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Introduction
Staphylococcus aureus is the leading cause of bacterial infections 
involving gastrointestinal, respiratory, skin and soft tissue, and 
blood stream infections. It is the leading cause of human disease 
not only in hospitalized individuals but also in individuals living 
in community and responsible for a variety of diseases ranging 
from mild skin and soft tissue suppurative (pus-forming) infec-
tions, food poisoning to highly serious diseases such as osteomy-
elitis, endocarditis, and toxic shock syndrome (TSS). The threat 
of antibiotic resistance in S aureus has risen enormously for sev-
eral years and the health costs have increased dramatically. 
Different figures were provided by different nations regarding 
annual mortality due to antibiotic resistance with 22 000 extra 
deaths in the United States, 25 000 in Europe, and 12 500 in 
France.1 Mortality due to methicillin-resistant Staphylococcus 
aureus (MRSA) is the leading cause of mortality due to bacterial 
infections, and the number of serious infections due to resistant 
strains has decreased in recent years. The pathogenesis of staphy-
lococcal infections is multifactorial. However, there is some cor-
relation to the presence of certain virulence factors with a 
particular disease. Therefore, timely detection of these virulence 
factors is crucial for undertaking appropriate therapeutic inter-
ventions. Molecular methods play an important role in detection 
and differentiation of pathogens. Numerous techniques have 
been reported for detection of S aureus virulence factors such as 
antibody,2–5 polymerase chain reaction (PCR),6,7 real-time PCRs 
(RT-PCRs),8 and aptamer-based9–11 methods. Many other sen-
sitive methods such as immuno-PCRs,12 mass spectrometric 
analysis,13 and biosensor techniques14,15 are also reported.

Despite its high incidence and frequency of causing life-
threatening and drug-resistant infections, there is no successful 
vaccine to prevent S aureus infections. The initial efforts to 

develop a staphylococcal vaccine that targeted the capsular pol-
ysaccharides similar in line with other bacterial pathogens have 
not been met with success. However, vaccine therapies still hold 
great promise in broadening the available clinical tools against 
the global menace of antibiotic-resistant S aureus infections. 
Antibodies directed against the virulence determinants could 
neutralize these components and hence may help in reducing the 
severity of infection. Because toxins are prominent virulence 
determinants, targeting them and providing the antibodies as 
passive therapy might render the infections less invasive. The 
antigens which could induce both humoral and cell-mediated 
memory immune responses that might prevent the recurring 
infections elaborated. In this review, an updated information 
about S aureus virulence factors, pathogenesis, clinical burden, 
recent advances in S aureus diagnostics, therapy, and prophylaxis.

S aureus General Features, Growth, and Metabolism
Staphylococcus aureus is a gram-positive organism with aerobic to 
facultative anaerobic lifestyle and colonizes skin, nares, and axillae 
of humans. Staphylococcus aureus is a catalase-, urease-, and phos-
phatase-positive organism with most strains secreting coagulase 
and it also ferments mannitol sugar to lactic acid. Testing for cata-
lase is an important criterion to distinguish Staphylococci from 
Streptococci and coagulase test for distinguishing S aureus from S 
epidermidis. It reduces nitrates to nitrites, liquefies gelatin, and is 
methyl red and Voges-Proskauer test positive. Staphylococcus aureus 
is lipolytic (lecithinase) when grown on media containing egg 
yolk. Staphylococcus aureus reduces tellurite in media containing 
potassium tellurite and produces shiny black color colonies. All 
strains of S aureus produce a heat-stable thermonuclease which 
has both endonuclease and exonuclease properties and can degrade 
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both RNA and DNA. Staphylococcus aureus grows in irregular clus-
ters because the cells divide successively in 3 perpendicular planes 
and the attachment of sister cells may not be in divisional plane 
but may adjust position while being attached.16 It can remain via-
ble even after many months of air-drying and resists the effect of 
chemicals and disinfectants.17 Nutritional requirements of S aureus 
can be met by routine laboratory media, and most strains are met-
abolically versatile; that is, they can digest proteins, lipids and can 
ferment a variety of sugars. The average doubling time (mean gen-
eration time) of S aureus is as short as 20 minutes.

S aureus and Host Interactions
Staphylococcus aureus is part of normal microflora of humans 
and is found inhabiting in most human environments. The 
nares are the primary ecological niche for S aureus; however, 
multiple sites in the body such as skin, perineum, axillae, vagina, 
and gastrointestinal tract also were found to harbor this bacte-
rium.18 Staphylococcus aureus in general have a benign or com-
mensal relationship with its host. However, they revert to 
pathogenic lifestyle once they gain entry into host tissues by 
injuries, inoculation by syringes, or by direct implantation with 
medical devices. A successful infection results when there is a 
shift of balance between host defenses and pathogen virulence 
mechanisms in favor of the pathogen.

Skin is a major physical and immunologic barrier; the 
keratinocytes in the epidermis express pattern recognition recep-
tors (PRRs) such as toll-like receptors that recognize pathogen-
associated molecular patterns of microbes.19 After recognition, 
PRRs trigger early cutaneous immune responses such as recruit-
ment of immune cells from circulation to site of recognition. Skin 
also harbors numerous resident immune cells such as Langerhans 
cells in the epidermis and dendritic cells, macrophages, mast cells, 
T and B cells, plasma cells, and natural killer (NK) cells in the 
dermis. Low temperature and pH of the skin surface resists 
growth of S aureus. Normal commensal organisms of skin such as 
S epidermidis and Propionibacterium acnes also prevent coloniza-
tion and invasion by S aureus by secreting antimicrobial peptides 
such as phenol-soluble modulins (PSM-α and PSM-δ).20 In 
addition, keratinocytes in the corneal layer of skin produces anti-
microbial peptides that have bacteriostatic and bactericidal prop-
erties such as human β-defensins (hBD2, hBD3), cathelicidin 
(LL-37), and ribonuclease 7.21–23

Colonization of S aureus is mediated by its adherence to surface 
components such as fibrinogen, fibronectin, and cytokeratins of 
nasal epithelium or cutaneous keratinocytes. It uses microbial sur-
face components recognizing adhesive matrix molecules for bind-
ing such as fibronectin-binding proteins (FnbpA and FnbpB), 
fibrinogen-binding proteins (ClfA and ClfB), iron-regulated sur-
face determinant (IsdA), and wall teichoic acid (WTA).24,25 
Superantigens such as staphylococcal enterotoxin A (SEA), staph-
ylococcal enterotoxin B (SEB), and TSS toxin 1 (TSST-1) 
enhance fibronectin-mediated and fibrinogen-mediated S aureus 
colonization during atopic dermatitis by altering the levels of Th2 
cytokine profiles (interleukin 4).26 It has additional mechanisms 

to evade host antimicrobial peptides. For example, iron-regu-
lated surface determinant (IsdA) renders S aureus resistant to 
β-defensins and cathelicidin and aureolysin, an extracellular 
metalloproteinase that inhibits cathelicidin activity.27

