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ABSTRACT

Natural infection with severe acute respiratory syndrome-coronavirus-2 or vaccination 
induces virus-specific immunity protecting hosts from infection and severe disease. While the 
infection-preventing immunity gradually declines, the severity-reducing immunity is relatively 
well preserved. Here, based on the different longevity of these distinct immunities, we develop 
a mathematical model to estimate courses of endemic transition of coronavirus disease 2019 
(COVID-19). Our analysis demonstrates that high viral transmission unexpectedly reduces 
the rates of progression to severe COVID-19 during the course of endemic transition despite 
increased numbers of infection cases. Our study also shows that high viral transmission 
amongst populations with high vaccination coverages paradoxically accelerates the endemic 
transition of COVID-19 with reduced numbers of severe cases. These results provide critical 
insights for driving public health policies in the era of ‘living with COVID-19.’
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INTRODUCTION

The coronavirus disease 2019 (COVID-19) pandemic is ongoing, resulting in devastating 
impact on public health, economy, and society. To halt the current pandemic, COVID-19 
vaccines have been rapidly developed at an unprecedented pace. These vaccines provide 
protective immunity against severe acute respiratory syndrome-coronavirus-2 (SARS-
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CoV-2) to prevent infection and limit disease severity, which can also be achieved by natural 
infection. However, neutralizing Ab (nAb) titers decline after SARS-CoV-2 infection or 
vaccination in a pattern of initial rapid decay followed by a slower decrease (1,2), with the 
half-life of SARS-CoV-2-specific antibodies estimated to be 6–8 months (1,3). In addition, 
SARS-CoV-2 variants exhibit reduced the neutralizing activities of nAb. For example, sera 
from COVID-19 convalescent patients and vaccine recipients showed reduced neutralizing 
activities against the Delta (B.1.617.2) and the Omicron (B.1.1.529) variants (4,5), which 
became a predominant SARS-CoV-2 strains worldwide. Consequentially, waning humoral 
immunity to SARS-CoV-2 and the spread of nAb-escaping viral strains (e.g., the Omicron 
variant) reduce vaccine effectiveness against infection and pose an increasing risk of 
breakthrough infection over time (6,7). However, vaccine effectiveness against severe disease 
is relatively preserved, indicating that different immune components with different half-lives 
are responsible for preventing infection versus severe disease.

Natural infection or vaccination elicits not only nAbs but also virus-specific CD4+ and CD8+ 
memory T cells. nAbs can prevent infection and disease progression by interfering with viral 
entry to host cells. When hosts are infected, T cells produce effector cytokines and directly 
eliminate virus-infected cells, leading to rapid control of viral infection and reduction of 
disease severity. Compared with nAbs, SARS-CoV-2-specific memory T cells are maintained 
for a relatively long time (8). Intriguingly, the persistence of memory T-cell responses to 
SARS-CoV-1 for 17 years has been demonstrated (9). The long half-life of memory T cells 
explains the relatively preserved vaccine effectiveness against severe COVID-19 (10). SARS-
CoV-2-specific T cells can reduce disease severity in patients and animals with SARS-CoV-2 
infection. Mice immunized with vaccines expressing T-cell epitopes exhibited reduced lung 
pathology and better survival when challenged with SARS-CoV-2, even in the absence of 
nAbs (11,12). In addition, higher levels of CD8+ T-cell immunity are associated with improved 
patient survival among patients with COVID-19 who have humoral immunodeficiency caused 
by anti-CD20 therapy (13). These data indicate that T cells contribute to severity-reducing 
immunity against SARS-CoV-2, particularly when nAb activity is suboptimal and insufficient.

SARS-CoV-2 is likely to ultimately become endemic and continue circulating among 
the human population as a common cold virus (14,15). Indeed, several countries are 
already considering implementing ‘living with COVID-19’ policies. However, the path to 
an endemic phase in terms of its duration and public health impact is likely to be highly 
variable, depending on multiple parameters such as vaccination rates, levels of immunity, 
transmission rates, and emergence of new variants. Most importantly, being able to control 
the burden of severe COVID-19 disease, which has the potential to overwhelm health care 
systems, will be crucial during this transition to an endemic phase.

