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Abstract
Scientific and consumer interest in healthy foods (also known as functional foods), nutraceuticals and cosmeceuticals has 
increased in the recent years, leading to an increased presence of these products in the market. However, the regulations 
across different countries that define the type of claims that may be made, and the degree of evidence required to support 
these claims, are rather inconsistent. Moreover, there is also controversy on the effectiveness and biological mode of action 
of many of these products, which should undergo an exhaustive approval process to guarantee the consumer rights. Com-
putational approaches constitute invaluable tools to facilitate the discovery of bioactive molecules and provide biological 
plausibility on the mode of action of these products. Indeed, methodologies like QSAR, docking or molecular dynamics 
have been used in drug discovery protocols for decades and can now aid in the discovery of bioactive food components. 
Thanks to these approaches, it is possible to search for new functions in food constituents, which may be part of our daily 
diet, and help to prevent disorders like diabetes, hypercholesterolemia or obesity. In the present manuscript, computational 
studies applied to this field are reviewed to illustrate the potential of these approaches to guide the first screening steps and 
the mechanistic studies of nutraceutical, cosmeceutical and functional foods.
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Introduction

In the last decade, the number of research papers on nutra-
ceuticals, cosmeceuticals and functional foods has grown 
exponentially, with more than 11,000 manuscripts com-
piled in the Pubmed repository [1] during this time interval. 
Despite this increase, there is still a lot of controversy with 
these terms and their corresponding definitions.
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Stephen DeFelice coined the term “nutraceutical” in 
the 1980s, as a combination of the words “nutrient” and 
“pharmaceutical”, which he defined as “a food (or part of 
a food) that provides medical or health benefits, including 
the prevention and/or treatment of a disease” [2]. Although 
this definition has evolved through the years, there is still 
no clear consensus over it, and a standard definition for this 
term is yet to be adopted. In general, the categorization and 
regulation of these products depends on their intended use 
and may vary across countries and regions. [3]. While the 
Food and Drug Administration (FDA) defines nutraceutical 
as “any substance that is a food or a part of a food and is 
able to induce medical and health benefits, including the 
prevention and treatment of disease” [4], there is no offi-
cial definition for this term in the EU to date; nutraceutical 
claims submitted to the European Food Safety Authority 
(EFSA) are evaluated based on the Regulation of Nutritional 
and Health Claims (Regulation (EC) No 1924/2006) for pos-
sible authorization. However, this regulation does not cover 
medicinal applications in the EU [5]. A “functional food”, 
is defined by the FDA as a “nutrient consumed as part of a 
normal diet, delivering one or more active ingredients (that 
have physiological effects and may enhance health) within 
the food matrix” [4]. As is the case for nutraceuticals, this 
term has no legal definition in the EU; instead, one can refer 
to healthy foods or food constituents when health claims 
have been approved according to the EU Regulation [6].

The concept of cosmeceutical arises by merging the 
words “cosmetic” and “pharmaceutical”. Albert Kligman, 
defined a cosmeceutical as a “cosmetic product that exerts 
a pharmaceutical therapeutic benefit but not necessarily a 
biologic therapeutic benefit” [7]. Just as in the case of the 

nutraceutical concept, there is neither consensus on the defi-
nition of cosmeceuticals nor on the regulation of these kind 
of products.

Even though there is no consensus on the way to regu-
late and define these terms globally, they are widely used in 
labels to attract customers to commercialized products. The 
global nutraceutical market was worth USD 382.52 billion 
in 2020 and is expected to reach USD 722.49 billion by 
2025 [8], with the United States as the leading country in 
nutraceutical production, followed by Europe, Asia, Latin 
America, Middle East and Africa [3]. Also, this market is 
expected to grow following the outbreak of the COVID-19, 
given potential benefits of these products on the immune 
system [9]. Moreover, the functional food market reached 
a worth of USD 177.41 billion and is projected to reach 
USD 275.77 billion by 2025 [10]. The cosmeceutical market 
peaked at USD 55.4 billion in 2020 and is projected to reach 
USD 70.0 billion by 2025 [11]. The main reason for the 
growth of the nutraceutical market worldwide is the trend to 
adopt healthier dietary habits by the population nowadays. 
Consumers skeptical or unsatisfied with the existent thera-
peutic approaches are seeking complementary products or 
alternatives that could help to prevent and/or improve the 
treatment of diseases [12].