Staphylococcus aureus has several mechanisms to evade and 
kill host immune cells and inhibit neutrophil recruitment and 
antimicrobial activity. Toxins such as α-hemolysin, Panton-
Valentine leukocidin (PVL), γ-hemolysin, leukocidin E/D, and 
PSM lyse the host cells, thus contributing to enhanced viru-
lence. It inhibits the neutrophil recruitment by secretion of 
chemotaxis inhibitory protein of staphylococci (CHIPS) which 
reduces the endothelial expression of intercellular adhesion 
molecule 1 (ICAM-1).28 Neutrophil killing of S aureus by reac-
tive oxygen species is overcome by factors such as S aureus 
golden pigment29 and superoxide dismutase.30

The success of S aureus strains is due to a unique combina-
tion of genetic factors that enable the bacteria to evade host 
immune system.31 Recent findings suggest that cytolytic PSM-
α, cytolysin α-toxin, and the global virulence regulator (agr) 
have demonstrated important roles in experimental skin infec-
tion models.32 It was reported that high WTA amounts might 
permit S aureus to amplify early responses to abscess formation, 
thereby creating a microenvironment that protects bacteria 
from host responses.31 Abscess formation and colony forming 
unit increase was observed when purified WTA along with 
bacterial inoculum of WTAlow producers was injected. Wall 
teichoic acid synthesis is one of the mechanisms that certain 
MRSA use to gain virulence and therefore could be an ideal 
target for development of novel anti-infective strategies. 
Therefore, understanding the host-pathogen interactions is 
important to identify targets for drug design, designing novel 
vaccines, and antibody-based therapies.

Clinical Significance of S aureus
Staphylococcus aureus has been a major human pathogen through-
out the history and is also the leading cause of bacterial infec-
tions worldwide. It is responsible from mild to life-threatening 
diseases and can potentially infect any tissue in the human body. 
Among the various S aureus infections, they can be broadly clas-
sified into (1) superficial skin and soft tissue infections (SSTIs); 
(2) systemic and life-threatening infections such as endocardi-
tis, osteomyelitis, pneumonia, meningitis, and bacteremia; and 
(3) toxinoses such as food poisoning, scalded skin syndrome, 
and TSS.33 Severity of infection in general is dependent on 
virulence of the particular strain, inoculum size, and immune 
status of the individual. Staphylococcal infections are typically 
characterized by abscess filled with pus and damaged leukocytes 
surrounded by necrotic tissue. Staphylococcus aureus infections 
are caused either by autoinfection, infection with own carrier 
strain, or by cross infection, infection due to strain transmitted 
from another individual. Staphylococcus aureus has gained resist-
ance to every antimicrobial therapy introduced so far. The mas-
sive consumption of antibiotics over the past 50 years has led to 
the rise in antibiotic resistance, and by far, the resistance against 
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the methicillin has gained utmost significance due to rising 
public health burden and mortality in comparison with methi-
cillin-susceptible strains.34 Although S aureus is an opportunis-
tic pathogen, there are certain risk factors that increase the 
likelihood of an infection. Ideally, opportunistic pathogens 
attack when the body defenses are weakened.35 Skin breakage 
and or immunosuppression along with nasal carriage are the 
major risk factors for S aureus infections.36 Nasal carriage varies 
between individuals and is one of the major risk factors for sub-
sequent S aureus infections.37 In a general population, the aver-
age carrier rate is 37% (19%-55%) with some subpopulations 
showing a higher percentage such as patients with diabetes mel-
litus, human immunodeficiency virus, dialysis patients, and 
patients with atopic dermatitis.37,38 Being a carrier is an impor-
tant predisposition to subsequent infections. Staphylococcus 
aureus is the cause of large percentage of blood stream (22%) 
and SSTIs (39%).39 Methicillin-resistant S aureus which  
was previously restricted to hospitals is increasingly seen  
in community. Worldwide, community-associated MRSA 
(CA-MRSA) is one of the major causes of SSTIs and sepsis 
cases. Two CA-MRSA clones USA300 and USA400 account 
for 60% to 75% of all S aureus infections in the community.40

S aureus Pathogenesis
Staphylococcus aureus is the most common cause of SSTIs, 
endocarditis, and second frequent cause of bacteremia. It is also 
a predominant cause of nosocomial-acquired infections such as 
intravenous catheter-associated infections, ventilator-associ-
ated pneumonia, postsurgical wound infections, invasive infec-
tions in neutropenic patients, and in patients undergoing solid 
organ or hematopoietic cell transplantations.41 Methicillin-
resistant S aureus kills ~19 000 hospitalized patients annually in 
United States, which is similar to combined deaths caused by 
AIDS, tuberculosis, and viral hepatitis.42 Staphylococcus aureus 
can evade host defenses and antimicrobials by growing and 
persisting on biofilms formed on surfaces of the hosts and 
prosthetic devices.43 Staphylococcus aureus bacteremia (SAB) 
may be complicated by endocarditis, metastatic infections, or 
sepsis.44 Endothelial cell is central to all pathogenic process 
and its activation leads to endovascular infections. Staphylococcus 
aureus binds by adhesin-receptor interactions and is phagocyt-
ized inside the endothelial cells. Intracellular environment pro-
tects S aureus from host defense mechanisms and antibiotics. It 
was also reported that intracellular milieu of endothelial cell 
favors formation of small colony variants (SCVs).45 These fac-
tors contribute to recurrent and persistent infections. 
Staphylococcus aureus escapes host defenses by invading and sur-
viving inside the endothelial cells in patients with endocardi-
tis.46 Staphylococcus aureus also escapes from host defenses by 
forming SCVs which survive inside host cells without causing 
damage, and they are capable of reverting to virulent forms 
resulting in recurrent infection.47,48

Superantigens cause life-threatening TSS that is character-
ized by rapid onset of high fever, shock, and multiorgan failure. 

Superantigens are potent T-cell mitogens that bypass the nor-
mal antigen presentation and bind directly to invariant regions 
of major histocompatibility complex class II molecules of anti-
gen-presenting cells. Major histocompatibility complex–bound 
superantigen attaches to the variable region of β chain receptor 
of T cells and causes massive expansion of clonal T cells  
(5%-10% in contrast to 0.01% for a normal processed antigen) 
leading to massive release of cytokines and chemokines by 
macrophages and T cells. The cytokines mediate the TSS  
leading to tissue damage.49 Toxic shock syndrome toxin 1 
contributes to 90% cases related to menstruation and is  
associated with the use of absorbent tampons. Other entero-
toxins contribute to 50% of TSS cases that are not related to 
menstruation.50