To enable effective adaptation of public health policies to reduce the overall damage to the 
community, the future course of the pandemic has been simulated with mathematical models 
early after the emergence of COVID-19 (16-22). In addition, models incorporating immunity 
and vaccination were developed (19-21). In particular, a model demonstrated that infection-
induced immunity in children may facilitate endemic transition of COVID-19 (22). However, 
previous studies did not incorporate the different kinetics of severity-reducing and infection-
preventing immunities. Here, we estimate courses of endemic transition of COVID-19 and 
dynamical changes in progression rates for severe COVID-19 during the transition period, 
using a mathematical model based on the concept that severity-preventing immunity decay 
more slowly than infection-preventing immunity. Our results demonstrate that increasing 
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viral spread, for example by relaxing NPIs or emergence of new variants, paradoxically 
reduces progression rates to severe COVID-19 and stabilizes the development of severe cases 
during the endemic transition.

MATERIALS AND METHODS

Model parameters
We have used a plausible range for model parameters from the published literature 
(Supplementary Table 1) rather than a single parameter set to get robust model prediction 
against parameter perturbation.

Reproduction numbers and steady state formulae derivation
We derived formula for the basic reproduction number R0, the average number of secondary 
infections by an infected individual when the whole populations are susceptible (see 
Supplementary Data 1 for details). A reproduction number incorporating vaccination was 
also derived similarly. Furthermore, we derived the steady-state values of the variables in the 
model for a given set of parameters (see Supplementary Data 1 for details). It allowed us to 
obtain the late-phase status without performing numerical simulation of the model.

RESULTS

We developed a simple mathematical model based on the different kinetics of the two 
distinct immunities to predict the courses of endemic transition of COVID-19, from the 
early phase to the steady state (Fig. 1A), including dynamical changes in rates of progression 
to severe COVID-19 (Fig. 1B and C). Specifically, we extended the Susceptible-Infected-
Recovered-Susceptible model, where individuals are separated into five populations: infected 
individuals with severe disease (IS); infected individuals with mild to moderate disease (IM); 
individuals susceptible to infection and without immunity (SH), thus a high probability of 
progression to severe COVID-19 (hs); susceptible individuals with only severity-reducing 
immunity (SL), thus a low probability of severe COVID-19 progression (lS); and recovered or 
vaccinated individuals (R) with both infection-preventing and severity-reducing immunities 
(Fig. 1B; see Supplementary Data 1 for details). Upon SARS-CoV-2 infection with a 
transmission rate β, SH and SL can progress to severe (IS) or mild (IM) COVID-19. Because the 
probabilities of progression to severe disease are hS and lS for SH and SL, respectively (Fig. 1C),  
we refer to 1-1 −

𝑙𝑙𝑙𝑙S
ℎS

  as the efficacy of severity-reducing immunity. A recovery rate is γ, and a 
vaccination rate per day is ν. Infection-preventing and severity-reducing immunities wane 
from R to SL and then to SH at rates ωR→SL

 and ωSL→SH
, respectively, with ωR→SL

 > ωSL→SH
 (15).

We first calculated the numbers of daily infections and severe disease at the steady state, i.e., 
the late phase during endemic transition, according to the level of transmissibility, R0 = 𝑅𝑅𝑅𝑅0 =

𝛽𝛽𝛽𝛽
𝛾𝛾𝛾𝛾

  (see 
Supplementary Data 1 for details). When the efficacy of severity-reducing immunity is 95% (lS 
= 0.05hS), considering vaccine efficacy in preventing severe COVID-19 (23), higher R0 increases 
daily infection cases as expected (Fig. 2A, the third panel from the left). However, higher R0 
decreases the rates of severe disease (i.e., proportion of severe cases among all cases) across 
a wide range of daily vaccination rates (Fig. 2B, the third panel from the left). Consequently, 
the relation between the number of daily severe cases and R0 is not monotonic (Fig. 2C, the 
third panel from the left). Specifically, when R0 is low (R0 < 1.6), caused for example by strict 

https://doi.org/10.4110/in.2022.22.e23

Modeling Endemic Transition of COVID-19



4/12https://immunenetwork.org

nonpharmaceutical interventions (NPIs) such as social distancing, the number of daily severe 
cases decreases with decreasing R0. However, when R0 is greater than 1.6, we unexpectedly found 
that the number of daily severe cases decreases now with increasing R0. This result is observed 
when the efficacy of severity-reducing immunity is ≥ 90%, but disappears when it is 80%.