In the last ten years, the number of patents of these prod-
ucts has increased with the growth of the market. Figure 1 
illustrates the trend in the number of entries indexed at 
Google Patents [13] during the period 2010–2019 world-
wide. As it may be observed, the number of filed patents has 
grown to approximately 20,000 patents per year in the last 
decade. A drop in this positive trend was observed in 2019, 
probably due to the drop in fillings by China-based inventors 

Fig. 1  Number of patents of 
every term by year on Google 
Patents
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amidst an overall shift in regulations there. Even then, an 
acceptable number of patents was filled [14].

Several studies have demonstrated the global health 
benefit of consuming nutraceuticals, cosmeceuticals and 
functional foods, further stimulating research in this field to 
improve the quality of life of the society by promoting health 
and preventing disease. The main targets of nutraceuticals 
and functional foods are the antioxidant gastro-intestinal, 
reproductive and renal health-effects as well as the reduction 
of the risk of cardiovascular diseases, oral diseases, ostheo-
arthritis, diabetes or obesity [15, 16]. Furthermore, cosme-
ceuticals are intended not only to prevent the signs of aging, 
but also attenuate problems such as skin blemishes [17].

Nutraceuticals, cosmeceuticals and functional food have 
been studied in recent years, although the main challenge for 
this field continues to lie in the difficulty to substantiate with 
clinical evidences the efficacy of these compounds as well 
as to determine their mechanisms of action [3].

Computational techniques have been widely applied in 
the fields of chemistry and biology, particularly in the con-
text of drug discovery applications in the pharmaceutical 
industry [18]. Many of the principles and tools employed 
in drug discovery may also be extrapolated to nutraceuti-
cal, cosmeceutical and functional food research, particu-
larly in the identification of complementary leads and tar-
gets using molecular modelling, quantitative or qualitative 
“structure–activity” relationships ((Q)SAR), and pattern 
recognition methods [19]. Other possible applications of 
chemoinformatics and bioinformatics tools in the field of 
nutraceuticals, cosmeceutical and functional foods include 
the prediction of toxicity, activity and the elucidation of 
the corresponding mechanisms of action. The goal of this 
paper is to provide a comprehensive review on the use of 
computational techniques in the context of nutraceuticals, 
cosmeceutical and functional foods. Moreover, a prospec-
tive analysis of the impact of these techniques in this field 
will be provided.

Computational Methods

Chemical databases

Chemical databases have progressed over the past years from 
being simple repositories of chemicals, to playing an impor-
tant role in chemoinformatic and bioinformatic applications 
[20]. A list of some of the most relevant chemical databases 
for computational purposes is provided in Table 1. These 
chemical databases allow for the querying of compounds 
following different criteria:

By structure allows for the query of structurally similar 
molecules or that share the same functional groups. Such 
a query is useful for paradigms where the bioactivity or 
target-ligand binding profile of a molecule is known, but 
structurally similar molecules with better bioactivity or 
binding profiles are desired. Also, this kind of search 
could be useful in ligand-based modeling

By target searches by target are an interesting option 
when the target which is studied is well-known. This 
type of query allows to obtain datasets of molecules with 
information related to a specific target.

By properties A search of molecules based on properties 
of interest may also be performed e.g. molecules whose 
hydrophobicity values have been reported may be com-
piled generating a dataset of compounds for this property 
to be used in posterior modeling studies.

In addition to the previously mentioned searches, there 
are other computational strategies that may be followed to 
find new active molecules structurally different from the 
existing ones for the cases when, for example, a molecule is 
shown to have activity, but also undesirable effects and as a 
result one needs to identify alternatives [21].

Chemical databases have become a fundamental tool 
in the first steps of computer aided molecular discovery 
(CAMD) research workflows. Due to the large number of 
molecules that they offer, it is often necessary that differ-
ent query criteria and data mining strategies are applied 
to extract data with the necessary characteristics for each 
experiment in a more efficient way.

Chemoinformatic techniques

Chemoinformatics is a field of information technology that 
involves the use of computer techniques to collect, store, 
analyze and manipulate large sets of chemical data. This 
data is composed of chemical structures and requires special 
approaches to represent, store (i.e., using molecular descrip-
tors or SMILES annotation) and retrieve them. Moreo-
ver, these techniques seek to establish clear relationships 
between structural patterns and the corresponding properties 
or activities [41, 42].