Increase in percentage of SAB is due to increase in catheter-
ization.51 Patients with fever after 72 hours of catheter removal 
have increased risk of complications.52 Incidence of endocardi-
tis is more in case of intravenous drug users, elderly patients, 
patients with prosthetic values, and hospitalized patients.44 
Staphylococcus aureus has a tendency to spread to other sites in 
the body such as bones, joints, kidneys, and lungs leading to 
metastatic infections.53,54 Pus collection at these sites serves as 
potential foci for persistent and recurrent infections.53 Factors 
such as advance age, immunosuppression, chemotherapy, and 
invasive procedures may aid in progress of bacteremia and local 
infections to sepsis. Staphylococcal sepsis presents with fever, 
hypotension, tachycardia, and tachypnea. Severe cases pro-
gresses to multiorgan dysfunction and death.55

Antibiotic Resistance Mechanisms
Antibiotic resistance is the resistance of an organism, usually a 
pathogen to an antimicrobial drug that was effective originally 
for treating infections. Antibiotic resistance is a serious, ever-
growing phenomenon and has emerged as a prominent global 
health concern in 21st century (http://en.wikipedia.org/wiki/
Antibiotic_resistance). Evolution of antibiotic-resistant strains 
is a natural phenomenon that occurs due to erroneous replica-
tion or due to exchange of resistant traits between them. Use 
and misuse of antibiotics also lead to selection of antibiotic-
resistant strains. Multidrug resistance is a common phenome-
non among many pathogens such as pneumonia, micrococci, 
and staphylococci. Staphylococcus aureus is of major concern due 
to the intrinsic virulence, its ability to cause diverse life-threat-
ening infections, and its ability to adapt to varied environmen-
tal conditions. Staphylococcus aureus isolates from blood cultures 
all over the world are increasingly resistant to multiple antibi-
otics.56 Mechanisms leading to resistance to some of the broad 
antibiotic classes are in the following sections and in Table 2.

Penicillin resistance

Penicillin was discovered in 1928 by Alexander Fleming and is 
lethal to all sensitive cells by deactivation of cell wall–associated 
penicillin-binding protein (PBP) transpeptidases. Inactivated 
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transpeptidases are key to cross-linking of peptidoglycan stands 
which lead to weakened cell wall and death by osmotic lysis.36 
Penicillin treatment dramatically improved the prognosis of 
patients with S aureus infections. However, penicillin-resistant 
strains were discovered as early as 1942 in both hospitals and com-
munity,57 and the incidence was ~80% by 1960 in hospitals and 
community. This pattern of resistance first appearing in hospitals 
and later spreading to community is now a common phenomenon 
observed with each new wave of antibiotic resistance. Resistance 
to penicillin is mediated by β-lactamase (blaZ), an extracellular 
enzyme which inactivates the β-lactam nucleus. blaZ gene is 
located on a transposable element on a plasmid with additional 
antibiotic-resistant genes (gentamicin and erythromycin). Spread 
of penicillin resistance occurs through spread of resistant strains.56

Methicillin resistance

To combat penicillin-resistant S aureus, a modified semisyn-
thetic penicillin known as methicillin or meticillin was intro-
duced which is immune to activity of β-lactamase. Soon after 
its introduction, reports of treatment failure with methicillin 
occurred by evolution of MRSA.58 Methicillin resistance is 
mediated by chromosomally located mecA gene which codes for 
an altered PBP called PBP2a.59 The mecA gene is part of a 
mobile genetic element (MGE) known as staphylococcal cas-
sette chromosome mec (SSCmec).60 PBP2a substitutes for other 
PBP in cross-linking of peptidoglycan chains because of its low 
affinity to β-lactams and therefore enables staphylococci sur-
vival even in high concentrations of these agents. The resist-
ance to methicillin confers resistance to other β-lactams such 
as cephalosporins.61 The therapeutic outcome of infection 
from an MRSA strain is more severe than from a methicillin-
sensitive S aureus (MSSA) strain not only due to enhanced 
virulence but also due to the fact that MRSA occurs in older 
hospitalized patients and also due to limited antimicrobial 
drugs available to treat MRSA. Similar to penicillin resistance, 
MRSA strains carry multiple antibiotic-resistant genes. 
Methicillin-resistant S aureus has progressed into an important 
pathogen of humans and is endemic in hospitals worldwide. 
Recently, it has emerged in community with increased severity 
as CA-MRSA. The high mortality associated with some of the 
CA-MRSA infections is of particular concern. High morbidity 
of infections associated with CA-MRSA may be due to the 
presence of enterotoxins and PVL toxins. Treatment of MRSA-
associated infections has become complicated owing to remark-
able ability of this organism to develop antibiotic resistance.

Quinolone resistance

Fluoroquinolones were first introduced to treat gram-negative 
bacterial infections in 1980s. Due to broad antibacterial spectrum 
against gram positives, they have been used to treat infection 
caused by pneumococci and staphylococci.56 Quinolone resist-
ance quickly emerged in strains with methicillin resistance due to 
high antibiotic selection pressure in hospital setting resulting in 

selection and spread of resistant strains. Fluoroquinolone resist-
ance is due to spontaneous chromosomal mutations in antibiotic 
targets, topoisomerase IV, or DNA gyrase or by the induction of 
multidrug efflux pump.62 When quinolones are used to treat 
infections caused by other bacterial pathogens, the resident S 
aureus strains are likely to get exposed to suboptimal concentra-
tions and are therefore at risk of colonization with resistant 
strains. Resistance to quinolones is achieved by stepwise acquisi-
tion of chromosomal mutations. ParC subunit mutations of 
topoisomerase IV are more critical for quinolone resistance in 
staphylococci as they are the primary drug targets.63 Recently, 
there have been reports of plasmid-mediated resistance mecha-
nisms, including the quinolone resistance proteins such Qnr, 
Aac(6′) Ib-cr, and QepA.64

Vancomycin resistance

Increased use of vancomycin to treat bacterial infections caused 
by MRSA, Clostridium difficile, and enterococci paid the way for 
emergence of vancomycin-resistant S aureus (VRSA). The first 
report of vancomycin-intermediate S aureus (VISA; minimum 
inhibitory concentration [MIC]: 8-16 µg/mL) came from Japan 
followed by more cases from many nations.65,66 It was followed 
by reports of appearance of vancomycin-resistant strains with 
total resistance (MIC: >128 µg/mL) and a different mechanism 
of dissemination. In VISA strains, resistance is mediated by 
chromosomally located vanA; in contrast, VRSA acquire vanA 
operon by conjugal transfer from Enterococcus faecalis which is a 
more efficient means of disseminating resistance genes. 
Resistance is conferred by increased cell wall biosynthesis which 
leads to abnormally thick walls. The thick peptidoglycan wall 
ensnares the vancomycin within cell wall, denying the access to 
its cytoplasmic target N-acetyl-muramic acid precursor.67,68

