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Simple Summary: Spinal metastasis is the most common malignant disease of the spine, and its early
diagnosis and treatment is important to prevent complications and improve quality of life. With the
recent advances in medical imaging and artificial intelligence (AI), there is a dramatic rise in research
related to computer-aided interpretation of spinal metastasis imaging. This study will review the
current evidence for AI methods in spinal metastasis imaging using a systemic approach. Potential
clinical applications of AI, designed to solve the issues frequently faced in the management of spinal
metastasis, will also be discussed.

Abstract: Spinal metastasis is the most common malignant disease of the spine. Recently, major
advances in machine learning and artificial intelligence technology have led to their increased use in
oncological imaging. The purpose of this study is to review and summarise the present evidence for
artificial intelligence applications in the detection, classification and management of spinal metastasis,
along with their potential integration into clinical practice. A systematic, detailed search of the main
electronic medical databases was undertaken in concordance with the PRISMA guidelines. A total of
30 articles were retrieved from the database and reviewed. Key findings of current AI applications
were compiled and summarised. The main clinical applications of AI techniques include image
processing, diagnosis, decision support, treatment assistance and prognostic outcomes. In the realm
of spinal oncology, artificial intelligence technologies have achieved relatively good performance and
hold immense potential to aid clinicians, including enhancing work efficiency and reducing adverse
events. Further research is required to validate the clinical performance of the AI tools and facilitate
their integration into routine clinical practice.

Keywords: artificial intelligence; machine learning; deep learning; spinal metastasis; imaging; applications

1. Introduction

Spinal metastasis is a malignant process along the spine that is up to 35 times more
common than any other primary malignant disease along the spine [1] and represents
the third most common location for metastases [2]. Spinal metastasis can tremendously
impact quality of life, secondary to complications such as pain due to fractures, spinal
cord compression, neurological deficits [3,4], reduced mobility, bone marrow aplasia and
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hypercalcemia leading to symptoms such as constipation, polyuria, polydipsia, fatigue
and even cardiac arrythmias and acute renal failure [5,6]. Therefore, the timely detection,
diagnosis and optimal treatment of spinal metastases is essential to reduce complications
and to improve patients’ quality of life [7].

Radiological investigations play a central role in the diagnosis and treatment planning
of spinal metastases. Plain radiographs are a quick and inexpensive first-line investigation,
although advanced modalities such as computed tomography (CT), magnetic resonance
imaging (MRI), positron emission tomography (PET) and bone scintigraphy are all superior
for the detection and classification of spinal metastases [8]. Different imaging modalities
have their own advantages over each other in the assessment of spinal metastasis. CT
with sensitivity and specificity of 79.2% and 92.3%, respectively, for the detection of spinal
metastases [9], can be used to guide interventional procedures and also provides systemic
staging [10]. Compared to CT, MRI has higher sensitivity and specificity of 94.1% and 94.2%,
respectively, for spinal metastasis detection [9], and is radiation-free. MRI is the modality
of choice for assessing metastatic spread to the bone marrow and associated epidural soft
tissue extension [11,12]. 18F FDG-PET (flurodeoxyglucose) has sensitivity and specificity of
89.8% and 63.3%, respectively, although sensitivity varies among different histologies due
to their innate metabolic activity [9,13]. In bone scintigraphy, the sensitivity and specificity
are 80.0% and 92.8%, respectively, and it is the most widely available technique for the
study of bone metastatic disease [8,9].

Recently, preliminary Artificial Intelligence (AI) techniques have demonstrated re-
markable progress in medical imaging applications, especially in the field of oncology [14].
The two most popular machine learning techniques are radiomics-based feature analysis,
along with convolutional neural networks (CNN). Radiomics-based techniques require
extraction of several handcrafted features, which are then selected to provide a training
set for deep learning-based image classification [15]. One drawback of the technique is
that the selected handcrafted features remain limited to the knowledge of the radiologist
or clinician, which could reduce the accuracy of the developed algorithm [16]. Machine
learning along with deep learning techniques can directly learn important imaging features
for classification without the need for handcrafted feature selection. This typically involves
convolutional neural networks, and these techniques have been shown in the literature
to have improved prediction accuracy for lesion detection, segmentation and treatment
response in oncological imaging [17–19].

The use of AI techniques in various oncological imaging [20] for primary malignancies,
including breast [21–23], renal [24,25], brain [26–29] and liver cancers [30–33] have been
studied, with the majority showing exceptional prediction outcome, although few have
been validated in a real clinical setting. Recently, there has been research into computer
aided interpretation, radiomics and machine learning to optimise the treatment decisions
for spinal metastasis using multimodal imaging [34]. This review article aims to provide
an overview of the most clinically pertinent applications of machine learning (including
radiomics and CNNs) in spinal oncology imaging.

2. Materials and Methods
2.1. Literature Search Strategy

A systematic, detailed literature search of the main electronic medical databases was
undertaken in concordance with the PRISMA guidelines [35,36]. Electronic databases
searched included the Web of Science, clinicaltrials.gov, MEDLINE, and PubMed (last date
of the literature search was the 31 May 2022). Databases were searched for the following
terms: (“spinal” OR “vertebral”) AND (“metastasis” OR “metastases”) AND (“radiomics”,
OR “machine learning”, OR “deep learning”, OR “artificial intelligence”).

2.2. Study Screening and Selection Criteria

No limitations were stipulated for the literature search. The main inclusion criteria
were research studies utilising radiomics techniques or deep learning to analyse spinal
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metastases. Other inclusion criteria included the following: (a) imaging analysis involving
nuclear medicine studies, CT and/or MRI scans; (b) studies addressing the capacity to
predict, diagnose and integrate the deep learning into clinical practice; (c) studies involving
humans only; and (d) publications in the English language. Articles excluded from further
analysis included case reports, conference abstracts, review articles, and editorial corre-
spondence (e.g., letters, commentaries and opinion pieces). Duplicate publications, articles
more than 20 years old and publications focusing on non-imaging radiomics techniques
(e.g., isolated histopathology features) were also excluded from analysis. The literature
search was finalised by reviewing the selected publication bibliographies to identify any
relevant articles.

2.3. Data Extraction and Reporting

All selected articles were retrieved and tabulated into a Microsoft Excel spreadsheet
(Microsoft Corporation, Washington, DC, USA). Details gathered from each of the selected
articles were as follows:

• Article details: Authorship, Date of online or journal publication;
• Potential clinical utility: Tumour classification or segmentation, treatment or prognosis

prediction;
• Patient population: Patients with suspected or known spinal metastases, with benign

vertebral lesions which have undergone imaging evaluation;
• Study details: Study type, sample size (number of patients, data sets), type of imaging

(CT, MR, bone scan or PET-CT), treatment information and outcome measures.

3. Results
3.1. Literature Search Results

The preliminary search through the main electronic medical databases (Figure 1)
identified 76 relevant articles, which were screened using the aforementioned criteria.
This screening culminated in the initial exclusion of 41 publications, and the residual
35 publications underwent further full-text analysis to determine inclusion. Upon detailed
analysis of the text, a further 11 articles were removed as they were focused on cancer sites
outside the spine, or had no application using imaging data including focused molecular
and/or genomic studies. An additional six articles were included after manually reviewing
the bibliography of the selected articles. Overall, this culminated in a total of 30 publications
(Table 1) for in-depth analysis. Key findings of the current AI applications were compiled
and summarised in this review.

Our search found 15/30 (50.0%) studies were MRI-based, 10/30 (33.3%) were CT-
based, 3/30 (10.0%) were related to nuclear studies (PET-CT/SPECT), 1/30 (3.3%) were
DEXA-based and 1/30 (3.3%) used MRI and CT evaluation. In terms of the techniques
used, 8/30 (26.7%) studies used radiomics to differentiate spinal metastases from other
pathological conditions, 12/30 (40.0%) studies focused on machine learning to detect
spinal metastases and 2/30 (6.7%) studies used radiomics to predict pain response and
risk of compression fractures from treated spinal metastases. In addition, 9/30 (30.0%)
studies used radiomics to generate clinically useful parameters, of which 3/30 (10.0%) used
machine learning to assist in vertebral metastasis segmentation and treatment planning,
4/30 studies (13.3%) used radiomics to determine the spinal tumour characteristics and
likely primary malignancy and 2/30 (6.7%) studies focused on using deep learning to
classify the complications of spinal metastases.
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Figure 1. PRISMA flowchart for the literature search (this is adapted from the PRISMA group, 2020),
which describes the selection of relevant articles.

3.2. Artificial Intelligence (AI)

Artificial intelligence (AI) is a term referring to a machine’s computational ability
to perform tasks that are comparable to those executed by humans. This is done by
utilising unique inputs and then generating outputs with high added value [37]. With
recent advances in medical imaging and ever increasing large amounts of digital image
and report data, worldwide interest in AI for medical imaging continues to increase [38].
The rationale of using AI and computer-aided diagnostic (CAD) systems was initially
thought to assist clinicians or radiologists in the detection of tumours or lesions which
in turn increases efficiency, improves detection and reduces error rates [39]. As a result,
efforts are ongoing to enhance the diagnostic ability of AI, and enhance its efficiency so
that is can be successfully translated into clinical practice [40]. With the advent of artificial
neural networks, which are a class of architectures loosely based on how the human brain
works [41], several computational learning models (mainly machine learning (ML) and
deep learning (DL) algorithms) have been introduced and are largely responsible for the
growth of AI in radiology. In general, the clinical applications of AI (Figure 2) can be
broadly characterised into three categories for oncology imaging workflow: (1) detection
of abnormalities; (2) characterisation of abnormalities, which includes image processing
steps such as segmentation, differentiation and classification; and (3) integrated diagnostics,
which include decision support for treatment decision and planning, treatment response
and prognosis prediction.
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Figure 2. Schematic outline showing where AI implementation can optimise the radiology workflow.
The workflow comprises the following steps: image acquisition, image processing, image-based
tasks, reporting, and integrated diagnostics. AI can add value to the image-based clinical tasks,
including the detection of abnormalities; characterisation of objects in images using segmentation,
diagnosis and staging; and integrated diagnostics including decision support for treatment planning
and prognosis prediction.

3.3. Machine Learning (ML)

Machine learning is a field of AI in which models are trained for prediction using
known datasets, from which the machine “learns”. The developed model then applies
its knowledge to perform diagnostic tasks in unknown datasets [42]. The application of
ML requires collection of data inputs that have been labelled by human experts (typically
radiologists) or by direct extraction of the data using several different computational
methods including supervised and unsupervised learning. Supervised machine learning
models rely on labelled input data to learn the relationship with output training data [43],
and are often used to classify data or make predictions. On the other hand, unsupervised
machine learning models learn from unlabelled raw training data to learn the relationships
and patterns within the dataset and discover inherent trends within the data set [44,45].
Unsupervised models are mainly used as an efficient representation of the initial dataset
(e.g., densities, distances or clustering through dataset statistical properties) and to better
understand relationships or patterns within the datasets [46,47]. Such new representation
can be an initial step prior to training a supervised model (e.g., identifying anomalies
and outliers within the datasets), which could improve performance in the supervised
model [48–50].