The application of chemoinformatic methods such as 
pharmacophore modelling, scaffold-hopping, read-across, 
similarity searching, as well as statistical and machine 
learning (ML) modeling, has contributed to optimizing and 
accelerating chemical research in various fields including 
toxicology, CAMD and biochemistry. Noteworthy among 
the chemoinformatics approaches employed in the context 
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of nutraceuticals, cosmeceuticals, and functional foods 
are Quantitative Structure-Activity Relationship (QSAR) 
models.

QSAR methodology, proposed over one hundred years 
ago by Crum Brown, is based on the idea that there exists 
a relationship between a chemical structure and its activity 
[43]. QSAR development involves the generation of a math-
ematical model relating the chemical structure of a dataset 
of molecules with a specific physicochemical, chemical 
or biological property. The development of these models 
requires the previous characterization of the molecules using 
numerical descriptors and the subsequent application of dif-
ferent statistical and ML tools to generate the algorithms 
that relate these descriptors with the studied parameter. 
After the development and validation of a QSAR model, it 
can be employed as a prediction tool for the property/activ-
ity of new molecules with known chemical structures [44, 
45]. Figure 2 illustrates a general workflow for constructing 
QSAR models, which starts with the curation of the dataset 
of molecules to be employed. Next, a series of molecular 
descriptors are calculated for this dataset yielding an n × m 
data matrix, where n is the number of molecules and m the 
number of descriptors. The data matrix is split in train and 
test sets and the model training is performed over the train-
ing set using different techniques to yield a predictive model. 
This model is subsequently validated using the test set (also 
known as the external validation procedure).

QSAR techniques may naturally be applied to the field of 
nutraceuticals, cosmeceuticals and functional foods to study 
the relationship between food components and a diversity 
of properties. Indeed this methodology has already been 
employed in several studies, allowing to translate experi-
mental information on particular molecules into general 
knowledge on the corresponding biological or physico-
chemical mechanisms [46]. Here, the most relevant studies 
will be discussed.

The QSAR methodology has been employed to build mul-
tiple linear regression models for the antioxidant capacity of 
a series of flavonoids, hydrolyzates from various natural pro-
teins (such as soybean or casein), tripeptides derived from 
β-lactoglobulin (β-LG), as well as peptides with sequences 
of up to 20 amino acids. Chemical structural interpreta-
tion of the flavonoid model revealed that the C-terminus 
is important for the antioxidant activity [47] and the bulky 
hydrophobic residues of this terminus were related to the 
antioxidant activity in three different free radical systems 
[48]. Moreover, the electronic and hydrogen-bonding prop-
erties of the amino acids in the sequences, as well as the 
steric properties at both terminus, were found to play an 
important role in the antioxidant activities of β-LG derived 
tripeptides [49].

QSAR models have been employed to evaluate some 
nutraceutical activities, such as the possible ACE inhibitory Ta
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activity of food product components. To this end, models 
were developed for peptides obtained from plant derived 
inhibitors and posteriorly used for screening large librar-
ies of peptides obtained from 15 major food commodities. 
Results showed that peptides from pork, beef and chicken, 
contained the highest number of potent inhibitory peptides, 
followed by proteins from egg, soybean and canola [50]. 
Specifically egg derived peptides were evaluated with the 
developed QSAR models to predict their ACE inhibitory 
activity. The obtained results revealed that eggs contained 
relatively large-chain peptides with this activity, some of 
them previously reported in the literature, which confirms 
the validity of the model [51]. Another QSAR model was 
developed with a dataset of milk-derived tripeptides with 
known ACE inhibitory activity. The built model (with an 
 R2 of 0.845) was used for the screening of different milk-
derived tripeptides with possible ACE inhibitory activity. 
Four tripeptides were selected from the results as a promis-
sory candidates for this activity and further studied with 
in vivo experiments, which validated two of the tripeptides 
(i.e. IVP and VIP) [52].

ML approaches have also been employed in building 
QSAR models to study the properties of nutraceuticals, cos-
meceuticals and functional foods. The main goal for ML is 
to optimize the performance of a model given an objective 
function and training dataset. These prediction models help 

to guide decisions on chemical compound prioritization in 
drug discovery efforts, predicting toxicity, etc. [53].

