-
posed modified RBI methods and tipping point analysis method for 
sensitivity analyses which analyze the MAR missingness by MAR 
methods and MNAR missingess by MNAR methods. 

The modified methods can mitigate the impact of missing data 
resulting from COVID-19, because it handles missingness due to COVID- 
19 by MAR methods and missingness due to other reasons by MNAR 
methods. We have proposed standard MI approaches for estimates and 
variances for the modified RBI methods and tipping point analysis. Since 
the MI approaches tend to overestimate the variance as discussed in 
Section 3, we have derived analytic likelihood based approaches to 

Table 1 
Simulation results.  

Scenario Parameter MMRM General J2R Modified J2R    

Analytic MI Analytic MI 

1 Mean 1.86 1.50 1.50 1.55 1.55  
SE 0.52 0.43 0.52 0.44 0.52  
Power (%) 95.1 95.0 87.6 95.0 89.4  

2 Mean 1.86 1.49 1.48 1.55 1.55  
SE 0.52 0.43 0.52 0.44 0.52  
Power (%) 94.1 93.6 85.6 94.0 87.5  

3 Mean 1.86 1.31 1.31 1.39 1.39  
SE 0.53 0.39 0.52 0.41 0.53  
Power (%) 93.0 92.4 74.7 93.2 80.5  

4 Mean 1.86 1.30 1.30 1.41 1.41  
SE 0.54 0.39 0.52 0.42 0.54  
Power (%) 93.0 92.7 74.0 93.5 79.6  

Table 2 
Analysis of change from baseline in HAMD-17 at visit 7.  

Parameter MMRM J2R CR CIR   

MI Analytic MI Analytic MI Analytic 

General RBI methods 
LS mean -2.80 -2.19 -2.13 -2.43 -2.37 -2.51 -2.45 
SE 1.12 1.12 0.86 1.10 1.00 1.10 1.02 
p-Value 0.006 0.025 0.007 0.014 0.009 0.011 0.008 
95% CI -5.01,-0.60 -4.39,-0.01 -3.84,-0.43 -4.59,-0.27 -4.36,-0.39 -4.67,-0.35 -4.47,-0.43  

Modified RBI methods, 10% dropouts due to COVID-19 
LS mean -2.80 -2.46 -2.40 -2.59 -2.54 -2.63 -2.58 
SE 1.12 1.11 0.97 1.10 1.05 1.10 1.06 
p-Value 0.006 0.013 0.007 0.009 0.008 0.008 0.007 
95% CI -5.01,-0.60 -4.63,-0.29 -4.31,-0.49 -4.74,-0.43 -4.61,-0.46 -4.79,-0.47 -4.68,-0.48 

LS: least-square; p-value: one-sided; SE: standard error; CI: confidence interval. 
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improve efficiency for estimating variances. 

We have provided analytical and theoretical justifications of the 
proposed methods. The proposed methods have also been illustrated in 
an example of anti-depression trial data. 

The proposed methods differentiate missing patterns by MAR miss-
ingness and MNAR missingness after treatment discontinuation instead 
of treating all missingness due to discontinuation as MNAR missingness. 
Utilizing different methods to deal with them is reasonable to align with 
the missing patterns. Missing data incorporating COVID-19 missingness 
is a special case for the proposed strategy, however, the proposed 
strategy is applicable to more scenarios with missing data after discon-
tinuation combined with MAR missingness and MNAR missingness in 
practice. 

When the methods are proposed for ongoing clinical trials, 
communication with regulatory authorities is recommended to reduce 
the impact of COVID-19 pandemic on ongoing clinical trials. In partic-
ular, given the different efficiency by the standard MI approach and the 
analytic likelihood based approach, it would be important to commu-
nicate with regulatory authorities about the specific approach proposed 
for handling missing data. 

Disclosure 

This manuscript was supported by AbbVie. AbbVie participated in 
the review and approval of the content. Man Jin and Weining Robieson 
are AbbVie employees, and Ran Liu is a former AbbVie employee. All 
authors may own AbbVie stock. 

Declaration of Competing Interest 

The authors declare no conflict of interest.  

Appendix A. SAS code for modified RBI and modified tipping point analysis 

SAS code for modified RBI and modified tipping point analysis by MI and analytic likelihood based approach is provided below, respectively. 

A.1. Modified RBI by MI 

For modified RBI by multiple imputation approach, we could follow SAS implementation for RBI adjustment by Tang (2017) but we need to change 
the missing data pattern due to COVID-19 to 4 (treated as completers because of MAR assumption). 

Assume the dataset “indta” contain variables: patient (patient id), trt (treatment code, 1 for drug, 0 for placebo), basval (baseline value), change1, 
change2, change3, change4 (repeated measures after baseline), gender (1 for male, 0 for female), pattern (missing data pattern), and type 
(“completer” for complete case, “cvd” for dropout due to COVID-19, “non-cvd” for dropout due to non-COVID reasons). 

A.2. Modified RBI and tipping point analysis by likelihood based approach 

For modified RBI by likelihood based analytic approach, we could follow SAS implementation by Liu and Pang (2016), but we need to adjust the 
missing data pattern due to COVID-19 to 4 for the calculation of sample proportions of patterns (treated as completers because of MAR assumption). In 
addition, we added a term to the variance calculation for more accurate estimation of the variances. 

For modified tipping point analysis by likelihood based analytic approach, we have developed the following code embedded with the modified RBI 
likelihood based analytic approach. 

Table 3 
Tipping point analysis from MI.  

Shift 1 Shift 2 p-Value Tipping 

General tipping point methods 
1.5 0 0.032 No 
2.0 0 0.042 No 
2.5 0 0.054 Yes 
3.0 0 0.070 Yes 
3.5 0 0.090 Yes  

Modified tipping point methods 
3.0 0 0.033 No 
3.5 0 0.039 No 
4.0 0 0.046 No 
4.5 0 0.054 Yes 
5.0 0 0.063 Yes  

Table 4 
Tipping point analysis from analytic methods.  

Shift 1 Shift 2 p-Value Tipping 

General tipping point methods 
1.5 0 0.030 No 
2.0 0 0.040 No 
2.5 0 0.051 Yes 
3.0 0 0.065 Yes 
3.5 0 0.083 Yes  

Modified tipping point methods 
3.0 0 0.036 No 
3.5 0 0.042 No 
4.0 0 0.050 No 
4.5 0 0.058 Yes 
5.0 0 0.067 Yes  
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A.3. Modified tipping point analysis by MI 
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