3.4. Deep Learning (DL)

Deep learning represents a subdivision of machine learning (Figure 3), and is modelled
on the neuronal architecture within the brain. The technique leverages artificial neural
networks, which involve several layers to solve complex medical imaging challenges [51].
The multiple layered structure enables the deep learning model or algorithm to actively
learn knowledge from the imaging datasets and make predictions on unseen imaging
data [52]. These deep learning techniques can provide accurate image classification (dis-
ease present/absent, or severity of disease), segmentation (pixel-based), and detection
capability [53]
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Figure 3. Diagram of artificial intelligence hierarchy. Machine learning lies within the field of artificial
intelligence and is an area of study that enables computers to learn without explicit knowledge
or programming. Within machine learning, deep learning is another area of study that enables
computation of neural networks involving multiple layers. Finally, convolutional neural networks
(CNN) are an important subset of deep learning, commonly applied to analyse medical images.

Deep learning allows for the ability to process and detect fundamental diagnostic
patterns and features beyond that of human abilities. This has created a new field of deep
learning termed Radiomics, in which imaging features related to important pathologi-
cal and histological subtyping of tumours can be identified and used for the detection,
differentiation and prognosis of unknown lesions [54].

3.5. Radiomics

Radiomics is a relatively new branch of machine learning that involves converting
medical images containing important information related to tumour features into measur-
able and quantifiable data [55]. This information can then aid clinicians in the assessment
of tumours by providing additional data about tumour behaviour and pathophysiology be-
yond that of current subjective visual interpretation (inferable by human eyes) [56,57], such
as tumour subtyping and grading [58]. Combined with clinical and qualitative imaging
data, radiomics has been shown to guide and improve medical decision making [59], and
can be used to aid disease prediction, provide prognostic information, along with treatment
response assessment [58]. In general, the workflow for deriving a radiomics model can be
divided into several steps (Figure 4): data selection (input), radiological imaging evaluation
and segmentation, image feature extraction in the regions of interest (ROIs) and exploratory
analysis followed by modelling [55]. Depending on the type of imaging modality, the
acquisition, technical specifications, software, segmentation of the ROIs, image feature
extraction and structure of the predictive algorithm are all different and subject to several
factors [60]. Machine learning methods including random decision forest, an ensemble
learning method for classifying data using decision trees, can then be performed to validate
and further evaluate the classification accuracy of the set of predictors [61]. These can
then be applied in a clinical setting to potentially improve the diagnostic accuracy and
prediction of survival post-treatment [62,63].

There are two key radiomics techniques, namely handcrafted-feature based and deep
learning-based analysis [64]. Firstly, handcrafted-feature radiomics involves extraction of
features from an area of interest (typically segmented). These features can be placed into
groups based on shape [65], histogram criteria (first order statistics) [66], textural-based cri-
teria (second-order statistics) [39] and other higher order statistical criteria [67]. Following
this step, machine learning models can be developed to provide clinical predictions, in-
cluding survival/prognostic information based on the handcrafted-features [62,68,69]. The
models are also assessed on validation datasets to review their efficiency and sensitivity.
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In contrast to handcrafted-feature radiomics, deep learning techniques rely on convo-
lutional neural networks (CNN) or other architectures [70] to identify the most pertinent
radiological imaging features without relying on prior feature descriptions. CNNs provide
automated extraction of the most important features from the radiological imaging data
using a cascading process, which can then be used for pattern recognition and training [71].
The generated dominant imaging features can undergo further processing, or exit the
neural network and be used for machine learning model generation using algorithms
similar to the feature-based radiomics method before validation. The main drawback
of deep learning-based radiomics is the requirement for much larger training datasets,
since feature extraction is required as part of the initial process compared to feature-based
radiomics where the features are manually selected for analysis [72]. With recent advances
in AI, this limitation can be circumvented through transfer learning, which is a technique
that uses neural networks that were pre-trained for another separate but closely related
purpose [73]. As such, by leveraging on the network’s prior knowledge, transfer learning
reduces computational demand and the amount of training data required, but can still
produce reliable performance.

Radiomics techniques have transformed the outlook of quantitative medical imaging
research. Radiomics could provide rapid, comprehensive characterisation of tumours at
minimal cost, which would act as an initial screen to determine the need for further clinical
or genomic testing [74].

Table 1. Key characteristics of the selected articles.

Authors Artificial Intelligence
Method Publication Year Main Objectives Title of Journal Main Imaging

Modality Used

Wang J. et al. [75]
Multi resolution

technique, deep Siamese
neural network.

2017 Detecting spinal
metastases Comput. Biol. Med. MRI

Xiong X. et al. [76]
Radiomics using MRI

machine learning
techniques

2021
Differentiating spinal
metastases subtypes

and myeloma
Front. Oncol. MRI

Filograna L. et al. [77]
Radiomics using MRI

machine learning
techniques

2019
Differentiating spinal

metastases
(feasibility)

Radiol. Med. MRI
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Table 1. Cont.

Authors Artificial Intelligence
Method

Publication
Year Main Objectives Title of Journal Main Imaging

Modality Used

Zhong X. et al. [78]
Radiomics using MRI

machine learning
techniques

2020

Differentiating
spinal metastases

from
osteoradionecrosis
in nasopharyngeal

carcinoma

BMC Med.
Imaging MRI

Chianca V. et al. [79]
Radiomics using MRI

machine learning
techniques

2021

Differentiating
spinal metastases
using several MRI

scanners

Eur. J. Radiol. MRI

Liu J. et al. [80]
Radiomics using MRI

machine learning
techniques

2022

Differentiating
spinal metastases

from multiple
myeloma

Eur. Radiol. MRI

Fan X. et al. [81]
Texture Analysis

(radiomics-feature
based) techniques

2020 Detect spinal
metastases

Front Med.
(Lausanne) PET/CT

Naseri H. et al. [82]
Radiomics using CT

machine learning
techniques

2022
Detecting spinal
metastases from
unaffected bone

Scientific Reports CT

Jin Z. et al. [83]
Radiomics using CT

machine learning
techniques

2021

Differentiating
spinal metastases

from non-
aggressive/benign

osseous lesions

Front Med.
(Lausanne) SPECT/CT

Yoda T. et al. [84]
Convolutional Neural

Network (Deep
learning)

2022

Differentiating
spinal metastases

and vertebral
fractures from

benign
osteoporotic

vertebral fractures

Spine (Phila Pa
1976) MRI

Fan X. et al. [85]

Deep Learning (3D
Convolutional Neural

Network-based
dilated convolutional

U-Net algorithm)

2021
Detecting spinal

metastases in lung
cancer patients

Scientific
Programming

Energy/Spectral
CT images

Yao J. et al. [86]

Synthesis of CT and
PET images, which

provides lesion
enhancement and aids

computer detection

2017 Detecting spinal
metastases

J. Med. Imaging
(Bellingham) CT

Mehta S. et al. [87]
Random forest
classification

technique
2019

Detecting spinal
metastases
(osteoblas-

tic/sclerotic
lesions)

Int. J. Comput.
Assist. Radiol.

Surg.
DEXA
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Table 1. Cont.

Authors Artificial Intelligence
Method

Publication
Year Main Objectives Title of Journal Main Imaging

Modality Used

Chang CY. et al. [88]
Convolutional Neural

Network (Deep
learning)

2022

Detecting spinal
metastases
(osteoblas-

tic/sclerotic and
treatment planning
(Generating useful

clinical
parameters)

Skeletal Radiol. CT

Roth H. et al. [89]

Convolutional Neural
Network (Deep

learning
technique)-Random

aggregation

2014

Detecting spinal
metastases
(osteoblas-

tic/sclerotic)

Computational
vision and

biomechanics
CT

Wiese T. et al. [90]

Computer Aided
Diagnosis using a

watershed algorithm
along with graph cut

2012

Detecting spinal
metastases
(osteoblas-

tic/sclerotic)

Medical Imaging CT

Burns J. et al. [91]

Fully-automated
image analysis using a
prototypical Computer

Aided Diagnosis
software

2013

Detecting
thoracolumbar

spinal metastases
(osteoblas-

tic/sclerotic)

Radiology CT

Hammon M. et al. [92]

Automatic image
analysis using

Computer Aided
Diagnosis software

2013

Detecting
thoracolumbar

spinal metastases
(scle-

rotic/osteoblastic
versus osteolytic)

Eur. Radiol. CT

O’Connor S.D. et al.
[93]

Automatic image
analysis using

Computer Aided
Diagnosis software

(preliminary)

2007

Detecting
thoracolumbar

spinal metastases
(lytic lesion

characterisation)

Radiology CT

Hallinan J. et al. [94]

Deep Learning
model/algorithm

(convolutional neural
network)

2022

Generating useful
clinical parameters

(classifying
metastatic epidural

disease and/or
spinal cord

compression)

Frontiers in
Oncology MRI

Arends S. et al. [95]

Deep Learning
model/algorithm

(convolutional neural
network)

2020

Generating useful
clinical parameters

(planning
radiation therapy

for vertebral
metastases)

Phys. Imaging
Radiat. Oncol. CT

Hille G. et al. [96]

Deep Learning
model/algorithm

(convolutional neural
network)

2020

Generating useful
clinical parameters

(vertebral
metastasis

segmentation)

ArXiv MRI
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Table 1. Cont.

Authors Artificial Intelligence
Method

Publication
Year Main Objectives Title of Journal Main Imaging

Modality Used

Lang N. et al. [97]
Deep learning

techniques including
radiomics

2019

Generating useful
clinical parameters

(classification of
vertebral

metastasis from
lung cancer versus

other
malignancies)

Magn. Reson.
Imaging MRI/DCE

Wakabayashi K. et al.
[98]

Three AI
techniques/models

used:
Radiomic-features

alone, clinical-features
alone, and combined

radiomics and
clinical-feature

algorithm

2021

Predicting
prognosis

(post-radiotherapy
pain response for

vertebral
metastases)

Sci. Rep. CT

Gui C. et al. [99]
Radiomics using CT

and MRI machine
learning techniques

2021

Predicting
prognosis in spinal

metastases
(predicting the risk
of spinal/vertebral

compression
fractures following
stereotactic body

radiation)

J. Neurosurg.
Spine CT & MRI

Yin P. et al. [100]

Radiomics using MRI
(T2-weighted and

post-contrast) machine
learning techniques

2019

Differentiating
spinal metastases
(differentiation of

lesions in the
sacrum, e.g.,

chordoma, giant
cell tumour, or

metastastic lesions)

J. Magn. Reson.
Imaging MRI

Shi Y.J. et al. [101]
Radiomics using MRI

machine learning
techniques

2022

Predicting
prognosis

(response of lytic
vertebral lesions to
chemotherapy in

patients with
breast carcinoma)

Magn. Reson.
Imaging MRI

Ren M. et al. [102]
Radiomics using MRI

machine learning
techniques

2021

Generating useful
clinical parameters

(EGFR mutation
prediction in lung

cancer patients
with thoracic

vertebral
metastases)

Med. Phys. MRI
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Table 1. Cont.