Antibiotics have been considered as innovative therapy  
for many decades. In most cases, after widespread dissemination 
and prescription, they have been abandoned when it is not eco-
nomically viable or it is not essential to pharmacopoeia. 
However, one interesting observation was that only 12.8% of 
invasive isolates were resistant to methicillin in some hospitals 
in 2015.69 Some workers have even reported strains that are sus-
ceptible to penicillin. (Chabot et al, 2015).70,71 It is essential that 
we maintain the full repertoire of all antibiotics as part “revival 
of old antibiotics” to face a particular therapeutic situation. 
Interestingly, C difficile infections have become more common 
hospital-associated infections than MRSA infections which 
have decreased dramatically.72 Some argue that the exaggera-
tion which presently exists regarding antimicrobial resistance is 
likely an evolutionary trend of our societies to panic to when 
faced with new phenomenon (Duborg et al, 2015).73

Clinical burden due to S aureus infections
Health care systems of many areas in the world including North 
America, Europe, Australia, and Asia have witnessed increasing 
levels of MRSA due to epidemics of highly transmissible clones. 
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However, the true extent of MRSA is not known correctly. In 
many countries, surveillance is mandatory only in severe forms 
of disease such as bacteremia. It is highly possible that the per-
centage of population presenting with actual disease is only the 
“tip of the iceberg” and that the actual clinical spectrum includes 
all possible individuals colonized with MRSA but may never 
develop any clinical disease but can be dangerous to others 
(Gould, 2005).74 One important factor often forgotten is the 
additional economic burden incurred on the patients and health 
care systems. With the increasing incidences of MSSA and 
MRSA infections, there is a gradual increase in rates of bactere-
mia and huge additional costs toward treatment. Added to this 
failure of treatment due to inappropriate antimicrobials or lack 
of efficacy of anti-MRSA drugs, excess toxicity of new antimi-
crobials over routine ones is likely to increase the morbidity and 
mortality. Financial burden of MRSA is very high given the wide 
spectrum of clinical infections. Direct costs include providing 
care to MRSA-infected patients, antibiotic treatment costs, 
indirect costs such as morbidity and diminished quality of life, 
and infrastructure costs of surveillance and control (Gould, 
2005). In one study, after reviewing subjects, extra costs for treat-
ment was estimated in the range of US $3000 to US $30 000 
depending on clinical infection and severity.75

Different classes of S aureus virulence factors
Staphylococcus aureus produces many potential virulence factors 
belonging to various classes categorized based on their function-
ality such as adherence, invasion and penetration, host evasion, 
enzymes, toxins, and surface proteins. Some of the major classes 
of virulence factors that contribute to S aureus infection capabili-
ties include (1) surface proteins (adhesins, clumping factors, IsdA, 
fibrinogen-binding, and fibronectin-binding proteins) that are 
involved in the adherence and colonization of host tissues; (2) 
invasins that promote bacterial spread in host tissues (leukocidins, 
kinases, and hyaluronidase); (3) surface factors which inhibit 
phagocytic engulfment (capsule); (4) biochemical properties that 
enhance their survival abilities inside the host (carotenoids and 
catalase); (5) immunological disguises (coagulase and protein A); 
(6) membrane-damaging toxins that lyse host cells (hemolysins, 
leukotoxin, and leukocidin); (7) secretory toxins that damage host 
tissues and promote symptoms of disease (enterotoxins A-G, 
TSST-1, exfoliative toxin); (8) inherent and acquired resistance to 
antimicrobial agents.16 α- and γ-hemolysins are encoded in the 
core genome and thus are produced by most strains. Toxins such 
as enterotoxin A, exfoliative toxins, TSST-1, and PVL are 
encoded on MGEs of bacteriophages and hence are present in 
only certain strains.76 Staphylococcus aureus is capable of sensing 
the surrounding environment and adjust the production of viru-
lence factors suitable for colonization, dissemination, and for 
causing infection.77 Successful infection of a strain into specific 
host is multifactorial and depends on the virulence factors secreted 
by the strain. However, there are certain correlations to the 
expression of particular virulence determinants which suggest 

their involvement in certain diseases. Expression of secretory tox-
ins occurs primarily during postexponential growth phase and is 
controlled by at least 3 global regulatory systems, namely, the 
accessory gene regulator (agr), the staphylococcal accessory regu-
lator (sar), and extracellular protein regulator (xpr).78 Evidence for 
staphylococcal matrix-binding proteins as virulence factors came 
from adherence assay studies involving defective mutants. 
Defective fibrinogen-binding and fibronectin-binding S aureus 
mutants have reduced virulence in rat endocarditis model.79 
Mutants deficient in collagen-binding protein has reduced viru-
lence in mouse septic arthritis model.80 The role of some of the 
important classes of virulence factors such as hemolysins, leuko-
cidins, and superantigens needs more discussion.

S aureus enzymes

The primary role of staphylococcal enzymes is to provide the 
nutrients for cell growth and division, and only certain enzymes 
play key role in the pathogenesis. Proteolytic enzymes of S 
aureus are involved in the inactivation of antimicrobial peptides 
and also for modulating and activating other virulence factors 
(zymogens) such as clumping factors, staphylococcal protein A 
(SpA), and fibrinogen-binding proteins. The major proteolytic 
enzymes consist of a metalloproteinase (aureolysin, Aur), a ser-
ine glutamyl endopeptidase (serine protease, SspA), and 2 
related cysteine proteinases referred to as staphopain (ScpA) 
and the cysteine protease (SspB).81 Hyaluronidase produced by 
most S aureus strains helps in degrading hyaluronic acid from 
connective tissue and promotes bacterial spread inside host tis-
sues. Coagulase protects bacteria from host defenses by form-
ing fibrin clot around the foci of infection.82

Hemolysins

Among the membrane-damaging toxins, α-hemolysin is the 
most potent pore-forming toxin, expressed as monomer by 
almost all the clinical isolates of S aureus. α-Hemolysin mono-
mers oligomerize to form a functional heptameric toxin with a 
central pore through which cell contents are leaked. There is a 
direct correlation between the levels of α-hemolysin expression 
and the virulence of a particular strain suggesting its prominent 
role in pathogenesis.83 Platelets and monocytes are the most 
susceptible cells to the action of α-hemolysin, and the method 
of cells lysis is likely by osmotic lysis.16 β-toxin is a sphingomy-
elinase which damages membranes rich in lipids, and most of 
the human isolates do not express this toxin. It is encoded by a 
lysogenic bacteriophage.84

Leukocidins

The PVL and γ-hemolysins are the staphylococcal bicompo-
nent toxins with leukocytotoxic activity requiring the action of 
2 components, the S and the F subunits. Leukocidins are asso-
ciated with a total of 5 genes: γ-hemolysins are encoded by 3 
ORFs, hlgA, hlgB, and hlgC, and PVL is encoded by 2 
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cotranscribed ORFs, the lukS-PV and lukF-PV. Among these, 
hlgA, hlgC, and lukS-PV function as S component, whereas 
hlgB and lukF-PV function as F component. The γ-hemolysin 
is present in almost 99% of S aureus strains, and hence, its 
involvement in pathogenesis is difficult to ascertain. In con-
trast, PVL toxin has increasingly been associated not only with 
community-acquired primary SSTIs but also with severe 
necrotizing pneumonia in young and healthy individuals.85