When R0 is increased for example by relaxing NPIs or emergence of new variants, the SL 
population (i.e., susceptible individuals with severity-reducing immunity) has a high chance 
of infection but is less likely to have severe disease due to their low rates (lS) for severe disease 
progression. SL experiencing re-infection or breakthrough infection is converted to R by 
re-gaining infection-preventing immunity. In summary, high R0 reduces the proportion of 
SH (non-immune population) and maintains individuals within a cycle of SL ↔ R, leading 
to a paradoxical decrease in the number of severe cases (IS) at the late phase of endemic 
transition (Fig. 2D). However, this effect was not observed when a vaccination rate per day is 
extremely high (Fig. 2, sky blue lines). Similar patterns are demonstrated when we calculate 
the results in Fig. 2 based on the reproduction number incorporating vaccination (Rv; 
Supplementary Fig. 1) and even when we change values for major parameters γ, hS, lS, and 
ωSL→SH

 (Supplementary Figs. 2-5), which have not yet been exactly determined for COVID-19, 
within a reasonable range (Supplementary Tables 1 and 2).

https://doi.org/10.4110/in.2022.22.e23
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Figure 1. A compartmental model for COVID-19 transmission dynamics incorporating different levels of immunity 
and disease severity. (A) Schematic illustration for the time-course of endemic transition of the COVID-19 
pandemic. (B) The population is divided into five groups: recovered after being infected or vaccinated (R); 
susceptible with a low probability (SL) or a high probability (SH) of experiencing severe disease when they are 
infected; infected with severe disease (IS), and infected with mild to moderate disease (IM). R carry both infection-
preventing and severity-reducing immunities, and SL possesses only severity-reducing immunity. (C) While SH and 
SL can be infected with the same rate β, SL has a lower rate (lS) of progressing to severe disease (IS) compared to 
SH (hS) (i.e., hS>lS) due to the presence of severity-reducing immunity. IM and IS are converted to R at a rate γ. The 
infection-preventing and severity-reducing immunities wane at a rate of ωR→SL and ωSL→SH, respectively. SH and SL 
can also obtain immunity by vaccination at a rate of ν.
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Although the daily severe cases at the late phase during endemic transition can be reduced 
by increasing R0, the number of severe cases will transiently surge during the early phase 
of endemic transition, which may exceed critical care capacity. Therefore, we investigated 
transition dynamics during the time-course to an endemic phase under various conditions. 
When 10% of the population possess infection-preventing immunity, higher R0 robustly 
increases the number of daily infection cases during the time-course (Fig. 3A). Although 
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Figure 2. A higher transmission rate can reduce cases of severe disease during the late phase of endemic 
transition. Steady-state values of the mathematical model over the basic reproduction number (R0=𝑅𝑅𝑅𝑅0 =

𝛽𝛽𝛽𝛽
𝛾𝛾𝛾𝛾

 ), the 
average number of secondary infections by an infected individual when the whole populations are susceptible, 
with different daily vaccination rates (ν) and efficacy of the severity-reducing immunity (1-1 −

𝑙𝑙𝑙𝑙S
ℎS

 ). The daily 
vaccination rates were chosen based on the data of COVID-19 vaccination programs in each country (24). (A) As 
transmissibility (R0) increases, the percentage of daily infections (γIS+γIM) in the whole populations increases. 
(B) The percentage of daily infections classified as severe decreases as R0 increases because infection prevents 
waning of severity-reducing immunity (SL→SH). (C) Under strong NPIs (R0<~1.6), the percentage of severe cases 
in the whole population increases as R0 increases. On the other hand, under weak NPIs (R0>~1.6), the percentage 
of severe cases in the whole population decreases as R0 increases. (D) In summary, higher R0 increase the daily 
cases (green + purple) but decreases the severity rate and severe cases (purple). See Supplementary Table 2 for 
the parameter values.
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higher R0 reduces rates for severe disease progression (Fig. 3B), the number of daily severe 
cases transiently, but sharply increases early during the time-course due to the robust 
increase in the number of infection cases (Fig. 3C).