Authors Artificial Intelligence
Method

Publication
Year Main Objectives Title of Journal Main Imaging

Modality Used

Fan Y. et al. [103]

Radiomics
(subregional) using

MRI machine learning
techniques

2021

Generating useful
clinical parameters

(EGFR mutation
prediction in lung

cancer patients
with thoracic

vertebral
metastases)

Phys. Med. Biol. MRI

Cao R. et al. [104]

Radiomics
(nomogram) using

MRI machine learning
techniques

2022

Generating useful
clinical parame-
ters/biomarkers

(Prediction of
EGFR mutations in

exons 19/21 in
lung cancer

patients with
thoracic vertebral

metastases)

Academic
Radiology MRI

4. Discussion

Clinical Applications of AI in Spinal Metastases.

4.1. Detection of Spinal Metastases

Early detection and diagnosis of spinal metastases plays a key role in clinical practice.
This will determine the stage of disease for the patient, and has the potential to alter the
treatment regimen [105]. Metastatic spinal disease is associated with increased morbidity,
and more than half of these patients will require radiotherapy or invasive intervention for
complications, such as spinal cord or nerve root compression [106]. Hence, early diagnosis
and treatment before permanent neurologic and functional deficits occur is essential for a
favourable prognosis [107–109].

Manual detection of spinal metastasis through various imaging modalities is time
consuming, tedious and often challenging with imaging features overlapping with many
other pathologies. It is widely recognised that automated lesion detection could improve
radiologist sensitivity for detecting osseous metastases, with computer-aided detection
(CAD) software systems and artificial intelligence models proving to be as effective or even
superior to manual radiologist detection [91–93]. Computer-assisted detection of spinal
metastases was first studied on CT by O’Connor et al. [93] in 2007 for the detection of
osteolytic spinal metastases. This paved the way for further studies using CAD, focusing
on other subtypes of spinal metastasis such as osteoblastic or mixed type lesions [90], and
other imaging modalities. Subsequently, with the recent advances in artificial intelligence
in medical imaging [110–112], there were substantial improvements in the detection of
spinal metastases with the aid of deep learning and convolutional neural networks. This
has resulted in improvement in the accuracy of computer-assisted automated detection
of spinal metastases across various imaging modalities with significant reduction in false
positive and negative rates [75,85,88,89].

Wang J et al. [75] proposed an MRI-based detection of spinal metastases using a
Siamese neural network model. This involved a multi-resolution technique to detect
spinal metastasis with aggregation of neighbouring slices in MRI sequences to reduce
false positive rates. Their methods were able to detect all spinal metastatic lesions from
their datasets, with a relatively low false positive rate of 0.40 per case. Fan XJ et al. [85]
developed a DC-U-Net model using energy/spectral CT imaging to improve detection of
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spinal metastases in patients with lung cancer. Their work utilised the fact that characteristic
X-ray absorption by substances differs under various energy levels, which provides better
detection, segmentation and differentiation of bone lesions. Their deep learning model
showed performance close to that of an experienced physician, with detection rates of
66.03/81.41% by the deep learning model compared to 64.74%/77.56% by the professional
doctor using high and low energy CT levels (140 kVp and 40 keV), respectively.

In another study Roth et al. [89] designed a two tier coarse-to-fine cascade framework
incorporating existing computer-aided detection of sclerotic vertebral metastases on CT
images with deep CNN classifications. Their proposed model with the help of CNN
classifiers acts as an additional selective process to exclude difficult false positive results
while preserving high sensitivities, reducing the false positives per volume (FP/vol.) from
4 to 1.2, 7 to 3, and from 12 to 9.5 when comparing sensitivity results of 60%, 70% and 80%,
respectively, in their test set, with an AUC of 0.83.

AI has already shown its potential in other clinical fields for detection of pathology.
For example, in breast cancer screening AI-assisted simulation software was developed by
Raya-Povedano et al. [113] and showed workload reduction (in the form of manhours) of
up to 70% for the triage of suspicious mammographic examinations compared to manual
reading by radiologists, with non-inferior sensitivity of 84.1% and 16.7% lower recall rates.
Although the application of AI in spinal metastasis detection is still in a preliminary stage,
future clinical deployment would be important to reduce radiologists’ clinical workload,
and reduce error rates with the AI algorithms acting as a second reader or safety net.

4.2. Differentiating Spinal Metastases from Other Pathological Conditions

Machine learning has been applied in several studies to help distinguish between
spinal metastases and other pathology. This was first done by identifying key radiomics
features in vertebral metastases [77], and incorporating this information with various
machine learning models. For example, Liu et al. [80] and Xiong X et al. [76] utilised MRI-
based radiomics to differentiate between spinal metastases and multiple myeloma, based
on conventional T1-weighted (T1W) and fat-suppression T2-weighted (T2W) MR sequences.
They incorporated the radiomics models using various machine learning algorithms such as
Support-Vector Machine (SVM), Random Forest (RF), K-Nearest Neighbour (KNN), Naïve
Bayes (NB) using 10-fold cross validation, Artificial Neural Networks (ANN) and Logistic
Regression Classifier to predict the likelihood of spinal metastases. The radiomics model
from Xiong X et al. used features from T2WI images, and achieved accuracy, sensitivity,
and specificity of 81.5%, 87.9% and 79.0%, respectively, in their validation cohort. As
for Liu et al., their model with 10-EPV (events per independent variable) showed good
performance in distinguishing multiple myeloma from spinal metastases with an AUC of
0.85.

4.3. Pre-Treatment Evaluation
4.3.1. Predicting Prognosis

Prediction of prognosis is a paradigm in oncological treatment. In patients with
vertebral metastases, the ability to predict treatment response may help clinicians provide
the most appropriate treatment with the best clinical outcome for the patient, avoid delayed
transition to another treatment and prevent exposing patients to unnecessary treatment-
related side effects. Shi YJ et al. [101] studied the value of MRI-based radiomics in predicting
the treatment response of chemotherapy in a small group of breast cancer patients with
vertebral metastases. Their radiomics model was effective in predicting progressive vs non-
progressive disease with an area under the curve (AUC) of up to 0.91. This method could
be extrapolated in future studies to predict the treatment response of spinal metastases and
other primary tumours.

In addition to predicting treatment response, radiomics can also predict the effec-
tiveness of treatment for symptom relief in patients with spinal metastasis. Back and
neuropathic pain from spinal metastases are very common symptoms with many patients
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experiencing debilitating pain [114]. Radiotherapy can provide pain relief for spinal metas-
tasis in certain situations. However, even palliative radiotherapy for vertebral metastases
using relatively low doses of radiation, still has potential for adverse side-effects. Consider-
ing these risks, it will be helpful to identify those who have a high likelihood of pain relief
from radiotherapy and direct other patients to alternate therapies. Wakabayashi K et al. [98]
developed a radiomics model utilising feature subsets, random forests and recursive feature
exclusion to predict pain response post-radiotherapy for vertebral metastases. Their study
concluded that the model incorporating both clinical and radiomics features was the most
effective in predicting response to pain following radiotherapy with an AUC of 0.85 and
accuracy of 82.6%, and this was significantly improved (p = 0.044) when compared to the
model only including clinical features with an AUC of 0.70 and accuracy of 65.2%.

4.3.2. Identifying High Risk Vertebral Metastases Requiring Early Intervention

Applications of deep learning models goes beyond tumour detection and differentia-
tion, and they have the ability to automatically generate meaningful parameters from MRI
and other modalities. Hallinan et al. [94] developed a deep learning model for automated
classification of metastatic epidural disease and/or spinal cord compression on MRI using
the Bilsky classification. The model showed almost perfect agreement when compared to
specialist readers on internal and external datasets with kappas of 0.92–0.98, p < 0.001 and
0.94–0.95, p < 0.001, respectively, for dichotomous Bilsky classification (low versus high
grade). Accurate, reproducible classification of metastatic epidural spinal cord compression
will enable clinicians to decide on initial radiotherapy versus surgical intervention [115].

Radiomic modelling and machine learning incorporating clinical features and radiomic
features from pre-treatment imaging is also effective in predicting vertebral compression
fractures 1 year following radiotherapy [99]. In a study performed by Gui et al., their
radiomic machine learning model selected features from CT and MR images together
with clinical features to predict vertebral compression fractures in patients with spinal
metastases following stereotactic body radiation therapy. The combined radiomics/clinical
model showed good performance with sensitivity of 84.4%, specificity of 80.0% and AUC
of 0.88, exceeding the performance of clinical features alone (AUCs of 0.58 to 0.80). These
studies show that meaningful parameters generated by machine learning models using
radiomics and clinical information have the potential to triage urgent findings in spinal
metastases, and identify those that require early intervention. Future work includes
developing models that augment radiologist interpretation of spinal metastases, including
automated disease stratification based on clinically useful classifications such as the Spinal
Instability Neoplastic Score (SINS) [116]. SINS is useful to identify patients who require
prompt surgical review and intervention.

4.3.3. Pre-Treatment Planning and Monitoring

Segmentation refers to delineation or volume extraction of a lesion or organ based on
image analysis. In clinical practice, manual or semi-manual segmentation techniques are
being applied to provide further value to CT and MRI studies. However, these techniques
are subjective, operator-dependent and very time-consuming which limits their adoption.
Automatic segmentation of spinal metastases using deep learning models has been shown
to be as accurate as expert annotations in both MRI and CT [88]. Hille G et. al. [96] showed
that automated vertebral metastasis segmentation on MRI using deep convolutional neural
networks (U-net like architecture) were almost as accurate as expert annotation. Their
automated segmentation solution achieved a Dice–Sørensen coefficient (DSC) of up to
0.78 and mean sensitivity rates up to 78.9% on par with inter-reader variability DSC of
0.79. Potentially, these models will not only reduce the need for time-consuming man-
ual segmentation of spinal metastases, but also support stereotactic body radiotherapy
planning, and improve the performance [117,118] and treatment outcome of minimally
invasive interventions for spinal metastasis such as radiofrequency ablation [95]. In respect
to radiotherapy, precise automated tumour contours will improve treatment planning,
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reduce segmentation times and reduce the radiation dose to the surrounding organs at risk,
including the spinal cord. In recent years, various image segmentation techniques have
been proposed, resulting in more accurate and efficient image segmentation for clinical
diagnosis and treatment [119–122].

The efficiency of AI algorithms to perform repetitive tasks, such as segmentation
have already been shown to outperform manual approaches in various clinical studies. A
study by Winkel D. et al. [123,124] showed that their fully automated liver segmentation
algorithm using deep learning was able to achieve a mean processing time of 9.94 s, at
least 20 times faster than manual segmentation with excellent agreement between the two
approaches (intraclass correlation coefficient of 0.996). In a polycystic liver and kidney
disease series of CT images, an artificial intelligence model segmented the liver parenchyma
at 8333 slices/hour, compared to labour intensive manual segmentation by an expert
clinician, which did not surpass 16 slices/hour, with a DSC of 0.96 [125]. While the current
AI models and applications on spinal metastasis segmentation are still in a preliminary
stage, their use could help reduce clinical workload and improve productivity when the
technology is translated into clinical care.

