
Redox Biology 6 (2015) 253–259
Contents lists available at ScienceDirect
Redox Biology
http://d
2213-23

n Corr
E-m
journal homepage: www.elsevier.com/locate/redox
Research Paper
SS-31 attenuates TNF-α induced cytokine release from C2C12
myotubes

Adam P. Lightfoot, Giorgos K. Sakellariou, Gareth A. Nye, Francis McArdle,
Malcolm J. Jackson, Richard D. Griffiths, Anne McArdle n

MRC-Arthritis UK Centre for Integrated Research into Musculoskeletal Ageing, University of Liverpool, United Kingdom
a r t i c l e i n f o

Article history:
Received 26 May 2015
Accepted 7 August 2015
Available online 10 August 2015

Keywords:
Skeletal muscle
TNF
Superoxide
C2C12
Myokine
x.doi.org/10.1016/j.redox.2015.08.007
17/& 2015 Published by Elsevier B.V.

esponding author. Fax: þ44 151 706 5802.
ail address: mdcr02@liv.ac.uk (A. McArdle).
a b s t r a c t

TNF-α is a key inflammatory mediator and is proposed to induce transcriptional responses via the mi-
tochondrial generation of Reactive Oxygen Species (ROS). The aim of this study was to determine the
effect of TNF-α on the production of myokines by skeletal muscle. Significant increases were seen in the
release of IL-6, MCP-1/CCL2, RANTES/CCL5 and KC/CXCL1 and this release was inhibited by treatment
with Brefeldin A, suggesting a golgi-mediated release of cytokines by muscle cells. An increase was also
seen in superoxide in response to treatment with TNF-α, which was localised to the mitochondria and
this was also associated with activation of NF-κB. The changes in superoxide, activation of NF-kB and
release of myokines were attenuated following pre-treatment with SS-31 peptide indicating that the
ability of TNF-α to induce myokine release may be mediated through mitochondrial superoxide, which is,
at least in part, associated with activation of the redox sensitive transcription factor NF-kB.

& 2015 Published by Elsevier B.V.
1. Introduction

Skeletal muscle can act as an endocrine organ and studies have
identified that a large number of cytokines are expressed and se-
creted by muscle [1–4], a process which is thought to occur via the
golgi network in other cell types [5]. Cytokines secreted by muscle
are termed myokines [6]. The patterns of proteins released by
muscle can change under different conditions and the precise
function of myokines is currently unclear. Research has focused
particularly on the role of IL-6, which is released by muscle fol-
lowing exercise and also appears to function as an energy sensor
[7].

Systemic inflammation is thought to result from the release of
cytokines from immune cells, but little is known regarding the
effects of systemic inflammation on muscle cytokine release and
the role that muscle-derived cytokines plays in compounding the
overall systemic inflammation [8]. During systemic inflammation,
tissues, including muscle, are exposed to a storm of inflammatory
mediators. The catabolic effects of systemic inflammation on
muscle mass and strength have been studied in a wide range of
pathologies, such as sepsis [9], cancer [10], COPD [11] and ageing
[12]. The impact of systemic inflammation on skeletal muscle is
profound, inducing rapid muscle atrophy [13] and weakness [14].
Tumour necrosis factor alpha (TNF-α) is a key mediator of
skeletal muscle catabolism and dysfunction in systemic in-
flammatory conditions [15]. Evidence suggests that TNF-α induces
the activation of the Nuclear factor kappa B (NF-kB) canonical
pathway in skeletal muscle and that this plays a key role in the
well characterised TNF-α mediated skeletal muscle atrophy and
dysfunction [16–19]. Evidence that loss of total muscle protein
occurs in response to treatment of muscle with TNF-α occurs in an
NF-kB-dependent manner further strengthens this association
[20]. The mechanisms by which TNF-α results in activation of NF-
kB are, as yet, unclear, but it has been proposed that the process is
mediated, at least in part, by endogenous reactive oxygen species
(ROS) production [21], and that mitochondria are a potential
source of this endogenous ROS [22,23].