Phenol-soluble modulins

Phenol-soluble modulins are recently discovered amphipathic, 
α-helical peptides secreted by members of staphylococci. 
Phenol-soluble modulins are key virulence determinants in 
highly virulent S aureus strains. Phenol-soluble modulin α pep-
tides of S aureus lyse neutrophils after they are phagocytized. 
Phenol-soluble modulins are also key factors for biofilm for-
mation and their dissemination in biofilm-associated infec-
tions. The surfactant properties of PSMs facilitate their growth 
on epithelial surfaces. Phenol-soluble modulin can be grouped 
in to smaller (~20-25 amino acids [aa]) α-type PSMs and 
longer (~44 aa) β-type PSMs.86

Superantigens

Toxic shock syndrome is a rare condition associated with 
menstruating women using tampons and is characterized by 
rapid onset of fever and multiorgan failure. This condition is 
caused by TSST-1 belonging to a class of staphylococcal supe-
rantigens which causes massive activation of T lymphocytes.87 
Gene encoding TSST-1 is located on a less transmissible 
pathogenic island designated as SapI 1, and hence, tst-1 is 
present in only few restricted clones.88 Staphylococcal entero-
toxins (SEs) belong to a group of structurally related superan-
tigen family of toxins whose presence is correlated with 
increased virulence in nosocomial infections. Staphylococcal 
enterotoxin A has been associated with more severe infections 
such as staphylococcal food poisoning (SFP) and septic shock 
in comparison with other enterotoxins. Most of the enterotox-
ins are carried by plasmids, phages, pathogenicity islands, or 
MGEs.89 Exfoliative toxins (ETA, ETB, ETC, and ETD) 
cause exfoliation of skin epidermis followed by secondary 
infections. ETA and ETB are the important isoforms in 
humans predominantly affecting neonates and are associated 
with staphylococcal bullous impetigo and staphylococcal 
scalded skin syndrome. Prevalence of exfoliative toxins is not 
so frequent in S aureus.87

Staphylococcal food poisoning
Staphylococcus aureus is one of the most frequent pathogens 
responsible for food-borne outbreaks worldwide. It causes SFP 
after ingestion of foods containing preformed heat-stable 
enterotoxins. Contamination in SFP cases occurs commonly 
due to improper or extensive manual handling of foods rich in 
proteins combined with inadequate heating and improper 

storage.91 Foods commonly contaminated with SEs are meat 
and meat products, poultry and egg products, milk and milk 
products, and confectionary products such cream-filled pastries 
and cakes.92 Staphylococcal food poisoning was the fourth 
most frequent cause of food-borne illness in European Union 
in 2008 (EFSA, 2010).89 Although S aureus cells can be killed 
by heating, the enterotoxins are very stable even after rigorous 
heating. Staphylococcal enterotoxins are resistant to proteases 
such as pepsin, trypsin, papain, and rennin and thus they are 
active even after ingestion in the intestine. At present, there are 
23 enterotoxins or enterotoxin-like genes.93 Staphylococcal 
enterotoxins are globular, single-polypeptide proteins which 
are related structurally with molecular weights ranging from 22 
to 29 kDa. Staphylococcal food poisoning is associated with 
rapid onset of symptoms within 2 to 8 hours from the time of 
ingestion of contaminated food. Symptoms typically include 
nausea, vomiting, abdominal cramping, and occasionally with 
diarrhea and fever.94 Severity of SFP is dependent on amount 
of SE ingested and the health status of the individual. In most 
cases, the symptoms subside within 24 to 48 hours; however, in 
case of infants and elderly people, it requires hospitalization.95 
In cases of severe dehydration, it requires supplementation 
with intravenous fluid administration. Staphylococcal entero-
toxin A is the most frequently encountered SE among SFP 
cases.96 Enterotoxin A (sea) is very different from all other SE 
genes such as enterotoxin B (seb), enterotoxin C (sec), and 
enterotoxin D (sed) because it is carried by polymorphic family 
of lysogenic or temperate phages.97

Detection methods for S aureus and its toxins
Pathogenesis of S aureus diseases is a multifactorial phenome-
non. However, there is some relationship with the presence of 
certain virulence factors to a particular disease. Although S aureus 
produces various toxins and enzymes, there is direct correlation 
between virulence of a particular strain with the amount of 
α-hemolysin secreted. The presence of this bacterium or its 
enterotoxins in processed foods is a general indication of poor 
sanitation. Mere isolation of S aureus–viable cells may not be suf-
ficient to cause food poisoning. It should have the capacity to 
secrete enterotoxins (SEs). Staphylococcal enterotoxins also play 
an important role in food poisoning and TSS cases. Staphylococcal 
enterotoxins are globular, single polypeptides which constitute a 
family of related proteins with similarities at structural and aa 
levels. Although heat treatment used commonly in food process-
ing industries destroys S aureus vegetative cells, the heat-stable 
enterotoxins secreted by this organism are resistant to high tem-
peratures for extended periods. Food intoxication caused by SEs 
is referred to as SFP and is one of the common forms of food-
borne illnesses reported worldwide. Staphylococcal food poison-
ing is characterized by nausea, vomiting, and abdominal cramps. 
Staphylococcal enterotoxins are also responsible for autoimmune 
responses due to their superantigenic nature resulting in TSS. 
Staphylococcal enterotoxin A is one of the most commonly 
encountered enterotoxins among SFP cases.96 Staphylococcal 
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enterotoxin B is another enterotoxin responsible for food poi-
soning and is also a potent T-cell mitogen and hence is listed as 
a category B bioweapon agent.98 Concentrations of 0.5 to 1 ng/
mL of SEs are sufficient to induce food poisoning. Therefore, 
detection and quantification of SEs from food is a more appro-
priate approach than detection of S aureus viable cells from foods. 
Laboratory methods for identification of S aureus from food 
sample, wound, or blood culture require isolation and biochemi-
cal test procedures which require considerable time and resources. 
Several methods have been reported for rapid identification so 
that most appropriate therapeutic interventions can be under-
taken. Commercially, many kits are available for the enumeration 
of S aureus from food and environmental samples and also for 
detection of SEs from isolates as well as food samples. Polymerase 
chain reaction has revolutionized several areas of molecular biol-
ogy particularly in the field of molecular diagnostics of infectious 
diseases. Polymerase chain reaction methods for S aureus identi-
fication includes PCRs for species-specific genes such as 16S 
RNA,99 thermonuclease (nuc),100 and acriflavine resistance101 
gene. Molecular methods play an important role in detection 
and differentiation of pathogens. Numerous techniques have 
been reported for detection of SEs such as antibody,4,5 PCR,6,7 
RT-PCRs,8 and aptamer-based9–11 methods. Many other sensi-
tive methods such as immuno-PCRs,12 mass spectrometric anal-
ysis,13 and biosensor techniques14,15 are also reported. Although 
these methods are sensitive, they are relatively expensive and 
thus cannot be used in routine testing of multiple samples.