ML techniques generally comprise three main paradigms 
depending in how models are created and trained.

a. In the case where the model is developed using both 
input (e.g., molecule descriptors) and output (e.g.,  IC50) 
data, we refer to supervised learning. This is one of the 
most prominent paradigms and uses algorithms such 
as: support vector machine (SVM) which aims to iden-
tify the most optimum hyperplane that separates class 
instances, decision trees (DT)-employ a rule-based tree 
structure representation to label instances, or neural net-
works (NN) which aim to approximate underlying data 
relationship pattern through a process that mimics the 
functioning of the human brain, among others.

b. Contrary to this, if only input data is given then unsuper-
vised learning is performed. ML algorithms attempt, in 
the context of unsupervised learning, to identify struc-
ture within the data (clustering) or reduce the dimen-
sionality.

c. Finally, reinforcement learning is the part of ML 
that deals with decision-making, in which an agent 
learns good responses by modifying or acquiring new 
responses incrementally [54]. In this case, algorithms 
follow a sequential experience-driven learning para-

Fig. 2  QSAR general workflow
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digm in that for each step (or state) a mapping to certain 
actions is performed to maximize the cumulative reward, 
without the need of labeled data [55, 56].

We will now briefly overview of the most relevant case 
studies on the use of ML in nutraceuticals, cosmeceutical 
and functional foods QSAR modeling.

In recent years, ML approaches have been employed to 
build classification models for identifying antioxidants and 
made available using web servers. Firstly, the SeqSVM, 
a sequence-based classification model for the antioxidant 
activity of proteins extracted from the Universal Protein 
Resource (Uniprot) was built using the SVM algorithm. 
This model yielded an overall accuracy of 89.46% [57]. 
A year later, the AOPs-SVM model, a classifier of anti-
oxidant proteins was developed. For this model, a library 
was obtained from Uniprot and 473 discrete features were 
extracted to construct the model, using the 473D feature 
extraction algorithm [58], based on the PSI-BLAST [59] and 
PSI-PRED [60] profiles. The built model yielded an average 
accuracy value of 94.2% and thus improved the performance 
of the previously obtained SeqSVM classifier. The AOPs-
SVM model has been made available via an online platform 
(http:// server. malab. cn/ AOPs- SVM/ index. jsp) [61].

On the other hand, ML algorithms have also been 
employed to model the antihypertensive activity. Dietary 
habits are crucial in the regulation of blood pressure and 
hypertension. In this sense, nutraceuticals combined with 
the diet could help to enhance the antihypertensive effect 
[62]. An in silico platform for antihypertensive peptides of 
different length has been developed by Kumar et al. Differ-
ent databases such as AHTPDB [63] with peptides derived 
from different foods such as milk, eggs or fish were used for 
this work. For small peptides, a regression model based on 
the SVM algorithm was developed, yielding an  R2 of 0.701 
for dipeptides and 0.543 for tripeptides. In another study, 
classification models were built for tetrapeptides, pentapep-
tides, hexapeptides, medium peptides (7–12 aa’s) and large 
peptides (> 12 aa’s), and accuracy values of 76.67%, 72.04%, 
77.39%, 82.61%, and 84.21%, were obtained, respectively. 
A web based platform was created for these models (http:// 
crdd. osdd. net/ ragha va/ ahtpin/) to help in predicting, screen-
ing and designing antihypertensive peptides with possible 
nutraceutical application [64]. Based on this study, another 
ML classification model was developed with the same data-
set but, without considering the length of the peptides. This 
model yielded an accuracy of 84.73% and was subsequently 
implemented in a server, called PAAP (https:// codes. bio/ 
paap/) which allows to predict, screen or design peptides 
with antihypertensive activity [65].

ML approaches have been employed in the cosmetics field 
as well, particularly in finding anti-ageing compounds. A 
deep learning model was developed with a set of compounds 

with known antioxidant activity and subsequently employed 
to screen a database of natural compounds. A lead com-
pound, called pep_RTE62G, was identified and subsequent 
in vitro and in vivo evaluations corroborated the in silico 
predictions, thus demonstrating the predictivity of the built 
model [66]. Furthermore, systemic toxicity of peptides 
employed in cosmeceutical products is a major concern. 
Models based on ML approaches using various properties of 
peptides in cosmeceutical field were developed for predict-
ing their toxicity. The performance of dipeptide model was 
of 94.50% in terms of accuracy. Also, a hybrid model was 
developed combining the dipeptide model with information 
extracted on toxic motifs of peptides yielding an accuracy 
of approx. 90%. A webserver called ToxinPred (http:// crdd. 
osdd. net/ ragha va/ toxin pred/) has been developed with these 
models to facilitate the evaluation of the toxicity of peptides 
[67].