Exposure of skeletal muscle cells to TNF-α results in the in-
creased synthesis of a number of inflammatory proteins, includ-
ing: CCL2, CCL5, CXCL5, VCAM-1 and IL-6 [1], ROS are also pro-
posed to play a key role in augmenting this myokine production
and release [24]. Thus, N-acetyl-cysteine (NAC) treatment of L6
myotubes results in the attenuation of TNF-α-induced IL-6 release
[25]. However, the precise site of generation and nature of the ROS
species involved in such TNF-αmediated signalling remains poorly
defined, with most studies using non-specific methods for detec-
tion of ROS [26].

We hypothesised that treatment of muscle cells with TNF-α
would result in activation of the canonical NF-kB pathway, re-
sulting in increased in myokine content of muscle cells and golgi-
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mediated release of these myokines and that this process is likely
mediated, at least in part, by mitochondria-derived superoxide.
We further hypothesised that modulation of mitochondria-gen-
erated superoxide would reduce activation of NF-kB and reduce
the TNF-α mediated release of myokines.
2. Methods

2.1. Materials and methods

2.1.1. Chemicals and reagents
Unless stated otherwise, all chemicals used in this study were

obtained from Sigma Chemical Company, Dorset, UK. The SS-31
peptide was obtained from W.M. Keck Fdn. Biotechnology Re-
source Laboratory at Yale (New Haven, CT).

2.1.2. Cell culture and treatments
C2C12 myotubes [27] were grown in culture in 5% CO2 sa-

turation at 37 °C, in Dulbecco's Modified Eagles Medium supple-
mented with 10% foetal bovine serum (v/v), with: 2 mM L-gluta-
mine (Sigma Aldrich, Dorset, UK), 50 i.u. penicillin and 50 μg/ml
streptomycin (Sigma Aldrich, Dorset, UK). Myotubes were grown
to 60–70% confluence, then differentiated in growth media sup-
plemented with 2% horse serum [28]. Myotubes were treated at
7 days post-differentiation in serum-free media for 3 h with 25 ng/
Fig. 1. (A) Confocal images of C2C12 myotubes. Fluorescent image following cells loade
image from MitoSOX Red (iii) and a merged image of i, ii and iii (iv). 20� original magni
myotubes either treated with TNF-α (25 ng/ml) alone, vehicle only (V control) or treated
group). (C) Representative images of (i) control C2C12 myotubes or myotubes treated wit
TNF-α or (v) treated with 70% ethanol as a positive control, stained with LIVE/DEAD.
ml carrier-free recombinant murine TNF-α (R&D Systems, Abing-
don, UK), with or without 1 h of pre-treatment with 5 μM SS-31
peptide or in the presence of 1 μM sodium salicylate as an in-
hibitor of NF-kB [17]. Myotube viability was assessed following
treatment with TNF-α (25 ng/ml) for 3 h, with or without pre-
treatment with SS-31 (5 μM) peptide, using LIVE/DEAD staining
(Invitrogen, Paisley, UK) in accordance with the manufacturer's
protocol. To determine the mechanism of cytokine release from
C2C12 myotubes, cells were pre-treated for 1 h with 1 μg/ml
Brefeldin A (BFA), to inhibit the golgi-mediated release of protein.

2.1.3. Use of MitoSOX Red to monitor mitochondrial superoxide
C2C12 myotubes were incubated in 2 ml Dulbecco's phosphate-

buffered saline (D-PBS) containing 250 nM MitoSOX Red (Invitro-
gen, Paisley, UK) for 30 min at 37 °C [29]. Myotubes were washed
twice with D-PBS and were maintained in MEM without Phenol
Red during the experimental period. MitoSOX Red is a derivative of
dihydroethidium (DHE) designed for the selective detection of
superoxide in mitochondria and exhibits fluorescence (MitoSOX
Red fluorescence) upon oxidation and subsequent binding to mi-
tochondrial DNA (Fig. 1) [30].