The spike of severe cases is dramatically attenuated when a high proportion of the population 
(e.g., 80%) possess infection-preventing immunity, by natural infection or vaccination  
(Fig. 3D-F). Moreover, with higher R0, the curves of severe cases are stabilized more quickly 
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predicted dynamics of the proportion of daily infection cases in the whole population with varying R0 from 1.6 to 3.0 for initial infection-preventing immunity of 
10% in the population (initial proportion of R), acquired by natural infection or vaccination. During the early phase of the endemic transition, higher R0 increases 
the daily infection cases. (B, C) Although the percentage of severe cases among all infections becomes lower as R0 increases (B), the surge of percentage of severe 
cases across the whole population dramatically increases (C). (D-F) Predicted transition dynamics are shown for higher initial infection-preventing immunity 
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interventions are implemented. The red line is recalled from (F) when R0=3.0, the orange line is dynamics from reduced waning rates (ωR→SL and ωSL→SH), and the 
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to the steady state without fluctuation (Fig. 3F). Times to reach the steady state are estimated 
to be 12 and 4 years with R0=1.6 and 3.0, respectively (Fig. 3G). When the proportion of the 
population with infection-preventing immunity is 30% or 50%, similar patterns are observed 
while peaks of infection and severe cases occur earlier and are higher compared to 80% 
immunity (Supplementary Fig. 6). This demonstrates that permissive viral spread under 
high vaccination coverages accelerates the endemic transition with subsequent controllable 
COVID-19 disease burden. However, sharp peaks of severe cases in the early phase could still 
threaten overwhelming healthcare systems.

To circumvent this, we evaluated the effects of repeated vaccinations (i.e., boosters) and 
antiviral agents on the curves of severe cases. Repeated vaccinations, which increase the 
longevity of both infection-preventing and severity-reducing immunities (i.e., decrease in 
ωR→SL

 and ωSL→SH
) (25,26), reduced the peak of severe cases (Fig. 3H, orange line). Indeed, an 

additional third dose of the mRNA vaccine showed a 92% effectiveness in preventing severe 
COVID-19 disease compared with two-dose vaccination (27). Novel antiviral agents, which 
will increase the recovery rate γ and decrease progression to severe disease, hS and lS, also 
reduced the peak of severe cases (Fig. 3H, blue line). In fact, molnupiravir, a newly developed 
antiviral agent, has been shown to reduce the risk of hospitalization or death by 30% in 
patients with mild-to-moderate COVID-19 (28).

DISCUSSION

As the COVID-19 pandemic is ongoing, predicting the future course of the pandemic is 
needed to enable effective adaptation of public health policies to reduce the overall damage 
to the community. The concept of an endemic transition of SARS-CoV-2 has been proposed 
(14,15,22), however the possible impact of severe COVID-19 cases during this transition has 
not been estimated. This is crucial for driving appropriate public health policies and ensuring 
that healthcare systems can subsequently withstand the disease burden.

For this, we developed a simple model focusing on two heterogeneous features: immunity 
and clinical severity. This allowed us to forecast courses of endemic transition of COVID-19 
based on the concept that severity-preventing immunity decays more slowly than infection-
preventing immunity. In particular, increasing viral spread, for example by relaxing NPIs, 
under high vaccination coverages paradoxically reduces progression rates to severe COVID-19 
and stabilizes the development of severe cases during the transition to an endemic phase, 
with reduced numbers of severe cases.

Emergence of new SARS-CoV-2 variants can also change the course of the endemic transition 
and the number of severe cases. Natural selection of mutant viruses occurs under the 
pressure of increasing viral fitness or escaping from immunity. New variants with higher 
fitness that more efficiently enter host cells or replicate can change the course of endemic 
transition by increasing R0. In the case of immune-evading variants, both ωR→SL

 and ωSL→SH
 

can be increased in theory. Given that nAbs prevent infection by interfering with viral entry 
and are easily evaded by variants, the emergence of variants can reduce infection-preventing 
immunity and increase ωR→SL

. However, variants rarely escape SARS-CoV-2-specific memory 
T cell responses that can prevent severe disease because T-cell epitopes are scattered across 
the viral proteome, suggesting that the emergence of variants minimally changes severity-
reducing immunity or ωSL→SH

.
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Recently, the Omicron variant (B.1.1.529), a new variant of concern harbouring the high 
number of mutations in the spike protein, has emerged (29). The Omicron variant was 
estimated to have higher reproduction number than the Delta variant (30). It was also 
experimentally demonstrated that Omicron spike-pseudovirus exhibits greater efficiency of 
target cell entry than other SARS-CoV-2 pseudoviruses (31). Moreover, the Omicron variant 
has been shown to reduce the neutralizing activities of nAbs elicited by COVID-19 vaccination 
or infection with other SARS-CoV-2 strains (5,31). However, the Omicron variant is known 
to result in less severe infection than other SARS-CoV-2 strains. Low pathogenicity of the 
Omicron variant is explained by preferential infection of the upper airway rather than the 
lungs (32). Such distinct characteristics of the Omicron variant can be flexibly incorporated 
into our model. Importantly, spread of the Omicron variant with high transmissibility is likely 
to facilitate the endemic transition of COVID-19 according to our model prediction.