Molecular modelling (MM)

Molecular modelling comprises all theoretical and compu-
tational techniques employed to model or mimic the behav-
ior of molecules in nature. These techniques are applied in 
diverse domains including drug discovery and development, 
computational chemistry, and materials science, among oth-
ers, to study molecular systems of different sizes and com-
plexity [68]. The MM techniques may be employed to elu-
cidate reaction mechanisms and interaction modes involving 
molecular systems, and/or to predict macroscopic physico-
chemical, chemical or biological properties. These methods 
include mainly molecular docking and molecular dynamic 
simulations and are collectively denominated as structure-
based computational methods. Each of these methods has 
proven to be useful in nutraceutical, cosmeceutical and func-
tional food compounds research [69].

For these structure-based methods, good quality (high 
resolution) three-dimensional (3D) structures of molecules 
are deemed as a fundamental starting step for successful 
molecular modelling [70]. The most important techniques 
for obtaining these 3D structures are shown in Table 2.

Molecular docking

The goal of this technique is to predict the target-ligand 
binding affinity and possible binding modes, ultimately con-
tributing to understanding molecular recognition process. 
Molecular docking includes structure-activity studies, find-
ing potential leads by virtual screening, providing binding 
hypotheses and lead optimization [75]. Figure 3 shows an 
example of a docking pose of natural compound curcumin 
bonded to acetylcholinesterase, generated using Chimera 
[76].

http://server.malab.cn/AOPs-SVM/index.jsp
http://crdd.osdd.net/raghava/ahtpin/
http://crdd.osdd.net/raghava/ahtpin/
https://codes.bio/paap/
https://codes.bio/paap/
http://crdd.osdd.net/raghava/toxinpred/
http://crdd.osdd.net/raghava/toxinpred/
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Molecular docking studies have been employed in the 
nutraceutical’s field, providing information on the first steps 
of nutraceutical research prior to the in vitro studies. Vari-
ous molecular docking tools have been developed to date, 
employing specific algorithms and for different purposes. 
Some of the most known tools are provided in Table 3. We 
provide herein a review of the most relevant applications of 

molecular docking in the evaluation of the possible health 
benefits of nutraceuticals.

The multidrug resistance-associated protein 2 (MRP2) is 
a transporter located in the membrane that acts as an impor-
tant transporter of food product compounds with poor oral 
bioavailability. However, its mechanism of action is not 
well-known, and the corresponding crystal structure is yet 
to be solved. Fang et al. obtained the homology 3D structure 

Table 2  Main techniques for obtaining the 3D structure of macromolecules

Experimental Technique Definition
X-Ray crystallography One of the most used technique for structure determination of proteins and macromolecules. A 

purified sample at high concentration is crystallized and exposed to an x-ray beam. Those results 
can be processed allowing to obtain the 3D structure of the molecule [71]

Nuclear Magnetic Reso-
nance Spectroscopy

Analytical chemistry technique that reveals the atomic structure of macromolecules in highly con-
centrated solutions based on the fact that certain atomic nuclei (such as H, 13C, 19F, 23Na, or 31P) 
are intrinsically magnetic [72]. Provides unique information about dynamics and interactions but 
the determination of the atomic structure is restricted to small complexes

Cryo-Electron Microscopy Based on the imaging of frozen-hydrated molecules by electron microscopy. Allows obtaining 
molecular resolution but in recent studies atomic resolution has been achieved [73]

Computational Homology modelling Computational prediction method that allows to determine the protein 3D structure from its amino 
acid sequence based on 3D structure templates of proteins with similar sequences[74]

Fig. 3  Example of a dock-
ing pose result of the binding 
of curcumin in yellow with 
acetylcholinesterase(PDB ID: 
6U3P) in blue
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which was subsequently used in a docking experiment of 
different flavonoids to understand the selectivity of the trans-
porter. This study allowed to separate the flavonoids two in 
groups: flavonoids that seem to interact with the transporter 
and those that seem to not interact with the transporter. Fur-
ther studies will be necessary but this analysis brings greater 
insight on the chemical-structural profiles responsible for the 
differences in the flavonoids bioavailability [87].