Artificial intelligence applications could also help to improve measurement of tu-
mour burden for assessment of treatment response and monitoring of tumour progression.
This can be achieved by obtaining lesion and/or tumour volumetry through AI-assisted
segmentation. For example, Goehler et al. [126] developed a deep learning approach to
estimate overall tumour burden for neuroendocrine neoplasia on MR images, achieving
concordance with manual clinician assessment in 91% with sensitivity of 85.0%, specificity
of 92.0% and DSC of up to 0.81. Estimating tumour burden and volume of disease in
spinal metastases is difficult due to the shape of the vertebrae and presence of multiple
vertebral levels. Tumour burden of spinal metastases has been shown to predict progno-
sis [106,127–129] and treatment efficiency [130]. With the help of AI, volumetric evaluation
of spinal metastases and disease burden can be more efficient, clinically feasible and could
aid clinical management.

4.4. Radiogenomics and Phenotyping

Radiogenomics, the combination of “Radiomics” and “Genomics”, refers to the use of
imaging features or surrogates to determine genomic signatures and advanced biomarkers
in tumours. These biomarkers can then be used for clinical management decisions, includ-
ing prognostic, diagnostic and predictive precision of tumour subtypes [131]. The workflow
of a radiogenomics study can be commonly classified into five different stages (Figure 5):
(1) image acquisition and pre-processing, (2) feature extraction and selection from both the
medical imaging and genotype, (3) association of radiomics and genomics features, (4) data
analysis using machine learning models and (5) final radiogenomics outcome model [132].

In the case of spinal metastasis, several radiogenomics models in patients with primary
lung malignancy [102–104] have the ability to predict the presence or absence of the EGFR
mutation through the analysis of MR images of the spine. For instance, the multiparametric
MRI-based radiomics model developed by Ren M et al. [102] combining both radiomics
and clinical features achieved AUC of up to 0.89, sensitivity of 83.9% and specificity of
79.3% in differentiating the EGFR mutation versus EGFR wild-type patients in their training
cohort, whereas the radiomics nomogram developed by Cao R et al. [104] was able to obtain
good prediction performance of EGFR mutation in thoracic spinal metastases from MRI-
based images with an AUC of up to 0.90. These non-invasive, quantitative and convenient
methods to predict the EGFR mutation in spinal metastases may help guide individualised
treatment in lung adenocarcinoma.
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To date, there are no other published studies on radiomics models for identifying
other clinically important genotypes in spinal oncology imaging, such as KRAS, BRAF
and ALK [133], which have been shown to have diagnostic and prognostic significance.
However, there are many studies in the literature for other organs, including breast on-
cology [134] imaging (e.g., miRNAs expression, gene expression and Ki67 proliferation
index), and for brain imaging (Supplementary Figure S1), including biomarkers such as
isocitrate dehydrogenase (IDH) [135], chromosome arms 1p/19q-codeletion [136–138] and
methylguanine-DNA methyltransferase status (MGMT) [139–142] as prognostic markers
for glioma [143–145]. Future work will include the study of these other clinically important
genotypes to aid in deciding treatment for patients with spinal metastases or other primary
tumours, supporting the new era of precision medicine [146,147].

Spinal metastasis from an unknown primary is a common clinical dilemma seen in up
to 30% of patients upon initial presentation of spinal metastatic lesions [148–150]. While con-
ventional MRI can provide accurate detection of metastases in the vertebrae, cancers from
different primary tumours can appear similar and may be difficult to distinguish [151,152].
These patients often require further PET/CT imaging for diagnosis of the primary cancer
and whole-body staging before treatment can take place. In rare circumstances even with
further imaging the primary cancer cannot be identified, and invasive biopsy is required to
ascertain the likely primary tumour site and treatment options. Lang N et al. [97] devel-
oped radiomics and DL models to differentiate spinal metastases originating from lung
and other cancers using dynamic contrast enhanced sequences (DCE) from a spinal MRI
database. Their deep learning models demonstrated that the DCE kinetic measurement
of the washout slope from a hotspot of the spinal metastatic lesion was the most accurate
parameter to aid diagnosis of primary lung cancer from other tumours. Their deep learning
convolutional long short-term memory network using the whole database of DCE images
had accuracy of up to 81.0%. Being able to predict the primary malignancy in a patient with
spinal metastases may help guide clinicians on the most relevant investigations, thereby
reducing unnecessary evaluations, medical costs and minimising the need for invasive
spinal biopsy.

4.5. Post-Treatment Evaluation
4.5.1. Residual/Recurrent Tumour versus Post-Treatment Changes

A common and challenging clinical scenario is differentiating spinal metastases from
post-treatment changes. As the clinical treatment between these two entities are vastly
different, accurate diagnosis is important to prevent unnecessary invasive biopsy and/or
chemoradiotherapy. An example is osteoradionecrosis in the cervical spine, which is a
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complication following radiotherapy in patients with nasopharyngeal carcinoma [153].
Several studies have shown that osteoradionecrosis can mimic vertebral metastases as both
can present with soft tissue masses and abnormal enhancement on MRI [154,155]. Machine
learning radiomics has been shown to be useful as a non-invasive visual diagnostic tool to
differentiate between the two entities. Zhong et al. [78] created an MRI-based radiomics
nomogram that was shown to be clinically useful in discriminating between cervical spine
osteoradionecrosis and metastases, with an AUC of 0.73 on the training set and 0.72 in the
validation set.

Vertebral compression fractures following radiotherapy of spinal metastases occur
in up to 9.4–12% [156,157] of cases, and are the most common and serious side effect
of stereotactic body radiotherapy. It is often difficult to assess whether a compression
fracture is related to tumour progression or radiation induced fibrosis or necrosis [158,159].
To date, there are no published radiomics studies differentiating vertebral compression
fractures as a result of radiotherapy versus those related to tumour progression. However,
Yoda et al. [84] developed a CNN model for differentiating osteoporotic from metastatic
vertebral compression fractures and showed high accuracy using MRI-based T1WI features,
achieving AUC of 0.98, 96.4% accuracy, 98.1% sensitivity and 94.9% specificity, which
was statistically equal or superior to that of spine surgeons. A similar approach may be
applied for differentiating vertebral compression fractures following radiotherapy from
those related to tumour progression, and this could leverage transfer learning given the
similar topics [73].

4.5.2. Pseudo-Progression

Pseudo-progression is a post-treatment phenomenon involving an increase in the tar-
get tumour volume (usually without any worsening symptoms), which then demonstrates
interval stability or reduction in volume on repeat imaging. It occurs in approximately 14 to
18% of those with vertebral metastases treated with stereotactic body radiotherapy [160,161].
The differentiation of pseudo-progression from true progression is challenging on imaging
even with many studies suggesting some differentiating factors [161,162], such as location
of involvement, e.g., purely vertebral body involvement with pseudo compared to involve-
ment of the epidural space with true progression. Artificial intelligence has already shown
utility in aiding the differentiation of pseudo from true progression in brain imaging. Kim
et al. [163] and Jang et al. [164] demonstrated good performance of their radiomics models
in differentiating true progression of glioblastoma following surgical resection and radio-
chemotherapy versus pseudo-progression post-treatment. These studies demonstrate the
potential of AI in differentiating these two entities in spinal imaging, and future work may
contribute to earlier suspicion of true progression allowing for close imaging follow-up,
and earlier diagnosis [165].

5. Conclusions

Artificial intelligence, including machine learning technologies, has achieved good
performance in spine oncology. These techniques have immense potential to aid clinicians
in the management of spinal metastases including treatment selection, enhancement of
workflow efficiency and reduction in complications and adverse events. However, the
majority of the studies are preliminary, retrospective or based at a single-centre with small
sample sizes. As a result, the models developed in these studies are subjected to limited
generalisability with significant heterogeneity in results when applied to external datasets.
This can result in reduced reproducibility of the results and may impede the development of
AI models that can be translated successfully into clinical use. Further research, especially
randomised controlled trials or large multi-centre studies, is required to validate these
applications and facilitate their integration into routine clinical practice.
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Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/cancers14164025/s1, Figure S1: Diagram showing an example of
radiogenomics framework for glioblastoma (brain tumour), how imaging biomarkers are derived
and used to predict genomics such as IDH-mutation [135], 1p/19q co-deletion [136–138] and MGMT-
methylation status [139–142].

Author Contributions: Conceptualisation, methodology, supervision and writing, W.O., L.Z., W.Z.,
T.K., D.S.W.L., X.Z.L., Y.L.T., E.C.T., B.C.O., S.T.Q., A.M. and J.T.P.D.H.; investigation and project
administration, W.O., L.Z., W.Z., E.C.T., J.H.T., N.K., B.A.V., B.C.O., S.T.Q., A.M. and J.T.P.D.H.;
resources and software, W.O., L.Z., W.Z., E.C.T., B.C.O. and J.T.P.D.H.; formal analysis and validation,
W.O., L.Z., W.Z., T.K., D.S.W.L., X.Z.L., Y.L.T., E.C.T., J.H.T., N.K., B.A.V., B.C.O., S.T.Q., A.M. and
J.T.P.D.H. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by: (1) Direct Funding from MOH/NMRC: This research is
supported by the Singapore Ministry of Health National Medical Research Council under the NMRC
Clinician-scientist individual research grant, new investigator grant (CS-IRG NIG); Grant Title: Deep
learning pathway for the management of spine metastases (CNIG20nov-0011, MOH-000725).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Mundy, G.R. Metastasis to bone: Causes, consequences and therapeutic opportunities. Nat. Rev. Cancer 2002, 2, 584–593.

[CrossRef] [PubMed]
2. Witham, T.F.; Khavkin, Y.A.; Gallia, G.L.; Wolinsky, J.P.; Gokaslan, Z.L. Surgery insight: Current management of epidural spinal

cord compression from metastatic spine disease. Nat. Clin. Pract. Neurol. 2006, 2, 87–94, quiz 116. [CrossRef] [PubMed]
3. Klimo, P., Jr.; Schmidt, M.H. Surgical management of spinal metastases. Oncologist 2004, 9, 188–196. [CrossRef] [PubMed]
4. Coleman, R.E. Metastatic bone disease: Clinical features, pathophysiology and treatment strategies. Cancer Treat Rev. 2001, 27,

165–176. [CrossRef]
5. Cuccurullo, V.; Cascini, G.L.; Tamburrini, O.; Rotondo, A.; Mansi, L. Bone metastases radiopharmaceuticals: An overview. Curr.