The imaging system consisted of a C1 confocal laser-scanning
microscope (Nikon Instruments Europe BV, Surrey, UK) equipped
with a 405 nm excitation diode laser, a 488 nm excitation argon
laser and a 543 nm excitation helium–neon laser. Emission fluor-
escence was detected through a set of 450/35, 515/30 and 605/15-
d with DAPI (i), fluorescence from MitoTracker Green FM (15 nM) (ii), fluorescent
fication. (bar¼40 μm). (B) Relative change in MitoSOX Red fluorescence from C2C12
with TNF-α and the mitochondrial targeted SS-31 peptide (5 mM). (n¼4–5 in each

h (ii) TNF-α, (iii) SS-31 alone, (iv) pre-treated with SS-31 followed by treatment with
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emission filters. Using a �40 objective, fluorescence images were
captured and analysed with the EZC1 V.3.9 (12 bit) acquisition
software. To quantify the degree of co-localisation of fluorescent
probes in C2C12 myotubes, NIH Image J software was used. Co-
localisation coefficients: Pearson's correlation (Rr) coefficient,
Mander's overlap (R) coefficient and Manders's co-localisation
coefficient for each image; channel 1 (Mred) and channel 2
(Mgreen) were calculated over the entire confocal image [29].

2.1.4. RNA isolation and quantitative real-time PCR (qPCR)
RNA was isolated using standard Trizols (Sigma Aldrich, Dor-

set, UK) extraction method [31] and purified using RNeasy clean-
up kit (Qiagen); cDNA was synthesised using iScript first strand kit
from 1 μg of isolated RNA (Bio-Rad, Hercules, USA). Primers were
designed for the following genes: CCL2 (5′-TGAATGTGAAGTT-
GACCCGT-3′; 5′-TTAAGGCATCACAGTCCGAG-3′), CCL5 (5′-
GTGCCCACGTCAAGGAGTAT-3′; 5′-CCCACTTCTTCTCTGGGTTG-3′),
CXCL1 (5′-CTTGAAGGTGTTGCCCTCAG-3′; 5′-TCTCCGTTACTTGGG-
GACAC-3′), IL-6 (5′-AGGTGCTAAAGGGTCTCTTG-3′; 5′-TCCAC-
GATTTCCCAGAGAAC-3′), S29 (5′-ATGGGTCACCAGCAGCTCTA-3′;
5′-GTATTTGCGGATCAGACCGA-3′). Targets were amplified from
1 μg of cDNA using SYBR Green master mix reagent and amplified
using a Bio-Rad thermocycler (Bio-Rad icycler, Heracles, USA). The
threshold cycle for target genes of interest was normalised to s29
and expressed as fold-change using the delta-delta ct (2�ΔΔct)
method.

2.1.5. Cytokine analyses
At 3 h following treatment of myotubes with TNF-α, serum-free

cell culture media was analysed for the presence of cytokines
using multiplex cytokine analysis (Bio-Rad, Hercules, USA). In
brief, media was incubated with fluorescently dyed beads con-
jugated with monoclonal antibodies specific to IL-6, CCL2, CCL5
and CXCL1 (Bio-Rad, Hercules, USA). The bead-sample conjugate
was then incubated with a biotinylated secondary detection anti-
body and a streptavidin-PE fluorophore. Samples were then ana-
lysed using a Luminex-200 platform using Bioplex software ver-
sion 5 (Bio-Rad, Hercules, USA).

2.1.6. SDS-PAGE and Western blotting
Myotubes were washed, harvested, pelleted and re-suspended

in ice-cold PBS, the cell lysate was sonicated and total protein
content quantified using the BCA assay (Pierce, UK). Samples were
prepared in 1% SDS, 1 mM Iodoacetamide, 1 mM benzithonium
chloride, 5.7 mN phenylmethylsylphonyl fluoride. Fifty micro-
grammes of total protein from C2C12 myotubes was applied to a
12% polyacrylamide gel with a 4% stacking gel (National Diag-
nostics, Atlanta, Georgia, USA). Separated proteins were trans-
ferred to a nitrocellulose membrane by Western blotting (Phar-
macia, Uppsala, Sweden). The membranes were analysed using
antibodies specific to IkappaB-alpha (IκBα) and beta-actin (Abcam
Plc, Cambridge, UK) as previously described and incubated with
species specific peroxidase-conjugated secondary antibodies (Sig-
ma Aldrich, Dorset, UK). Enhanced chemiluminesence (Amersham,
Cardiff, UK) was used to detect peroxidase activity. Bands were
detected using a Bio-Rad Chemi-doc XRS systemwith QuantityOne
software (Bio-Rad, Hercules, USA). The intensity of protein bands
was quantified using densitometry [32].