Legume-derived peptides are known to have diverse ben-
efits in the organism as they present antioxidant and anti-
inflammatory properties [88]. Among these, lentil-derived 
peptides seem to play a dual role presenting both antioxidant 
and Angiotensin Converting Enzyme (ACE) inhibitory prop-
erties. P. García-Mora et al. carried out a study aimed at 
identifying lentil-derived peptides with dual antioxidant and 
ACE inhibitory activity, in order to propose them as ingre-
dients for functional foods. After a gastrointestinal digestion 
simulation, the selected peptides (ligands) and two structures 
of somatic ACEs (receptors) were prepared with Maestro 
[89], and induced fit docking studies performed using the 
Glide 5.7 [79] and Prime 3.0. [90] modules available in the 
Schrödinger suite. The obtained results showed the possible 
dual activity of lentil-derived peptides which could guide 
subsequent in vitro studies to assess this activity [91].

Also, molecular docking studies of tetrapeptides from 
Atlantic salmon with possible ACE inhibitory activity 
were performed, with the aim of elucidating their binding 
modes and determine the corresponding binding energies. 
For this study, the CHARMM-based program (CDOCKER) 
was employed. Ten conformational models were obtained 
but only the best ones were selected for further analysis to 
identify the implicated residues and the best tetrapeptide 
conformation. This study showed that residue Glu376 of 

ACE might play an important role in the interactions with 
peptides. The  IC50 value of two potent ACE inhibitory pep-
tides, PGAR and IGPR, were calculated as 0.598 ± 0.12 and 
0.43 ± 0.09 mmol  L−1, respectively. Although compared 
to the clinical hypertension drug lisinopril, both peptides 
showed lower ACE inhibitory activity, they still have poten-
tial for use in hypertension prevention [92].

Ursolic Acid (UA), a plant-derived nutraceutical com-
pound, has been shown to regulate multiple proinflamma-
tory transcription factors and inflammatory enzymes [93]. 
In a study aimed at identifying specific targets for this com-
pound, the PharmMapper database was explored for poten-
tial targets [94] followed by molecular docking studies to 
select the most favorable ones, based on the corresponding 
scoring functions. An analysis of the interaction modes of 
the selected ursolic acid-target complexes allowed to iden-
tify the residues critical for the binding process. For this 
study, the Autodock [77] and MOE software were employed. 
The UA was observed to bind to Caspase 3 and the obtained 
results were used for posterior in vitro studies, which further 
validated this binding and allowed to hypothesize that the 
anti-inflammatory effect may be mediated by the MAPK 
signaling pathways [95].

Curcumin seems to have beneficial effects in Alzheimer, 
by inhibiting the formation of β-amyloid plaques related to 
this disease. This inhibition seems related to the interaction 
of curcumin with the acetylcholinesterase (AChE) receptor, 
which in turn affects the amyloid precursor protein. Molecu-
lar docking was employed by Sriraman et al. to evaluate 
the interaction between curcumin and eight different targets 
related to Alzheimer disease. The results revealed that that 
curcumin binds most favorably to AChE compared with the 
other studied targets [96].

Table 3  Different molecular docking tools and their algorithms

Molecular Docking tool Algorithm Website

AutoDock [77] Monte Carlo Simulated Annealing, Genetic Algorithm, and 
Lamarckian Genetic Algorithm

http:// autod ock. scrip ps. edu/

Gold [78] Genetic Algorithm https:// www. ccdc. cam. ac. uk/ solut ions/ csd- disco 
very/ compo nents/ gold/

Glide [79] In-house algorithm using different search criteria and refinement 
using the Monte Carlo method

https:// www. schro dinger. com/ produ cts/ glide

Haddock [80] In-house algorithm that encodes information from identified or 
predicted protein interfaces in ambiguous interaction restraints to 
drive the docking process

https:// wenmr. scien ce. uu. nl/

PyDock [81] Fast protocol which uses electrostatics and desolvation energy to 
score docking poses generated with FFT-based algorithms

https:// life. bsc. es/ pid/ pydock/

SwissDock [82] Based on the docking software EADock DSS http:// www. swiss dock. ch/
Rosetta [83] Monte Carlo based multi-scale docking algorithm https:// www. roset tacom mons. org/ softw are
DOCK [84] Based in a Geometric Matching Algorithm http:// dock. compb io. ucsf. edu/
DockingServer [85] Includes the PM6 semi-empirical method to AutoDock https:// www. docki ngser ver. com/ web
Medusa Dock [86] In-house algorithm using a stochastic rotamer library of ligands https:// dokhl ab. med. psu. edu/ cpi/#/ Medus aDock