Radiopharm. 2013, 6, 41–47. [CrossRef]
6. Cecchini, M.G.; Wetterwald, A.; Pluijm, G.v.d.; Thalmann, G.N. Molecular and Biological Mechanisms of Bone Metastasis. EAU

Update Ser. 2005, 3, 214–226. [CrossRef]
7. Yu, H.H.; Tsai, Y.Y.; Hoffe, S.E. Overview of diagnosis and management of metastatic disease to bone. Cancer Control 2012, 19,

84–91. [CrossRef]
8. O’Sullivan, G.J.; Carty, F.L.; Cronin, C.G. Imaging of bone metastasis: An update. World J. Radiol. 2015, 7, 202–211. [CrossRef]
9. Liu, T.; Wang, S.; Liu, H.; Meng, B.; Zhou, F.; He, F.; Shi, X.; Yang, H. Detection of vertebral metastases: A meta-analysis comparing

MRI, CT, PET, BS and BS with SPECT. J. Cancer Res. Clin. Oncol. 2017, 143, 457–465. [CrossRef]
10. Wallace, A.N.; Greenwood, T.J.; Jennings, J.W. Use of Imaging in the Management of Metastatic Spine Disease With Percutaneous

Ablation and Vertebral Augmentation. AJR Am. J. Roentgenol. 2015, 205, 434–441. [CrossRef]
11. Moynagh, M.R.; Colleran, G.C.; Tavernaraki, K.; Eustace, S.J.; Kavanagh, E.C. Whole-body magnetic resonance imaging:

Assessment of skeletal metastases. Semin. Musculoskelet. Radiol. 2010, 14, 22–36. [CrossRef] [PubMed]
12. Schiff, D.; O’Neill, B.P.; Wang, C.H.; O’Fallon, J.R. Neuroimaging and treatment implications of patients with multiple epidural

spinal metastases. Cancer 1998, 83, 1593–1601. [CrossRef]
13. Talbot, J.N.; Paycha, F.; Balogova, S. Diagnosis of bone metastasis: Recent comparative studies of imaging modalities. Q. J. Nucl.

Med. Mol. Imaging 2011, 55, 374–410.
14. Tran, K.A.; Kondrashova, O.; Bradley, A.; Williams, E.D.; Pearson, J.V.; Waddell, N. Deep learning in cancer diagnosis, prognosis

and treatment selection. Genome Med. 2021, 13, 152. [CrossRef] [PubMed]
15. Liu, Z.; Wang, S.; Dong, D.; Wei, J.; Fang, C.; Zhou, X.; Sun, K.; Li, L.; Li, B.; Wang, M.; et al. The Applications of Radiomics in

Precision Diagnosis and Treatment of Oncology: Opportunities and Challenges. Theranostics 2019, 9, 1303–1322. [CrossRef]
16. Parekh, V.S.; Jacobs, M.A. Deep learning and radiomics in precision medicine. Expert Rev. Precis Med. Drug Dev. 2019, 4, 59–72.

[CrossRef]
17. Esteva, A.; Kuprel, B.; Novoa, R.A.; Ko, J.; Swetter, S.M.; Blau, H.M.; Thrun, S. Dermatologist-level classification of skin cancer

with deep neural networks. Nature 2017, 542, 115–118. [CrossRef]
18. Kermany, D.S.; Goldbaum, M.; Cai, W.; Valentim, C.C.S.; Liang, H.; Baxter, S.L.; McKeown, A.; Yang, G.; Wu, X.; Yan, F.; et al.

Identifying Medical Diagnoses and Treatable Diseases by Image-Based Deep Learning. Cell 2018, 172, 1122–1131 e1129. [CrossRef]

https://www.mdpi.com/article/10.3390/cancers14164025/s1
https://www.mdpi.com/article/10.3390/cancers14164025/s1
http://doi.org/10.1038/nrc867
http://www.ncbi.nlm.nih.gov/pubmed/12154351
http://doi.org/10.1038/ncpneuro0116
http://www.ncbi.nlm.nih.gov/pubmed/16932530
http://doi.org/10.1634/theoncologist.9-2-188
http://www.ncbi.nlm.nih.gov/pubmed/15047923
http://doi.org/10.1053/ctrv.2000.0210
http://doi.org/10.2174/1874471011306010007
http://doi.org/10.1016/j.euus.2005.09.006
http://doi.org/10.1177/107327481201900202
http://doi.org/10.4329/wjr.v7.i8.202
http://doi.org/10.1007/s00432-016-2288-z
http://doi.org/10.2214/AJR.14.14199
http://doi.org/10.1055/s-0030-1248703
http://www.ncbi.nlm.nih.gov/pubmed/20229438
http://doi.org/10.1002/(SICI)1097-0142(19981015)83:8&lt;1593::AID-CNCR14&gt;3.0.CO;2-H
http://doi.org/10.1186/s13073-021-00968-x
http://www.ncbi.nlm.nih.gov/pubmed/34579788
http://doi.org/10.7150/thno.30309
http://doi.org/10.1080/23808993.2019.1585805
http://doi.org/10.1038/nature21056
http://doi.org/10.1016/j.cell.2018.02.010


Cancers 2022, 14, 4025 18 of 23

19. De Fauw, J.; Ledsam, J.R.; Romera-Paredes, B.; Nikolov, S.; Tomasev, N.; Blackwell, S.; Askham, H.; Glorot, X.; O’Donoghue, B.;
Visentin, D.; et al. Clinically applicable deep learning for diagnosis and referral in retinal disease. Nat. Med. 2018, 24, 1342–1350.
[CrossRef]

20. Kumar, Y.; Gupta, S.; Singla, R.; Hu, Y.C. A Systematic Review of Artificial Intelligence Techniques in Cancer Prediction and
Diagnosis. Arch. Comput. Methods Eng. 2022, 29, 2043–2070. [CrossRef]

21. Bidard, F.C.; Proudhon, C.; Pierga, J.Y. Circulating tumor cells in breast cancer. Mol. Oncol. 2016, 10, 418–430. [CrossRef] [PubMed]
22. Nallamala, S.H.; Mishra, P.; Koneru, S.V. Breast Cancer Detection using Machine Learning Way. Int. J. Recent Technol. Eng. 2019, 8,

1402–1405.
23. Patil, R.S.; Biradar, N. Automated mammogram breast cancer detection using the optimized combination of convolutional and

recurrent neural network. Evol. Intell. 2021, 14, 1459–1474. [CrossRef]
24. Tabibu, S.; Vinod, P.K.; Jawahar, C.V. Pan-Renal Cell Carcinoma classification and survival prediction from histopathology images

using deep learning. Sci. Rep. 2019, 9, 10509. [CrossRef] [PubMed]
25. Kowalewski, K.-F.; Egen, L.; Fischetti, C.E.; Puliatti, S.; Juan, G.R.; Taratkin, M.; Ines, R.B.; Sidoti Abate, M.A.; Mühlbauer, J.;

Wessels, F.; et al. Artificial intelligence for renal cancer: From imaging to histology and beyond. Asian J. Urol. 2022, 9, 243–252.
[CrossRef]

26. Zhu, G.; Jiang, B.; Tong, L.; Xie, Y.; Zaharchuk, G.; Wintermark, M. Applications of Deep Learning to Neuro-Imaging Techniques.
Front. Neurol 2019, 10, 869. [CrossRef]

27. Zegers, C.M.L.; Posch, J.; Traverso, A.; Eekers, D.; Postma, A.A.; Backes, W.; Dekker, A.; van Elmpt, W. Current applications of
deep-learning in neuro-oncological MRI. Phys. Med. 2021, 83, 161–173. [CrossRef]

28. Díaz-Pernas, F.J.; Martínez-Zarzuela, M.; Antón-Rodríguez, M.; González-Ortega, D. A Deep Learning Approach for Brain Tumor
Classification and Segmentation Using a Multiscale Convolutional Neural Network. Healthcare 2021, 9, 153. [CrossRef]

29. Sadad, T.; Rehman, A.; Munir, A.; Saba, T.; Tariq, U.; Ayesha, N.; Abbasi, R. Brain tumor detection and multi-classification using
advanced deep learning techniques. Microsc. Res. Tech. 2021, 84, 1296–1308. [CrossRef]

30. Nishida, N.; Kudo, M. Artificial Intelligence in Medical Imaging and Its Application in Sonography for the Management of Liver
Tumor. Front. Oncol. 2020, 10, 594580. [CrossRef]

31. Hill, C.E.; Biasiolli, L.; Robson, M.D.; Grau, V.; Pavlides, M. Emerging artificial intelligence applications in liver magnetic
resonance imaging. World J. Gastroenterol. 2021, 27, 6825–6843. [CrossRef] [PubMed]

32. Nam, D.; Chapiro, J.; Paradis, V.; Seraphin, T.P.; Kather, J.N. Artificial intelligence in liver diseases: Improving diagnostics,
prognostics and response prediction. JHEP Rep. 2022, 4, 100443. [CrossRef] [PubMed]

33. Taha, A.; Ochs, V.; Kayhan, L.N.; Enodien, B.; Frey, D.M.; Krähenbühl, L.; Taha-Mehlitz, S. Advancements of Artificial Intelligence
in Liver-Associated Diseases and Surgery. Medicina 2022, 58, 459. [CrossRef] [PubMed]

34. Merali, Z.A.; Colak, E.; Wilson, J.R. Applications of Machine Learning to Imaging of Spinal Disorders: Current Status and Future
Directions. Glob. Spine J. 2021, 11, 23S–29S. [CrossRef] [PubMed]

35. Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.;
Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. Bmj 2021, 372, n71.
[CrossRef] [PubMed]

36. Liberati, A.; Altman, D.G.; Tetzlaff, J.; Mulrow, C.; Gøtzsche, P.C.; Ioannidis, J.P.; Clarke, M.; Devereaux, P.J.; Kleijnen, J.; Moher, D.
The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions:
Explanation and elaboration. Bmj 2009, 339, b2700. [CrossRef]

37. Rajkomar, A.; Dean, J.; Kohane, I. Machine Learning in Medicine. N. Engl. J. Med. 2019, 380, 1347–1358. [CrossRef]
38. Thrall, J.H.; Li, X.; Li, Q.; Cruz, C.; Do, S.; Dreyer, K.; Brink, J. Artificial Intelligence and Machine Learning in Radiology:

Opportunities, Challenges, Pitfalls, and Criteria for Success. J. Am. Coll Radiol. 2018, 15, 504–508. [CrossRef]
39. Hosny, A.; Parmar, C.; Quackenbush, J.; Schwartz, L.H.; Aerts, H. Artificial intelligence in radiology. Nat. Rev. Cancer 2018, 18,

500–510. [CrossRef]
40. Nagoev, Z.V.; Sundukov, Z.A.; Pshenokova, I.A.; Denisenko, V.A. Architecture of CAD for distributed artificial intelligence based

on self-organizing neuro-cognitive architectures. News Kabard.–Balkar Sci. Cent. RAS 2020, 2, 40–47. [CrossRef]
41. Kriegeskorte, N. Deep Neural Networks: A New Framework for Modeling Biological Vision and Brain Information Processing.