2.1.7. Statistical analysis
Data was statistically analysed using Student's t-test and one-

way ANOVA where appropriate using an alpha of pr0.05 with
Microsoft Excel and SPSS 20 software.
3. Results

3.1. Effect of treatment of myotubes with TNF-α and SS-31 on
myotube viability

Myotube viability was determined using LIVE/DEAD staining
(Invitrogen, Paisley, UK). Treatment of C2C12 myotubes with
25 ng/ml TNF-α resulted in no significant change in cell viability
over the 3 h duration of the experiment compared with carrier
(PBS) treated control myotubes (Fig. 1C).Treatment with SS-31
peptide alone, or in combination with TNF-α, did not result in any
significant change in cellular viability compared with carrier
treated control myotubes (Fig. 1C).

3.2. TNF-α-induced mitochondrial superoxide production: effect of
SS-31 peptide

As expected MitoSOX Red fluorescence was co-localised with
Mitotracker Green, indicating mitochondrial localisation (Fig. 1A).
Myotubes incubated in the presence of TNF-α showed a small but
significant increase in 2-hydroxyethidium (2-OH-Eþ) fluores-
cence, following excitation at 405 nm, indicating an increase in
superoxide production within the mitochondrial matrix. The TNF-
α-induced increase in 2-OH-Eþ was reduced following prior in-
cubation with SS-31 peptide (Fig. 1B).

3.3. TNF-α-induced changes in inflammatory gene expression: effect
of SS-31 peptide

Elevated and substantial changes in the expression (fold-
change) of CCL2 (59.178.8), CXCL1 (2.170.35), CCL5
(137.1724.6) were seen in myotubes following treatment with
TNF-α compared with untreated cells; no change was detected in
IL-6 expression (Fig. 2). Such dramatic fold-changes in mRNA were
likely to be due to the very low levels of expression in untreated
cells. Pre-treatment of C2C12 myotube with SS-31 peptide prior to
TNF-α challenge resulted in attenuated expression of CCL2 but no
effect of SS-31 was observed on the TNF-α mediated increase in
mRNA for CCL5 or CXCL1 (Fig. 2).

3.4. TNF-α-induced myokine release: effect of SS-31 peptide, sodium
salicyate and BFA

Treatment of C2C12 myotubes with TNF-α resulted in a sig-
nificant release of IL-6, CXCL1, CCL2 and CCL5 into the media,
compared with that of untreated control myotubes (Fig. 3). No
detectable levels of the following: FGF-Basic, GM-CSF, IFN-γ, IL-1α,
IL-1β, IL-2, IL-4, IL-5, IL-10, IL-12, IL-13, IL-17, MIG & MIP1-α were
seen in the media. Pre-treatment of myotubes with SS-31 peptide
resulted in an attenuation in the release of all four cytokines
measured compared with the levels released from myotubes
treated with TNF-α alone (Fig. 3). Pre-treatment of myotubes with
sodium salicyate (as an inhibitor NF-kB activation) abolished the
TNF-α mediated increase in cytokine release (Fig. 3). Pre-treat-
ment with BFA (to block golgi-mediated release) for 1 h prior to
treatment with TNF-α also abolished cytokine release from C2C12
myotubes (Fig. 4).