http://autodock.scripps.edu/
https://www.ccdc.cam.ac.uk/solutions/csd-discovery/components/gold/
https://www.ccdc.cam.ac.uk/solutions/csd-discovery/components/gold/
https://www.schrodinger.com/products/glide
https://wenmr.science.uu.nl/
https://life.bsc.es/pid/pydock/
http://www.swissdock.ch/
https://www.rosettacommons.org/software
http://dock.compbio.ucsf.edu/
https://www.dockingserver.com/web
https://dokhlab.med.psu.edu/cpi/#/MedusaDock
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Finally, molecular docking has been applied in the cos-
metics sector, for example, to evaluate the possible interac-
tion between tyrosinase and ginsenoside Re, a compound 
extracted from the roots of the ginseng plants. Tyrosinase 
plays an essential function in modulating the production of 
melanin, the primary protective barrier against ultraviolet 
damage and whose excessive production may result in severe 
skin ailments such as patches, ephelis and melasma [97]. 
The computational results of the performed docking study 
suggested that ginsenoside Re inhibits Tyrosinase and sub-
sequent in vitro studies confirmed the predicted interaction 
profile. It was thus inferred that ginsenoside Re may be used 
as potential agent in cosmetics for the inhibition of melano-
genesis [98].

Molecular dynamics (MD) simulation

This computational technique is employed to study the 
physical displacements of atoms and molecules based on 
Newtonian mechanics laws. To carry out MD simulations, 
molecular mechanics forcefields, defined as a set of equa-
tions that describe the dependence of the energy of a system 
on the coordinates of its particles and the interatomic poten-
tials, are required [99, 100]. The impact of MD simulations 
in CAMD has grown dramatically in the last years. Using 
this technique, it is possible to predict the behavior of atoms 
in a molecular system over time based on a general model of 
the physics governing the inter-atomic interactions. These 
simulations could be very useful in studying important bio-
molecular processes such as ligand binding, protein folding 
or conformational changes. Also, such simulations can pre-
dict at an atomic level how these biomolecules will act with 
perturbations such as protonation, mutation or the addition 
or removal of ligands [101].

Food systems are complex and undergo lots of physical 
and chemical transformations during processing and storage. 
These transformations may be analyzed by MD simulations, 
providing key leads on the energetic and interaction profiles, 
as well as information on the conformational stability and/
or preference [102].

MD simulations have been employed in the nutraceutical 
and cosmetical field to study the influence of pH and tem-
perature on the corresponding chemical-biological profiles. 
For example, MD simulations have been employed to study 
the influence of temperature on the stability of gliadins, 
major antigenic wheat proteins reported to be responsible 
of food allergy and coeliac disease [103]. For this study, 
models of different gliadins were simulated at 25 ºC and 
100 ºC until equilibrium was achieved, using the Gromacs 
platform [104]. This experiment showed that the exposure of 
linear epitopes and their location changed with temperature 
and this could affect the allergenicity of these proteins [105].

In another study, Stănciuc et al. applied MD simulations 
to explore how the conformational changes of β-LG, com-
monly used in the food industry due to its high nutritional 
value, contribute to its thermally induced behavior as a result 
of the chemical and/or physical processing in the food indus-
try. For the MD simulation, the β-LG system was heated 
over a range of 30-90 ºC with equilibrations for every 10 ºC 
increment. The HyperChem software was employed for this 
study [106]. The obtained results indicated that at higher 
temperatures, β-LG structure was in a more flexible state 
that favored the hydrophobic exposure, allowing for a better 
understanding of the structure-function relationship [107]. 
Also, β-LG plays an important role as a carrier of flavonoids 
which could improve their bioavailability. The obtained 
results contributed to understanding the behavior of the stud-
ied complexes and how the ligands affect the conformational 
changes and the stability of β-LG, showing that quercitrin 
and rutin changed the conformation of β-LG, although the 
similarity of the atomic fluctuations profiles for β-LG and 
the β-LG –ligand complexes suggested that the structure of 
the ligand-binding site remained approximately rigid during 
the simulation [108].