Annu. Rev. Vis. Sci. 2015, 1, 417–446. [CrossRef] [PubMed]
42. Erickson, B.J.; Korfiatis, P.; Akkus, Z.; Kline, T.L. Machine Learning for Medical Imaging. Radiographics 2017, 37, 505–515.

[CrossRef] [PubMed]
43. Zhu, X.; Goldberg, A.B. Introduction to Semi-Supervised Learning. Synth. Lect. Artif. Intell. Mach. Learn. 2009, 3, 1–130. [CrossRef]
44. Sidey-Gibbons, J.A.M.; Sidey-Gibbons, C.J. Machine learning in medicine: A practical introduction. BMC Med. Res. Methodol.

2019, 19, 64. [CrossRef]
45. Cao, B.; Araujo, A.; Sim, J. Unifying Deep Local and Global Features for Image Search. In Proceedings of the Computer

Vision–ECCV 2020, Glasgow, UK, 23–28 August 2020; pp. 726–743.
46. Bengio, Y. Learning Deep Architectures for AI. Found. Trends Mach. Learn. 2009, 2, 1–127. [CrossRef]
47. Montagnon, E.; Cerny, M.; Cadrin-Chênevert, A.; Hamilton, V.; Derennes, T.; Ilinca, A.; Vandenbroucke-Menu, F.; Turcotte, S.;

Kadoury, S.; Tang, A. Deep learning workflow in radiology: A primer. Insights Imaging 2020, 11, 22. [CrossRef]

http://doi.org/10.1038/s41591-018-0107-6
http://doi.org/10.1007/s11831-021-09648-w
http://doi.org/10.1016/j.molonc.2016.01.001
http://www.ncbi.nlm.nih.gov/pubmed/26809472
http://doi.org/10.1007/s12065-020-00403-x
http://doi.org/10.1038/s41598-019-46718-3
http://www.ncbi.nlm.nih.gov/pubmed/31324828
http://doi.org/10.1016/j.ajur.2022.05.003
http://doi.org/10.3389/fneur.2019.00869
http://doi.org/10.1016/j.ejmp.2021.03.003
http://doi.org/10.3390/healthcare9020153
http://doi.org/10.1002/jemt.23688
http://doi.org/10.3389/fonc.2020.594580
http://doi.org/10.3748/wjg.v27.i40.6825
http://www.ncbi.nlm.nih.gov/pubmed/34790009
http://doi.org/10.1016/j.jhepr.2022.100443
http://www.ncbi.nlm.nih.gov/pubmed/35243281
http://doi.org/10.3390/medicina58040459
http://www.ncbi.nlm.nih.gov/pubmed/35454298
http://doi.org/10.1177/2192568220961353
http://www.ncbi.nlm.nih.gov/pubmed/33890805
http://doi.org/10.1136/bmj.n71
http://www.ncbi.nlm.nih.gov/pubmed/33782057
http://doi.org/10.1136/bmj.b2700
http://doi.org/10.1056/NEJMra1814259
http://doi.org/10.1016/j.jacr.2017.12.026
http://doi.org/10.1038/s41568-018-0016-5
http://doi.org/10.35330/1991-6639-2020-2-94-40-47
http://doi.org/10.1146/annurev-vision-082114-035447
http://www.ncbi.nlm.nih.gov/pubmed/28532370
http://doi.org/10.1148/rg.2017160130
http://www.ncbi.nlm.nih.gov/pubmed/28212054
http://doi.org/10.2200/S00196ED1V01Y200906AIM006
http://doi.org/10.1186/s12874-019-0681-4
http://doi.org/10.1561/2200000006
http://doi.org/10.1186/s13244-019-0832-5


Cancers 2022, 14, 4025 19 of 23

48. Li, H.; Galperin-Aizenberg, M.; Pryma, D.; Simone, C.B., 2nd; Fan, Y. Unsupervised machine learning of radiomic features for
predicting treatment response and overall survival of early stage non-small cell lung cancer patients treated with stereotactic
body radiation therapy. Radiother. Oncol. 2018, 129, 218–226. [CrossRef]

49. Alaverdyan, Z.; Jung, J.; Bouet, R.; Lartizien, C. Regularized siamese neural network for unsupervised outlier detection on
brain multiparametric magnetic resonance imaging: Application to epilepsy lesion screening. Med. Image Anal. 2020, 60, 101618.
[CrossRef]

50. Tlusty, T.; Amit, G.; Ben-Ari, R. Unsupervised clustering of mammograms for outlier detection and breast density estimation. In
Proceedings of the 2018 24th International Conference on Pattern Recognition (ICPR), Beijing, China, 20–24 August 2018; pp.
3808–3813.

51. Zaharchuk, G.; Gong, E.; Wintermark, M.; Rubin, D.; Langlotz, C.P. Deep Learning in Neuroradiology. AJNR Am. J. Neuroradiol.
2018, 39, 1776–1784. [CrossRef]

52. Kaka, H.; Zhang, E.; Khan, N. Artificial intelligence and deep learning in neuroradiology: Exploring the new frontier. Can. Assoc.
Radiol. J. 2021, 72, 35–44. [CrossRef]

53. Cheng, P.M.; Montagnon, E.; Yamashita, R.; Pan, I.; Cadrin-Chênevert, A.; Romero, F.P.; Chartrand, G.; Kadoury, S.; Tang, A. Deep
Learning: An Update for Radiologists. RadioGraphics 2021, 41, 1427–1445. [CrossRef] [PubMed]

54. Ziyad, S.R.; Radha, V.; Vayyapuri, T. Overview of Computer Aided Detection and Computer Aided Diagnosis Systems for Lung
Nodule Detection in Computed Tomography. Curr. Med. Imaging Rev. 2020, 16, 16–26. [CrossRef] [PubMed]

55. van Timmeren, J.E.; Cester, D.; Tanadini-Lang, S.; Alkadhi, H.; Baessler, B. Radiomics in medical imaging—“how-to” guide and
critical reflection. Insights Imaging 2020, 11, 91. [CrossRef] [PubMed]

56. Faiella, E.; Santucci, D.; Calabrese, A.; Russo, F.; Vadala, G.; Zobel, B.B.; Soda, P.; Iannello, G.; de Felice, C.; Denaro, V. Artificial
Intelligence in Bone Metastases: An MRI and CT Imaging Review. Int. J. Environ. Res. Public Health 2022, 19, 1880. [CrossRef]
[PubMed]

57. Mannil, M.; von Spiczak, J.; Manka, R.; Alkadhi, H. Texture Analysis and Machine Learning for Detecting Myocardial Infarction in
Noncontrast Low-Dose Computed Tomography: Unveiling the Invisible. Investig. Radiol. 2018, 53, 338–343. [CrossRef] [PubMed]

58. Aerts, H.J. The Potential of Radiomic-Based Phenotyping in Precision Medicine: A Review. JAMA Oncol. 2016, 2, 1636–1642.
[CrossRef]

59. Lambin, P.; Rios-Velazquez, E.; Leijenaar, R.; Carvalho, S.; van Stiphout, R.G.; Granton, P.; Zegers, C.M.; Gillies, R.; Boellard, R.;
Dekker, A.; et al. Radiomics: Extracting more information from medical images using advanced feature analysis. Eur. J. Cancer
2012, 48, 441–446. [CrossRef]

60. Valladares, A.; Beyer, T.; Rausch, I. Physical imaging phantoms for simulation of tumor heterogeneity in PET, CT, and MRI: An
overview of existing designs. Med. Phys. 2020, 47, 2023–2037. [CrossRef]

61. Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [CrossRef]
62. Zhang, Y.; Oikonomou, A.; Wong, A.; Haider, M.A.; Khalvati, F. Radiomics-based Prognosis Analysis for Non-Small Cell Lung

Cancer. Sci. Rep. 2017, 7, 46349. [CrossRef]
63. Jia, T.-Y.; Xiong, J.-F.; Li, X.-Y.; Yu, W.; Xu, Z.-Y.; Cai, X.-W.; Ma, J.-C.; Ren, Y.-C.; Larsson, R.; Zhang, J.; et al. Identifying EGFR

mutations in lung adenocarcinoma by noninvasive imaging using radiomics features and random forest modeling. Eur. Radiol.
2019, 29, 4742–4750. [CrossRef]

64. Rogers, W.; Thulasi Seetha, S.; Refaee, T.A.G.; Lieverse, R.I.Y.; Granzier, R.W.Y.; Ibrahim, A.; Keek, S.A.; Sanduleanu, S.; Primakov,
S.P.; Beuque, M.P.L.; et al. Radiomics: From qualitative to quantitative imaging. Br. J. Radiol. 2020, 93, 20190948. [CrossRef]

65. Rizzo, S.; Botta, F.; Raimondi, S.; Origgi, D.; Fanciullo, C.; Morganti, A.G.; Bellomi, M. Radiomics: The facts and the challenges of
image analysis. Eur. Radiol. Exp. 2018, 2, 36. [CrossRef] [PubMed]

66. Lambin, P.; Leijenaar, R.T.H.; Deist, T.M.; Peerlings, J.; de Jong, E.E.C.; van Timmeren, J.; Sanduleanu, S.; Larue, R.; Even, A.J.G.;
Jochems, A.; et al. Radiomics: The bridge between medical imaging and personalized medicine. Nat. Rev. Clin. Oncol. 2017, 14,
749–762. [CrossRef] [PubMed]

67. Zhou, M.; Scott, J.; Chaudhury, B.; Hall, L.; Goldgof, D.; Yeom, K.W.; Iv, M.; Ou, Y.; Kalpathy-Cramer, J.; Napel, S.; et al.
Radiomics in Brain Tumor: Image Assessment, Quantitative Feature Descriptors, and Machine-Learning Approaches. AJNR Am.
J. Neuroradiol. 2018, 39, 208–216. [CrossRef] [PubMed]

68. Chen, C.; Zheng, A.; Ou, X.; Wang, J.; Ma, X. Comparison of Radiomics-Based Machine-Learning Classifiers in Diagnosis of
Glioblastoma From Primary Central Nervous System Lymphoma. Front. Oncol. 2020, 10, 1151. [CrossRef]

69. Cha, Y.J.; Jang, W.I.; Kim, M.S.; Yoo, H.J.; Paik, E.K.; Jeong, H.K.; Youn, S.M. Prediction of Response to Stereotactic Radiosurgery
for Brain Metastases Using Convolutional Neural Networks. Anticancer Res. 2018, 38, 5437–5445. [CrossRef]

70. Guo, Y.; Liu, Y.; Oerlemans, A.; Lao, S.; Wu, S.; Lew, M.S. Deep learning for visual understanding: A review. Neurocomputing 2016,
187, 27–48. [CrossRef]

71. Ciresan, D.C.; Meier, U.; Masci, J.; Gambardella, L.M.; Schmidhuber, J. Flexible, high performance convolutional neural networks
for image classification. In Proceedings of the Twenty-Second International Joint Conference on Artificial Intelligence, Barcelona,
Spain, 16–22 July 2011.