Among the immunological assays, Western blots, radio immu-
noassay, enzyme-linked immunosorbent assays (ELISAs), and 
reversed passive latex agglutination assay have been described for 
detection and quantification of exotoxins such as α-hemolysin, 
enterotoxins, and PVL toxins. Immunoassays could be used to 
detect SEs directly from culture or from contaminated food mate-
rial. There are many commercially available kits such as VIDAS, 
TRANSIA, TECRA, and RIDASCREEN for the detection of 
SEs available commonly in sandwich ELISA formats (Table 1). 
Many in-house assays4,5,96 have also been reported for detection of 
SEs. Among the various antibody-based formats reported so far, 
immuno-PCR is a sensitive diagnostic technique which combines 
the specificity of ELISA with the sensitivity of PCR and it offers 
the advantages of high sensitivity and easy automation for detec-
tion multiple analytes by differential capture of antigens. Immuno-
PCR has established itself as a potential diagnostic tool and has 
been applied for the detection of various bacterial102 and viral 
pathogens,103 bacterial toxins,104 and mycotoxins.105 Most of the 
immunoassays employ antibodies from mammalian sources such 
as rabbit, mice, sheep, and goat. The major hindrance with the 
specificity of these immunoassays is the presence of a 42-kDa 
SpA secreted by all S aureus strains. Staphylococcal protein A is an 
immunoglobulin-binding protein present on cell wall and is also 
secreted into the medium during exponential growth phase. 
Staphylococcal protein A causes false positives in antibody-based 
tests involving S aureus antigens due to its ability to bind various 
classes and subclasses of immunoglobulins. Staphylococcal protein 

A mediates this activity by binding to Fc region of most immuno-
globulin classes and to F(ab)2 region of certain immunoglobulin 
classes. A variety of methods have been proposed to overcome 
SpA interference in immunoassays. However, there are limitations 
with these assays and are not completely free from the effect of 
protein A.

In recent times, there is an increasing use of antibodies 
from avian (immunoglobulin Y [IgY]) sources, especially 
from chickens, because raising antibodies from chickens are 
more convenient, hygienic, inexpensive, and isolation does 
not require invasive methods unlike from mammalian sources. 
Egg yolks are abundant sources of IgY, and single yolk can 
yield IgY in the range of 10 to 20 mg/mL. There are several 
advantages with IgY and, most importantly, IgY does not 
have any affinity to immunoglobulin-binding proteins such 
as protein A, protein G, and protein L. Chicken antibodies 
were used in many assays where there is a marked effect of 
SpA on immunoassays due to its binding ability to mamma-
lian immunoglobulins.2,3,129

Next-generation sequencing (NGS) offers potential solu-
tion to challenges in detection of infectious diseases. Next-
generation sequencing offers huge potential in sequencing  
all the nucleic acids present in a sample allowing limitless  
multiplex interrogations, thereby providing higher levels of 
diagnostic interpretation through complete characterization  
of genomic content.130 However, an unbiased NGS requires a 
substantial amount of sequence depth to separate low-preva-
lence pathogens from overwhelming host nucleic acids. 
Targeted NGS such as using pathogen-specific signatures for 
amplification could be a possible mitigation strategy. Next-
generation sequencing would offer immense aid in diagnosing 
serious S aureus infections such as bacteremia and pneumonia 
and especially in low-income countries.

Treatment, therapies, and prevention
Most of the S aureus isolated from hospitals and community 
are resistant to multiple antibiotics which therefore makes the 
treatment of S aureus infections complicated. Treatment of 
infections by multidrug-resistant S aureus is possible only with 
last line of antibiotics such as vancomycin and linezolid. 
Additional nonspecific mechanisms such as biofilm formation 
on medical devices also aid in the resistance to antimicrobial 
agents. At present, little interest is being shown for the devel-
opment of novel antibiotics due to the high cost, limited suc-
cess rate, and possible emergence of antibiotic resistance. 
Therefore, researchers have intensified their interest toward the 
development of vaccines and therapeutic antibodies because 
they can be raised easily and inexpensively in comparison with 
development of novel antibiotics. Moreover, vaccination might 
be beneficial to people at high risk such as dialysis patients, 
patients at risk of endocarditis, patients undergoing surgery, 
sports persons, prison inmates, and health care workers who are 
the potential sources of dissemination of hospital-associated 
MRSA in hospitals and to patients. However, in contrast to 
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Table 1.  Commercial test kits available for detection of Staphylococcus aureus and its enterotoxins.

S. No. Test kit Manufacturer Foods covered Features

Conventional and rapid methods for the enumeration of S aureus

1. BBL CHROMagar Staph 
aureus agar medium106

BD Diagnostics Cooked roast beef, smoked 
salmon, shell eggs, and 
certain uncooked foods such 
as dairy products, salads, 
and sandwiches

Results available within 24 h, does not require 
supplements, easy to read and interpret, and 
more sensitive

2. RAPID’Staph medium107 Bio-Rad laboratories Food products intended for 
human and animal 
consumption; environmental 
samples

Results in 24 h after 24 h enrichment, easy to 
read, and highly selective

3. TECRA Staphylococcus 
aureus VIA ELISA108

3M Microbiology Not stated Food supplements such as fish oil, green tea, 
alfalfa, brewer’s yeast, mustard seeds, and 
lecithin concentrate

4. 3M Petrifilm Staph 
Express Count Plates 
(thin-film medium)109

3M Microbiology Selected dairy foods Easy inoculation and interpretation; fast, 
accurate results in as little as 22 h; saves 
incubator space; and easy to enumerate with 
built-in grid

5. Baird-Parker agar110 Numerous vendors Food, environmental 
samples, and clinical 
specimens

Requires 46 to 48 h for result interpretation, 
can differentiate coagulase-positive and 
coagulase-negative staphylococci, 
staphylococci

6. Rabbit plasma fibrinogen 
agar111

Oxoid N/A Inclusion of rabbit plasma for better coagulase 
activity and lower concentration of potassium 
tellurite favor the growth of all S aureus

7. BBL Staphyloslide Latex 
Test Kit112

BD Diagnostics N/A Differentiates staphylococci with coagulase 
and protein A from other staphylococci, results 
in as few as 20 s

8. Staphytect Plus113 Oxoid N/A Latex slide agglutination test for differentiation 
of S aureus by detection of clumping factor, 
protein A, and certain polysaccharides from 
other staphylococci

9. Microgen Staph latex 
test115

Microgen Food, clinical, and 
environmental samples after 
plating on selective agar

Sensitive and specific latex agglutination for 
the identification of S aureus offering rapid and 
accurate identification of S aureus in 2 min

10. Phadebact Staph Aureus 
test116

Bactus AB, Sweden N/A Intended for the detection of coagulase 
(clumping factor) and/or protein A associated 
with S aureus obtained from primary cultures. 
Test colonies should be fresh preferably grown 
on blood agar plates