3.5. TNF-α-induced activation of NF-kB in C2C12 myotubes: effect of
SS-31 peptide

A decrease in IκBα protein was seen in myotubes following
treatment with TNF-α, suggesting activation of NF-kB; this de-
crease in IκBαwas not evident when cells were treated with SS-31
peptide prior to treatment with TNF-α (Fig. 5).
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Fig. 2. Fold changes in gene expression for IL-6 (A), MCP-1/CCL2 (B), CXCL1 (C) and RANTES/CCL5 (D) in myotubes following treatment with TNF-α (25 ng/ml) with or
without 1 h pre-treatment with SS31 (5 μM). Data are represented as mean fold change normalised to s29 housekeeper gene7SEM, *po0.05 (n¼4–6 in each group).
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4. Discussion

The ability of skeletal muscle to act as a source of cytokines
(myokines) is an area of increasing research interest. Such research
Fig. 3. Levels of (A) IL-6, (B) MCP-1/CCL2, (C) KC/CXCL-1 and (D) RANTES/CCL5 in media
pre-treatment for 1 h with SS-31 (5 μM) or sodium salicylate (1 μM) followed by treatm
has focused on the beneficial systemic effects of the production of
anti-inflammatory cytokines by muscle, particularly during ex-
ercise [33]. However, less is known about the mechanisms re-
sponsible for muscle cell cytokine production and release. The
of C2C12 myotubes at 3 h following treatment with TNF-α (25 ng/ml) or following
ent with TNF-α for 3 h.
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aims of the current study were to determine the role that ROS
generation, in particular mitochondria-derived superoxide, plays
in the production of myokines by C2C12 myotubes following
treatment with TNF-α and to examine whether NF-kB activation
mediated this process. Changes in cytokine profiles in the local
environment may be particularly important to skeletal muscle,
where they may have effects on satellite cells, neurons and other
cells. Since skeletal muscle is the largest organ system and protein
store in the human body, skeletal muscle may also be a significant
source of cytokine generation in particular situations. Thus, de-
termining the mechanisms responsible for myokine release from
muscle may have important implications for the role of muscle in
systemic inflammation, with the potential to develop novel ther-
apeutic interventions to modulate this release.
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Fig. 5. Densitometry and representative Western blot image showing levels of IκBα an
treated with SS-31 peptide ) followed by TNF-α for 3 h, (n¼4).
We hypothesised that treatment of muscle cells with TNF-α
would result in the golgi-mediated release of a number of myo-
kines and that this process is likely mediated, at least in part, by
mitochondria-derived superoxide leading to activation of the ca-
nonical pathway of the redox-sensitive transcription factor NF-kB.
We further hypothesised that modulation of mitochondria-gen-
erated superoxide would reduce activation of NF-kB and reduce
the TNF-α mediated release of myokines.

Treatment of muscle cells with TNF-α resulted in the golgi-
mediated release of myokines. Large gene-array screening has
identified a plethora of inflammatory genes expressed in skeletal
muscle [1,34]. Upregulation of CCL2, IL-6, CXCL-1 and CCL5 gene
expression in response to TNF-α in this study support prior find-
ings [1]. Our data also demonstrate a significant increase in the
SS31 + TNF

β-ac�n

IκB-α

TNF + SS-31

d β-actin (housekeeper) in C2C12 myotubes treated with TNF-α (25 ng/ml) or pre-
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release of IL-6, CCL2, CCL5 and CXCL-1 from C2C12 myotubes at
three hours following TNF-α treatment, in a golgi-mediated pro-
cess, demonstrating that skeletal muscle can release a diverse
profile of pro-inflammatory cytokines in response to TNF-α ex-
posure. These results suggest that these muscle-derived cytokines
may contribute significantly to the established systemic in-
flammatory state in circumstances where TNF-α is elevated. The
precise physiological roles of myokines are poorly understood.
Particularly, the evidence surrounding IL-6 is somewhat con-
troversial. Exercise studies have clearly shown that skeletal muscle
is a significant source of IL-6 and that muscle-derived IL-6 may
have beneficial anti-inflammatory effects [4]. This anti-in-
flammatory function of IL-6 was observed following infusion of
recombinant IL-6 in humans, which suppressed endotoxin-in-
duced elevations in TNF-α [35]. In contrast, elevated circulating
levels of IL-6 have been reported to cause skeletal muscle atrophy,
primarily by disruption of protein synthesis pathways due to
down-regulation of ribosomal s6 kinase expression [36]. Similarly,
IL-6 inhibition using monoclonal antibodies was seen to improve
survival in a rodent sepsis model [37]. Although these findings
appear contradictory, it has been suggested that the most bene-
ficial effect of IL-6 is through acute elevations in this cytokine (via
exercise), compared with the deleterious effects of chronic in-
creases [4], highlighting the importance of considering the degree
to which muscle contributes to overall circulating levels of IL-6 in
chronic pathological situations (e.g. critical illness and ageing)
relative to acute situations (e.g. periods of short lived exercise).