The limitation of our study is that some population heterogeneities such as age, underlying 
diseases, and cross-reactive immunity elicited by other coronaviruses were not incorporated 
in the model (20). Models containing population heterogeneities will allow more precise 
quantitative prediction. Although the present simple model does not explicitly describe the 
different characteristics of individuals, the model could implicitly describe them by changing 
the values of parameters, which represents the averaged effect of the heterogeneities. 
For instance, if a large portion of population has underlying disease or there are more 
elderly people in community, it can be incorporated to the model by increasing the rate of 
progression to severe disease (i.e., hS and lS).

In conclusion, we demonstrate that increasing viral spread, for example by relaxing NPIs 
or emergence of new variants, under high vaccination coverages paradoxically reduces 
progression rates to severe COVID-19 and stabilizes the development of severe cases during 
the endemic transition, with reduced numbers of severe cases (Fig. 3I). While our prediction 
needs to be interpreted appropriately depending on each country, it provides important 
insights for establishing or adjusting public health policies in the era of ‘living with COVID-19’.
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Supplementary Table 1
Parameters of COVID-19 transmission model

Click here to view

Supplementary Table 2
The parameter values and initial conditions used in Figures

Click here to view

Supplementary Figure 1
Parallel figure of Fig. 2 generated with varying the reproduction number incorporating 
vaccination (Rv). (A) The percentage of daily infections, (B) severity rates, and (C) the 
percentage of daily severe cases at the steady state depending on the reproduction number 
incorporating vaccination, 𝑅𝑅𝑅𝑅v =

𝜔𝜔𝜔𝜔𝑅𝑅𝑅𝑅→𝑆𝑆𝑆𝑆L
𝜔𝜔𝜔𝜔𝑅𝑅𝑅𝑅→𝑆𝑆𝑆𝑆L + 𝜈𝜈𝜈𝜈

𝑅𝑅𝑅𝑅0 . Although Rv is used instead of R0, the major patterns 
such as an initial increase followed by a decrease of daily severe cases are preserved compared 
with Fig. 2. See Supplementary Table 2 for the parameter values.

Click here to view

Supplementary Figure 2
Parallel figure of Fig. 2 generated by changing the recovery rate (γ) and immunity waning 
rates (ωR→SL

 and ωSL→SH
). (A) The percentage of daily infections, (B) severity rate, and (C) the 

percentage of daily severe cases at the steady state over the basic reproduction numbers 
(R0) with increased recovery rate (γ) and reduced waning rates (ωR→SL

 and ωSL→SH
). The major 

patterns, such as an initial increase followed by a decrease of the daily severe cases, are 
preserved compared with Fig. 2. See Supplementary Table 2 for the parameter values.

Click here to view

Supplementary Figure 3
Parallel figure of Fig. 2 generated by increasing the progression rates to severe cases, hS and lS, 
by five times. (A) The percentage of daily infections, (B) severity rate, and (C) the percentage 
of daily severe cases at the steady state over the basic reproduction numbers (R0). The major 
patterns, such as an initial increase followed by a decrease of the daily severe cases, are 
preserved compared with Fig. 2. See Supplementary Table 2 for the parameter values.

Click here to view

Supplementary Figure 4
Parallel figure of Fig. 2 generated by increasing the progression rates to severe cases, hS and lS, 
by 10 times. (A) The percentage of daily infections, (B) severity rate, and (C) the percentage 
of daily severe cases at the steady state over the basic reproduction numbers (R0). The major 
patterns, such as an initial increase followed by a decrease of the daily severe cases, are 
preserved compared with Fig. 2. See Supplementary Table 2 for the parameter values.

Click here to view
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Supplementary Figure 5
Parallel figure of Fig. 2 generated by increasing the waning rate of severity-reducing 
immunity, ωSL→SH

, by three times. (A) The percentage of daily infections, (B) severity rate, 
and (C) the percentage of daily severe cases at the steady state over the basic reproduction 
numbers (R0). The major patterns, such as an initial increase followed by a decrease of the 
daily severe cases, are preserved compared with Fig. 2. See Supplementary Table 2 for the 
parameter values.

Click here to view

Supplementary Figure 6
The predicted dynamics of the proportion of daily cases among the whole population, 
the rate of severe disease among all infections, and the proportion of daily severe cases 
among the whole population, varying R0 from 1.6 to 3.0. See Supplementary Table 2 for the 
parameter values.

Click here to view
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