11. Staphylase Test117 Oxoid N/A Detects the presence of clumping factor 
through clumping of fibrinogen-sensitized 
sheep red blood cells

12. Pastorex Staph Plus118 Bio-Rad N/A Rapid agglutination test for the simultaneous 
detection of the fibrinogen affinity antigen 
(clumping factor), protein A, and the capsular 
polysaccharides of S aureus

13. Bacto Staph (Berke and 
Tilton, 1986)114

Difco Laboratories A suspension of yellow latex particles 
sensitized with specific plasma proteins

14. Staphaurex and 
Staphaurex Plus119,120

Remel N/A Staphaurex Rapid latex test for the detection of 
clumping factor and protein A associated with 
S aureus
Staphaurex Plus—yellow latex particles coated 
with human fibrinogen for detection of 
clumping factor coated with specific IgG for 
detection of protein A and surface antigens

 (Continued)
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S. No. Test kit Manufacturer Foods covered Features

Genetic methods for the detection of S aureus

1. BAX System (Real-Time 
PCR Assay for 
Staphylococcus 
aureus)121

DuPont Qualicon, 
Inc.

Ground beef, soy protein 
isolate, and soy-based and 
milk-based powdered infant 
formula

Real-time PCR assay for reliable genetic 
detection of S aureus the day after sampling. 
Requires less than 90 min of real-time 
processing, detects 1 cfu/g in powdered infant 
formula, and detects threshold of 10 cfu in line 
with meat industry standards

2. GENE-TRAK (based on 
DNA hybridization)122

Neogen Isolates Employs S aureus–specific DNA probes and a 
colorimetric detection system for the detection 
of S aureus in food samples following broth 
culture enrichment

Rapid test kits for detection of staphylococcal enterotoxins

1. VIDAS Staph enterotoxin 
(SET) Immunoassay123

BioMérieux Dairy products, meat, and 
seafood, etc

N/A

2. VIDAS Staph enterotoxin 
II (SET2) 
Immunoassay124

BioMérieux Milk and milk products, 
canned foods, dehydrated 
foods, meat, seafood, and 
shellfish, etc

Detects SEA-SEE, total run time of 80 min and 
the results are obtained on the same day

3. TECRA Staphylococcal 
Enterotoxin VIA125

3M Microbiology Canned mushrooms, nonfat 
dry milk, canned lobster 
bisque, beef and pasta, 
cooked chicken, and cheese

Fast, reliably detects SEA, SEB, SEC1, SEC2, 
SEC3, SED, and SEE from food and food-
related products and enrichment cultures with 
a sensitivity of 1 ng/mL

4. RIDASCREEN 
Immunoassay125,151

R-Biopharm, 
Darmstadt, Germany

Various including cheese Sandwich enzyme immunoassay for the 
identification of SETs A, B, C, D, E in fluid and 
solid foods as well as in bacterial cultures

5. Transia (Transiatube and 
TransiaPlate) 
Immunoaffinity, ELISA126

Diffchamb, Lyon, 
France

Milk and dairy products  

6. SET-RPLA127 Oxoid A wide variety of food and 
food products such as dairy, 
meat, and meat products

Used to detect staphylococcal enterotoxins in 
a wide variety of foods and to give a 
semiquantitative result. Sensitivity of the test is 
1 ng/mL of extract

7. SET-RPLA “SEIKEN” 
RPLA128

Denka Seiken RPLA test employing separately sensitized 
with highly specific antibodies for SEs A, B, C, 
and D. Results are semiquantitative

Abbreviations: IgG, immunoglobulin G; N/A, not applicable; PCR, polymerase chain reaction; RPLA, reversed passive latex agglutination assay; SEs, staphylococcal 
enterotoxins; SEA, staphylococcal enterotoxin A; SEB, staphylococcal enterotoxin B; SEE, staphylococcal enterotoxin E; SETs, staphylococcal enterotoxins.
Table adapted and modified from Hudson.126

Table 1. (Continued)

other bacterial pathogens, there is no vaccine available yet that 
stimulates active immunity against staphylococcal infections in 
humans. This may be due to the fact that S aureus is a perma-
nent or transient colonizer in part of the population and it has 
developed mechanisms to thwart human immune mechanisms 
such as immunologic disguises, toxins that lyse white blood 
cells, avoiding complement deposition, dysregulated immune 
hyperactivation, and evasion of phagocytic killing.41,131,132 In 
addition, hyperimmune serum or monoclonal antibodies could 
be given to patients undergoing surgery as a form of passive 
immunization. There is evidence that preexisting antibodies 
against TSST-1 protects people from TSST-1–induced  
disease.133 Therefore, this research is aimed at increasing  
the preexisting antibody titers to some of the key virulence 
determinants to reduce the severity of infection. Several active 

and passive immunization strategies are being undertaken and 
are mainly targeted at molecules involved in pathogenesis.

The selection of antigen for Merck V710 vaccine is based on 
study involving screening S aureus peptide libraries with human 
serum. The surface protein IsdB which plays role in heme 
acquisition and iron uptake was selected as antigen. This vac-
cine was found highly immunogenic and was protective against 
diverse strains in animal infection models.134,135 Due to promis-
ing results with capsular polysaccharides as vaccine targets with 
Haemophilus influenza and Streptococcus pneumoniae, Nabi has 
developed a StaphVax vaccine based on type 5 and 8–based cap-
sular polysaccharides bound to pseudomonal exotoxoid A as 
carrier. Passive immunization studies were promising with 
mouse and rat infection models of bacteremia. However,  
in phase 3 clinical trials involving hemodialysis, patient’s 
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protection was seen only until 40 weeks. Decrease in protection 
was correlated with decrease in S aureus antibodies. Therefore, 
the company has stopped further development of StaphVax 
vaccine. However, StaphVax could be administered to patients 
who need protection for shorter duration or people visiting hos-
pitals for short duration such as surgery. Despite the presence of 
impressive opsonophagocytic anticapsular antibodies, they 
failed to protect patients for longer durations. Failure of capsu-
lar polysaccharides as vaccine candidates in S aureus in contrast 
to success in H influenza is due to the fact that role of capsular 
polysaccharide in S aureus pathogenesis is very limited.136,137

α-Hemolysin is a potent cytolytic toxin encoded on core 
genome and is present in most S aureus strains which makes it an 
ideal vaccine target. Earlier studies involving α-toxin and whole 
killed S aureus did not show efficacy in preventing infection in 
dialysis patients.138 However, a nontoxic, nonhemolytic variant 
of α-hemolysin H35L has proven to be valuable for vaccine 
development.139 Role of PVL as a vaccine candidate is highly 
controversial as its role in contribution to pathogenesis. 