MD simulations have been employed to study the solubil-
ity of nutraceutical and functional foods such as polyphe-
nols, carbohydrates, or lipids. In this case, three polyphenols 
were employed to create different systems simulated using 
NAMD [91]. Hydration free energies were computed for 
each compound and the obtained results showed an expo-
nential relationship between solubility and the hydration 
free energy [92]. Likewise, Zhang et al.sought to examine 
how the hydrothermal annealing treatment improves the 
low heat stability and crystal homogeneity of starch, par-
ticularly when mixed with other molecules [93]. Systems 
formed with cornstarch (CS) and fatty acids were simulated 
for 1 ns using Gromacs [104]. These results revealed that the 
total and potential energy were higher (in magnitude) for the 
lipids-CS complex when compared to CS alone, which led 
to the inference that more energy is necessary to damage 
the complex since it has more stability than CS alone [109].

MD simulations have also been employed to evaluate how 
the variation of the pH affects the physicochemical behavior 
of components in functional foods. For example, long chain 
fatty acids used as surfactants in the food industry may pre-
sent varying aggregation behavior at different pH conditions. 
In a study by Benett et al. constant pH coarse-grained MD 
simulations were performed on systems of oleic acid (alone 
and in a bilayer) to assess the impact of different pH values 
using coarse-grained MD simulations. The following pH 
values were considered: 2.0, 5.5 and 9.0, respectively. The 
obtained results showed that the acidic behavior of oleic acid 
depend on the local chemical environment, observing an 
increment of the  pKa and a large degree of anticooperativity 
in small micelles [110].
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Conclusion/ expert opinion

Nutraceuticals, cosmeceuticals and functional foods com-
bined with healthy lifestyles could aid in the preservation 
of health and the reduction of the risk of developing chronic 
diseases. Moreover, some of the bioactive molecules could 
be useful to reinforce or complement existing pharmacologi-
cal therapies, extending their use beyond food boundaries. 
Despite the potential health benefits of these products and 
the steady market growth, important challenges remain in 
this field. One of the main challenges is to prove the speci-
ficity of their action during the premarket approval, through 
the understanding of the mechanism of action of the active 
molecules in the organism, just as is the case for drugs in the 
pharmaceutical sector.

Computational techniques can help with these chal-
lenges, especially in the first steps, when there is not so 
much knowledge on the active component(s), the molecular 
target or mode of action. The inclusion of machine learning 
approaches in the development phases constitutes an impor-
tant breakthrough for this field. Indeed, ML methods have 
contributed to the development and refinement of predic-
tive models, as well as in accelerating molecular docking 
and molecular dynamics simulations. The implementation 
of these techniques in studies related to this field not only do 
they contribute to generating more knowledge at a molecular 
level, but also allow for the analysis of bigger sets of mol-
ecules, for example, in screening of dataset repositories to 
select those that could possibly present the studied activity 
for posterior in vitro and in vivo studies. The field of ML has 
grown exponentially in the recent years as well as its role 
in CAMD paradigms. This growth is accompanied with an 
improvement and sophistication of the methods that contrib-
ute to better and more precise predictions.

Computational techniques could also help to elucidate 
the mechanisms of action of molecules of interest by pro-
viding information on the binding modes of molecules with 
macromolecular targets. By means of structural approaches 
such as molecular dynamics, it is possible to predict not only 
the binding of two molecules, but also how they interact 
with time. Also, it is possible to predict how a system of 
molecules will evolve following changes in parameters such 
as temperature or pressure, and how these modifications can 
affect the studied molecules. This can be useful for quality 
control during the shelf-life analysis as well as to understand 
and improve the production processes of these products.

Nonetheless, the use of computational techniques in 
nutraceutical, cosmeceutical and functional foods is still at 
an early stage when compared to the pharmaceutical field. 
Also, these methods have some limitations that need to be 
addressed in order to increase not only their presence but 
also their functionality in the field. As a case in point, QSAR 

modelling is not well established for mixtures, which means 
that QSAR models mostly analyse independent components 
in mixtures and thus do not contemplate possible synergic 
or antagonist effects. Also, techniques as molecular docking 
and molecular dynamic simulation depend on having qual-
ity 3D structural models of the studied molecules (ligands, 
lipids, proteins) or analogues.

Computational approaches could contribute to making 
the approval process of these products more robust and con-
solidate the knowledge on their mode of action, thus helping 
to support the effectiveness and safety of the products that 
are launched on the market. Also, the limitations that these 
technologies seem to have when applied to foods may be 
viewed as future challenges to be solved and opportunities 
to improve the usefulness of computational approaches in a 
broader context.
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