72. Papadimitroulas, P.; Brocki, L.; Christopher Chung, N.; Marchadour, W.; Vermet, F.; Gaubert, L.; Eleftheriadis, V.; Plachouris, D.;
Visvikis, D.; Kagadis, G.C.; et al. Artificial intelligence: Deep learning in oncological radiomics and challenges of interpretability
and data harmonization. Phys. Med. 2021, 83, 108–121. [CrossRef]

http://doi.org/10.1016/j.radonc.2018.06.025
http://doi.org/10.1016/j.media.2019.101618
http://doi.org/10.3174/ajnr.A5543
http://doi.org/10.1177/0846537120954293
http://doi.org/10.1148/rg.2021200210
http://www.ncbi.nlm.nih.gov/pubmed/34469211
http://doi.org/10.2174/1573405615666190206153321
http://www.ncbi.nlm.nih.gov/pubmed/31989890
http://doi.org/10.1186/s13244-020-00887-2
http://www.ncbi.nlm.nih.gov/pubmed/32785796
http://doi.org/10.3390/ijerph19031880
http://www.ncbi.nlm.nih.gov/pubmed/35162902
http://doi.org/10.1097/RLI.0000000000000448
http://www.ncbi.nlm.nih.gov/pubmed/29420321
http://doi.org/10.1001/jamaoncol.2016.2631
http://doi.org/10.1016/j.ejca.2011.11.036
http://doi.org/10.1002/mp.14045
http://doi.org/10.1023/A:1010933404324
http://doi.org/10.1038/srep46349
http://doi.org/10.1007/s00330-019-06024-y
http://doi.org/10.1259/bjr.20190948
http://doi.org/10.1186/s41747-018-0068-z
http://www.ncbi.nlm.nih.gov/pubmed/30426318
http://doi.org/10.1038/nrclinonc.2017.141
http://www.ncbi.nlm.nih.gov/pubmed/28975929
http://doi.org/10.3174/ajnr.A5391
http://www.ncbi.nlm.nih.gov/pubmed/28982791
http://doi.org/10.3389/fonc.2020.01151
http://doi.org/10.21873/anticanres.12875
http://doi.org/10.1016/j.neucom.2015.09.116
http://doi.org/10.1016/j.ejmp.2021.03.009


Cancers 2022, 14, 4025 20 of 23

73. Ueda, D.; Shimazaki, A.; Miki, Y. Technical and clinical overview of deep learning in radiology. Jpn. J. Radiol. 2019, 37, 15–33.
[CrossRef]

74. Haider, S.P.; Burtness, B.; Yarbrough, W.G.; Payabvash, S. Applications of radiomics in precision diagnosis, prognostication and
treatment planning of head and neck squamous cell carcinomas. Cancers Head Neck 2020, 5, 6. [CrossRef] [PubMed]

75. Wang, J.; Fang, Z.; Lang, N.; Yuan, H.; Su, M.Y.; Baldi, P. A multi-resolution approach for spinal metastasis detection using deep
Siamese neural networks. Comput. Biol. Med. 2017, 84, 137–146. [CrossRef] [PubMed]

76. Xiong, X.; Wang, J.; Hu, S.; Dai, Y.; Zhang, Y.; Hu, C. Differentiating Between Multiple Myeloma and Metastasis Subtypes of
Lumbar Vertebra Lesions Using Machine Learning-Based Radiomics. Front. Oncol. 2021, 11, 601699. [CrossRef] [PubMed]

77. Filograna, L.; Lenkowicz, J.; Cellini, F.; Dinapoli, N.; Manfrida, S.; Magarelli, N.; Leone, A.; Colosimo, C.; Valentini, V. Identification
of the most significant magnetic resonance imaging (MRI) radiomic features in oncological patients with vertebral bone marrow
metastatic disease: A feasibility study. Radiol. Med. 2019, 124, 50–57. [CrossRef]

78. Zhong, X.; Li, L.; Jiang, H.; Yin, J.; Lu, B.; Han, W.; Li, J.; Zhang, J. Cervical spine osteoradionecrosis or bone metastasis after
radiotherapy for nasopharyngeal carcinoma? The MRI-based radiomics for characterization. BMC Med. Imaging 2020, 20, 104.
[CrossRef]

79. Chianca, V.; Cuocolo, R.; Gitto, S.; Albano, D.; Merli, I.; Badalyan, J.; Cortese, M.C.; Messina, C.; Luzzati, A.; Parafioriti, A.; et al.
Radiomic Machine Learning Classifiers in Spine Bone Tumors: A Multi-Software, Multi-Scanner Study. Eur. J. Radiol. 2021, 137,
109586. [CrossRef]

80. Liu, J.; Guo, W.; Zeng, P.; Geng, Y.; Liu, Y.; Ouyang, H.; Lang, N.; Yuan, H. Vertebral MRI-based radiomics model to differentiate
multiple myeloma from metastases: Influence of features number on logistic regression model performance. Eur. Radiol. 2022, 32,
572–581. [CrossRef]

81. Fan, X.; Zhang, H.; Yin, Y.; Zhang, J.; Yang, M.; Qin, S.; Zhang, X.; Yu, F. Texture Analysis of (18)F-FDG PET/CT for Differential
Diagnosis Spinal Metastases. Front. Med. (Lausanne) 2020, 7, 605746. [CrossRef]

82. Naseri, H.; Skamene, S.; Tolba, M.; Faye, M.D.; Ramia, P.; Khriguian, J.; Patrick, H.; Andrade Hernandez, A.X.; David, M.; Kildea,
J. Radiomics-based machine learning models to distinguish between metastatic and healthy bone using lesion-center-based
geometric regions of interest. Sci. Rep. 2022, 12, 9866. [CrossRef]

83. Jin, Z.; Zhang, F.; Wang, Y.; Tian, A.; Zhang, J.; Chen, M.; Yu, J. Single-Photon Emission Computed Tomography/Computed
Tomography Image-Based Radiomics for Discriminating Vertebral Bone Metastases From Benign Bone Lesions in Patients With
Tumors. Front. Med. (Lausanne) 2021, 8, 792581. [CrossRef]

84. Yoda, T.; Maki, S.; Furuya, T.; Yokota, H.; Matsumoto, K.; Takaoka, H.; Miyamoto, T.; Okimatsu, S.; Shiga, Y.; Inage, K.; et al.
Automated Differentiation Between Osteoporotic Vertebral Fracture and Malignant Vertebral Fracture on MRI Using a Deep
Convolutional Neural Network. Spine (Phila Pa 1976) 2022, 47, E347–E352. [CrossRef] [PubMed]

85. Fan, X.; Zhang, X.; Zhang, Z.; Jiang, Y. Deep Learning-Based Identification of Spinal Metastasis in Lung Cancer Using Spectral CT
Images. Sci. Program. 2021, 2021, 2779390. [CrossRef] [PubMed]

86. Yao, J.; Burns, J.E.; Sanoria, V.; Summers, R.M. Mixed spine metastasis detection through positron emission tomogra-
phy/computed tomography synthesis and multiclassifier. J. Med. Imaging (Bellingham) 2017, 4, 024504. [CrossRef] [PubMed]

87. Mehta, S.D.; Sebro, R. Random forest classifiers aid in the detection of incidental osteoblastic osseous metastases in DEXA studies.
Int. J. Comput. Assist Radiol. Surg. 2019, 14, 903–909. [CrossRef]

88. Chang, C.Y.; Buckless, C.; Yeh, K.J.; Torriani, M. Automated detection and segmentation of sclerotic spinal lesions on body CTs
using a deep convolutional neural network. Skelet. Radiol. 2022, 51, 391–399. [CrossRef]

89. Roth, H.Y.J.; Lu, L.; Stieger, J.; Burns, J.; Summers, R.M. Detection of Sclerotic Spine Metastases via Random Aggregation of Deep
Convolutional Neural Network Classifications. Lect. Notes Comput. Vis. Biomech. 2014, 20, 3–12.

90. Wiese, T.; Yao, J.; Burns, J.E.; Summers, R.M. Detection of sclerotic bone metastases in the spine using watershed algorithm and
graph cut. In Proceedings of the Medical Imaging 2012: Computer-Aided Diagnosis, San Diego, CA, USA, 4–9 February 2012.

91. Burns, J.E.; Yao, J.; Wiese, T.S.; Munoz, H.E.; Jones, E.C.; Summers, R.M. Automated detection of sclerotic metastases in the
thoracolumbar spine at CT. Radiology 2013, 268, 69–78. [CrossRef]

92. Hammon, M.; Dankerl, P.; Tsymbal, A.; Wels, M.; Kelm, M.; May, M.; Suehling, M.; Uder, M.; Cavallaro, A. Automatic detection of
lytic and blastic thoracolumbar spine metastases on computed tomography. Eur. Radiol. 2013, 23, 1862–1870. [CrossRef]

93. O’Connor, S.D.; Yao, J.; Summers, R.M. Lytic metastases in thoracolumbar spine: Computer-aided detection at CT–preliminary
study. Radiology 2007, 242, 811–816. [CrossRef]

94. Hallinan, J.T.P.D.; Zhu, L.; Zhang, W.; Lim, D.S.W.; Baskar, S.; Low, X.Z.; Yeong, K.Y.; Teo, E.C.; Kumarakulasinghe, N.B.; Yap,
Q.V.; et al. Deep Learning Model for Classifying Metastatic Epidural Spinal Cord Compression on MRI. Front. Oncol. 2022, 12.
[CrossRef]

95. Arends, S.R.S.; Savenije, M.H.F.; Eppinga, W.S.C.; van der Velden, J.M.; van den Berg, C.A.T.; Verhoeff, J.J.C. Clinical utility of
convolutional neural networks for treatment planning in radiotherapy for spinal metastases. Phys. Imaging Radiat. Oncol. 2022,
21, 42–47. [CrossRef] [PubMed]

96. Hille, G.; Steffen, J.; Dünnwald, M.; Becker, M.; Saalfeld, S.; Tönnies, K. Spinal Metastases Segmentation in MR Imaging using
Deep Convolutional Neural Networks. arXiv 2020, arXiv:2001.05834.

http://doi.org/10.1007/s11604-018-0795-3
http://doi.org/10.1186/s41199-020-00053-7
http://www.ncbi.nlm.nih.gov/pubmed/32391171
http://doi.org/10.1016/j.compbiomed.2017.03.024
http://www.ncbi.nlm.nih.gov/pubmed/28364643
http://doi.org/10.3389/fonc.2021.601699
http://www.ncbi.nlm.nih.gov/pubmed/33718148
http://doi.org/10.1007/s11547-018-0935-y
http://doi.org/10.1186/s12880-020-00502-2
http://doi.org/10.1016/j.ejrad.2021.109586
http://doi.org/10.1007/s00330-021-08150-y
http://doi.org/10.3389/fmed.2020.605746
http://doi.org/10.1038/s41598-022-13379-8
http://doi.org/10.3389/fmed.2021.792581
http://doi.org/10.1097/BRS.0000000000004307
http://www.ncbi.nlm.nih.gov/pubmed/34919075
http://doi.org/10.1155/2021/2779390
http://www.ncbi.nlm.nih.gov/pubmed/33914061
http://doi.org/10.1117/1.JMI.4.2.024504
http://www.ncbi.nlm.nih.gov/pubmed/28612036
http://doi.org/10.1007/s11548-019-01933-1
http://doi.org/10.1007/s00256-021-03873-x
http://doi.org/10.1148/radiol.13121351
http://doi.org/10.1007/s00330-013-2774-5
http://doi.org/10.1148/radiol.2423060260
http://doi.org/10.3389/fonc.2022.849447
http://doi.org/10.1016/j.phro.2022.02.003
http://www.ncbi.nlm.nih.gov/pubmed/35243030