Panton-Valentine leukocidin had no protective effect against 
CA-MRSA strain USA300 clone in mouse lung infection 
model; however, α-hemolysin showed strong protective effect.140 
After failure of StaphVax, Nabi has further added 3 antigens in 
its vaccine, namely, WTA, nontoxic α-hemolysin variant, and 
PVL. This vaccine is now called PentaStaph owing to the 5 anti-
gen components in the formulation. Furthermore, a variety of 
targets such as surface proteins and adhesins have been evaluated 
as vaccine candidates in different studies. These active immuni-
zation strategies have been summarized in Table 2.

Due to the limited success with vaccines strategies against S 
aureus, there has been shift toward passive immunotherapy 
approaches. Most of these strategies are aimed at neutralizing 
the virulence determinants in particular toxins and surface com-
ponents (Table 3). Because S aureus has a diverse array of viru-
lence factors, passive immunotherapy approaches should be 
aimed at several different virulence determinants. A multivalent 
antigen offers more promise than distinct individual antigens in 
that they might induce complementary and nonoverlapping 

Table 2.  List of active immunization approaches against Staphylococcus aureus.

S. No. Target antigen Name Company Status

Single targets

1. IsdB134 V710 Merck Phase 2

2. Capsular polysaccharides types 5 and 8141 StaphVax Nabi Phase III failed

3. α-toxin (H35L)139 Preclinical (reduced lethality in 
mouse lung infection model)

4. Panton-Valentine leukocidin (PVL)142 Preclinical (controversial results 
on efficacy in mouse lung 
infection)

5. PNAG (PIA)143 Preclinical (protection in murine 
bacteremia)

6. Enterotoxin B (SEB)144 Integrated 
BioTherapeutics

Phase 1 (protects monkeys from 
infection by SEB-positive strain). 
As antibiological biowarfare

7. Enterotoxins A and C1, TSST Integrated 
BioTherapeutics

Preclinical

Composite targets

8. Capsular polysaccharide types 5 and 8, nontoxic 
derivatives of α-toxin and PVL, wall teichoic acids137

PentaStaph Nabi Preclinical

9. ClfA/MntC/CP5/CP8 conjugated to CRM197145 SA4Ag Pfizer Phase 3 failed

10. CP5/CP8/TT/AT/ClfA plus AS03B146 GSK2392103A GSK Phase 1 failed

11. Capsular polysaccharide types 5 and 8, ClfA Wyeth/Pfizer Phase 1

12. Multicomponent surface proteins (SdrE, IsdA, SdrD, 
IsdB)

Novartis Preclinical (protects from lethality 
in mouse infection model)

13. Iron-regulated proteins147 Syntiron Preclinical

14. Candidal adhesion protein fragment Als3p152 NDV3 NovaDigm Phase 1 failed

15. Glycosylated CP5, CP8, and HlaH35L132 Glycovaxin GSK Preclinical failed

Table adapted and modified from Otto.132
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immune mechanisms of protection across diverse human 
populations.

It is now understood that the primary immune mechanisms 
required for protection against S aureus infections include phago-
cytes and T lymphocytes (Th17 cells).41 In addition, antigen 
selection should be such that they induce strong humoral as well 
as T-cell immune responses that react to broadest possible S 
aureus strains. In this regard, multivalent antigens will be more 
likely to induce both humoral and T-cell immune responses and 
might give protection to broad array of S aureus strains. Among 
T cells, Th17 cells are important in vaccine-mediated protection 
against S aureus in mouse model and they act by recruitment of 

neutrophils to the site infection and promoting their killing.148 
Invasive infections of S aureus result in generation of memory 
immune response as seen by high antibody titers postinfection. 
However, whether this memory immune response will protect 
against recurrent infection is not well established.149,150 In vari-
ous studies involving disparate populations, it was observed that 
10% to 30% of cutaneous abscesses resulted in recurrence.151,152 
Therefore, natural infection with S aureus does not result in a 
protective immune memory response which leads to further 
recurrence. Possible reasons for failure with traditional vaccines 
may be due to immune evasion mechanisms of S aureus, for 
example, the killing of phagocytes by leukolytic toxins. Lessons 

Table 3.  List of passive immunotherapy approaches against Staphyococcus aureus.

S. No. Target Name Company Status Remarks

Single target

1. Capsular 
polysaccharides types 5 
and 8

Altastaph Nabi Phase 2 failed Polyclonal serum from 
individuals treated with 
StaphVax

2. ClfA (surface protein) Aurexis Inhibitex Phase 2 failed mAb

3. ABC transporter Aurograb NeuTec/Novartis Development stopped Ab fragment

4. Lipoteichoic acid Pagibaximab Biosynexus Phase 2 finished Humanized mouse chimeric 
Ab

5. α-toxin (nontoxic 
derivative H35L)

Preclinical (protective in 
mouse lung infection)

Polyclonal Ab, mAb

6. PVL Preclinical (no protection 
in mouse lung infection)

Polyclonal

7. Enterotoxin B (SEB)152 Preclinical (protects 
monkeys from infection by 
SEB-positive strain)

Possible antibiological 
warfare drug

8. Agr AIP 4 Preclinical (protects mice 
from abscess formation, 
death)

Specific for S aureus Agr 
subgroup 4

9. Protein A Elusys/Pfizer Heteropolymeric Ab against 
protein A and human CR1

10. α-toxin AR-301 (Salvecin) Aridis Phase 2 failed Monoclonal Ab adjunctive 
therapy to standard of care 
antibiotics in hospital-
acquired pneumonia (HAP) 
and ventilator-associated 
pneumonia

11. α-toxin MEDI4893 MedImmune Phase 2 failed Dose-ranging efficacy and 
safety in mechanically 
ventilated adults

Composite targets

10. ClfA, SdrG Veronate Inhibitex Phase 3 failed Serum from donors with high 
titers against ClfA and SdrG

11 Anti-WTA THIOMAB 
covalently linked to 
rifalogue by cathepsin 
cleavable linker

AAC Preclinical Tested in mice model with 
better protection than 
vancomycin

Abbreviations: PVL, Panton-Valentine leukocidin; WTA, wall teichoic acid.
Table adapted and modified from Otto.132
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from clinical and preclinical research reports suggest to the use 
of surface proteins and toxins with proven role in pathogenesis as 
promising targets for vaccine development. The use of therapeu-
tic antibodies represents a novel, adjunctive, or alternative strat-
egy to specifically target toxins with a demonstrated role in  
S aureus virulence.

Conclusions
Despite numerous efforts in developing a vaccine for combat-
ting S aureus, no vaccine was successful in providing a mem-
ory immune response to previous infection. Lessons from 
clinical and preclinical research reports suggest to the use of 
surface proteins and toxins with proven role in pathogenesis 
as promising targets for vaccine development. The use of 
therapeutic antibodies represents a novel, adjunctive, or alter-
native strategy to specifically target toxins with a demon-
strated role in S aureus virulence. The development of novel 
antibody-based therapies might offer hope in treatment of 
severe and invasive infections as an adjunctive to antibiotic 
treatment. The antibodies should target and neutralize viru-
lence factors, immune evasion molecules, and surface factors 
to target them for destruction.
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