Cancers 2022, 14, 4025 21 of 23

97. Lang, N.; Zhang, Y.; Zhang, E.; Zhang, J.; Chow, D.; Chang, P.; Yu, H.J.; Yuan, H.; Su, M.Y. Differentiation of spinal metastases
originated from lung and other cancers using radiomics and deep learning based on DCE-MRI. Magn. Reson. Imaging 2019, 64,
4–12. [CrossRef] [PubMed]

98. Wakabayashi, K.; Koide, Y.; Aoyama, T.; Shimizu, H.; Miyauchi, R.; Tanaka, H.; Tachibana, H.; Nakamura, K.; Kodaira, T. A
predictive model for pain response following radiotherapy for treatment of spinal metastases. Sci. Rep. 2021, 11, 12908. [CrossRef]

99. Gui, C.; Chen, X.; Sheikh, K.; Mathews, L.; Lo, S.L.; Lee, J.; Khan, M.A.; Sciubba, D.M.; Redmond, K.J. Radiomic modeling to
predict risk of vertebral compression fracture after stereotactic body radiation therapy for spinal metastases. J. Neurosurg. Spine
2022, 36, 294–302. [CrossRef]

100. Yin, P.; Mao, N.; Zhao, C.; Wu, J.; Chen, L.; Hong, N. A Triple-Classification Radiomics Model for the Differentiation of Primary
Chordoma, Giant Cell Tumor, and Metastatic Tumor of Sacrum Based on T2-Weighted and Contrast-Enhanced T1-Weighted MRI.
J. Magn. Reson. Imaging 2019, 49, 752–759. [CrossRef]

101. Shi, Y.J.; Zhu, H.T.; Li, X.T.; Zhang, X.Y.; Wei, Y.Y.; Yan, S.; Sun, Y.S. Radiomics analysis based on multiple parameters MR imaging
in the spine: Predicting treatment response of osteolytic bone metastases to chemotherapy in breast cancer patients. Magn. Reson.
Imaging 2022, 92, 10–18. [CrossRef]

102. Ren, M.; Yang, H.; Lai, Q.; Shi, D.; Liu, G.; Shuang, X.; Su, J.; Xie, L.; Dong, Y.; Jiang, X. MRI-based radiomics analysis for
predicting the EGFR mutation based on thoracic spinal metastases in lung adenocarcinoma patients. Med. Phys. 2021, 48,
5142–5151. [CrossRef]

103. Fan, Y.; Dong, Y.; Yang, H.; Chen, H.; Yu, Y.; Wang, X.; Wang, X.; Yu, T.; Luo, Y.; Jiang, X. Subregional radiomics analysis for the
detection of the EGFR mutation on thoracic spinal metastases from lung cancer. Phys. Med. Biol. 2021, 66, 215008. [CrossRef]

104. Cao, R.; Dong, Y.; Wang, X.; Ren, M.; Wang, X.; Zhao, N.; Yu, T.; Zhang, L.; Luo, Y.; Cui, E.N.; et al. MRI-Based Radiomics
Nomogram as a Potential Biomarker to Predict the EGFR Mutations in Exon 19 and 21 Based on Thoracic Spinal Metastases in
Lung Adenocarcinoma. Acad. Radiol. 2022, 29, e9–e17. [CrossRef]

105. Curtin, M.; Piggott, R.P.; Murphy, E.P.; Munigangaiah, S.; Baker, J.F.; McCabe, J.P.; Devitt, A. Spinal Metastatic Disease: A Review
of the Role of the Multidisciplinary Team. Orthop. Surg. 2017, 9, 145–151. [CrossRef] [PubMed]

106. Tomita, K.; Kawahara, N.; Kobayashi, T.; Yoshida, A.; Murakami, H.; Akamaru, T. Surgical strategy for spinal metastases. Spine
(Phila Pa 1976) 2001, 26, 298–306. [CrossRef] [PubMed]

107. Clemons, M.; Gelmon, K.A.; Pritchard, K.I.; Paterson, A.H. Bone-targeted agents and skeletal-related events in breast cancer
patients with bone metastases: The state of the art. Curr. Oncol. 2012, 19, 259–268. [CrossRef] [PubMed]

108. Hamaoka, T.; Madewell, J.E.; Podoloff, D.A.; Hortobagyi, G.N.; Ueno, N.T. Bone imaging in metastatic breast cancer. J. Clin.
Oncol. 2004, 22, 2942–2953. [CrossRef] [PubMed]

109. Bilsky, M.H.; Lis, E.; Raizer, J.; Lee, H.; Boland, P. The diagnosis and treatment of metastatic spinal tumor. Oncologist 1999, 4,
459–469. [CrossRef] [PubMed]

110. Aneja, S.; Chang, E.; Omuro, A. Applications of artificial intelligence in neuro-oncology. Curr. Opin. Neurol 2019, 32, 850–856.
[CrossRef]

111. Duong, M.T.; Rauschecker, A.M.; Mohan, S. Diverse Applications of Artificial Intelligence in Neuroradiology. Neuroimaging Clin.
N. Am. 2020, 30, 505–516. [CrossRef]

112. Muthukrishnan, N.; Maleki, F.; Ovens, K.; Reinhold, C.; Forghani, B.; Forghani, R. Brief History of Artificial Intelligence.
Neuroimaging Clin. N. Am. 2020, 30, 393–399. [CrossRef]

113. Raya-Povedano, J.L.; Romero-Martín, S.; Elías-Cabot, E.; Gubern-Mérida, A.; Rodríguez-Ruiz, A.; Álvarez-Benito, M. AI-based
Strategies to Reduce Workload in Breast Cancer Screening with Mammography and Tomosynthesis: A Retrospective Evaluation.
Radiology 2021, 300, 57–65. [CrossRef]

114. Coleman, R.E. Clinical features of metastatic bone disease and risk of skeletal morbidity. Clin. Cancer Res. 2006, 12, 6243s–6249s.
[CrossRef]

115. Perry, J.; Chambers, A.; Laperriere, N. Systematic Review of the Diagnosis and Management of Malignant Extradural Spinal Cord
Compression: The Cancer Care Ontario Practice Guidelines Initiative‘s Neuro-Oncology Disease Site Group. J. Clin. Oncol. 2005,
23, 2028–2037. [CrossRef]

116. Fox, S.; Spiess, M.; Hnenny, L.; Fourney, D.R. Spinal Instability Neoplastic Score (SINS): Reliability Among Spine Fellows and
Resident Physicians in Orthopedic Surgery and Neurosurgery. Glob. Spine J. 2017, 7, 744–748. [CrossRef] [PubMed]

117. Boon, I.S.; Au Yong, T.P.T.; Boon, C.S. Assessing the Role of Artificial Intelligence (AI) in Clinical Oncology: Utility of Machine
Learning in Radiotherapy Target Volume Delineation. Medicines 2018, 5, 131. [CrossRef] [PubMed]

118. Li, Q.; Xu, Y.; Chen, Z.; Liu, D.; Feng, S.T.; Law, M.; Ye, Y.; Huang, B. Tumor Segmentation in Contrast-Enhanced Magnetic
Resonance Imaging for Nasopharyngeal Carcinoma: Deep Learning with Convolutional Neural Network. BioMed Res. Int. 2018,
2018, 9128527. [CrossRef]

119. Wong, J.; Fong, A.; McVicar, N.; Smith, S.; Giambattista, J.; Wells, D.; Kolbeck, C.; Giambattista, J.; Gondara, L.; Alexander,
A. Comparing deep learning-based auto-segmentation of organs at risk and clinical target volumes to expert inter-observer
variability in radiotherapy planning. Radiother. Oncol. 2020, 144, 152–158. [CrossRef]

120. Wang, Z.; Chang, Y.; Peng, Z.; Lv, Y.; Shi, W.; Wang, F.; Pei, X.; Xu, X.G. Evaluation of deep learning-based auto-segmentation
algorithms for delineating clinical target volume and organs at risk involving data for 125 cervical cancer patients. J. Appl. Clin.
Med. Phys. 2020, 21, 272–279. [CrossRef]

http://doi.org/10.1016/j.mri.2019.02.013
http://www.ncbi.nlm.nih.gov/pubmed/30826448
http://doi.org/10.1038/s41598-021-92363-0
http://doi.org/10.3171/2021.3.SPINE201534
http://doi.org/10.1002/jmri.26238
http://doi.org/10.1016/j.mri.2022.05.012
http://doi.org/10.1002/mp.15137
http://doi.org/10.1088/1361-6560/ac2ea7
http://doi.org/10.1016/j.acra.2021.06.004
http://doi.org/10.1111/os.12334
http://www.ncbi.nlm.nih.gov/pubmed/28544780
http://doi.org/10.1097/00007632-200102010-00016
http://www.ncbi.nlm.nih.gov/pubmed/11224867
http://doi.org/10.3747/co.19.1011
http://www.ncbi.nlm.nih.gov/pubmed/23144574
http://doi.org/10.1200/JCO.2004.08.181
http://www.ncbi.nlm.nih.gov/pubmed/15254062
http://doi.org/10.1634/theoncologist.4-6-459
http://www.ncbi.nlm.nih.gov/pubmed/10631690
http://doi.org/10.1097/WCO.0000000000000761
http://doi.org/10.1016/j.nic.2020.07.003
http://doi.org/10.1016/j.nic.2020.07.004
http://doi.org/10.1148/radiol.2021203555
http://doi.org/10.1158/1078-0432.CCR-06-0931
http://doi.org/10.1200/JCO.2005.00.067
http://doi.org/10.1177/2192568217697691
http://www.ncbi.nlm.nih.gov/pubmed/29238637
http://doi.org/10.3390/medicines5040131
http://www.ncbi.nlm.nih.gov/pubmed/30544901
http://doi.org/10.1155/2018/9128527
http://doi.org/10.1016/j.radonc.2019.10.019
http://doi.org/10.1002/acm2.13097


Cancers 2022, 14, 4025 22 of 23

121. Men, K.; Dai, J.; Li, Y. Automatic segmentation of the clinical target volume and organs at risk in the planning CT for rectal cancer
using deep dilated convolutional neural networks. Med. Phys. 2017, 44, 6377–6389. [CrossRef]
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