Our observation of increased CCL2 and MCP-1 release from
myotubes in response to TNF-α treatment supports previous ob-
servations [38]. The functions of CCL2 are reported as rather di-
verse, elevated levels have been detected in skeletal muscle in
idiopathic myopathies [39] and in dystrophies [40]. There is also a
correlation between serum levels of CCL2 and age-related muscle
weakness [41]. In contrast, a murine CCL2 knockout model showed
impaired muscle regeneration following ischaemia–reperfusion
injury, inferring that this protein may have an important role in
skeletal muscle repair processes [42]. Mechanistic-based analysis
has suggested an important beneficial role for CCL2 [42]. Often in
the case of skeletal muscle, cytokines are associated with dys-
function. There thus appears to be a “trade-off” between beneficial
acute effects of myokines and deleterious effects of their chronic
exposure. In a similar manner to CCL2, our observed release of
CCL5/RANTES from myotubes following exposure to TNF-α sup-
ports previous study of the muscle secretome [38] and data from
studies in inflammatory myopathies [39]. Additionally, macro-
phage-derived CCL5 in cardiotoxin injury has been reported to
provoke T-cell infiltration into skeletal muscle and to impair re-
generation [43].

CXCL-1/KC is a potent neutrophil chemoattractant and as far as
we are aware, the observation of elevated CXCL-1 release from
C2C12 myotubes is a novel finding since previous studies have
focused on gene expression [44]. Previous studies have demon-
strated that TNF-α exposure induces immune cell infiltration into
skeletal muscle in vivo and our findings that muscle secretes CCL2/
CCL5/CXCL-1 in a redox-dependent manner, provide further in-
sight into the mechanistic control of inflammation-induced mus-
cle dysfunction [45].

C2C12 myotubes show increased mitochondrial matrix su-
peroxide generation and activation of NF-kB following treat-
ment with TNF-α. The mechanisms involved in myokine regula-
tion and secretion by muscle are poorly understood, however, it
has been hypothesised that ROS may play a key role in these
processes [24]. Studies demonstrated that IL-6 release from L6
myotubes was attenuated following intervention with N-acet-
ylcysteine (NAC) treatment, thus demonstrating a role for ROS
generation in the cytokine release process [25]. Studies in C2C12
myotubes have indicated that TNF-α induces direct changes in
mitochondria-derived free radical species [23]. Based on this we
focused our investigation on mitochondrial superoxide. Cells were
loaded with MitoSOX Red. Control muscle cells showed no sig-
nificant changes in fluorescence over the time course of the study.
However, cells incubated in the presence of TNF-α showed a sig-
nificant increase in 2-hydroxyethidium (2-OH-Eþ) fluorescence,
indicating an increase in superoxide production within the mi-
tochondrial matrix. Thus, data clearly suggest that mitochondrial
superoxide production is associated with TNF-α-induced myokine
release from skeletal muscle cells. Previous studies have demon-
strated that this association is likely to be focused on the redox-
sensitive transcription factor NF-kB [21,46]. Thus, we examined
degradation of IκBα as an index of activation of the NF-kB pathway
[18]. IκBα levels in C2C12 myotubes were decreased following
treatment with TNF-α (Fig. 4); an observation commensurate with
the degradation of IκBα by the ubiqutin-proteasome upon sti-
mulation and activation of the NF-kB pathway [47]. Previous stu-
dies have indicated ROS involvement downstream of TNF-α,
whereby catalase prevented TNF-induced NF-kB activation in
muscle cells [21]. Moreover, inhibition of complex I resulted in
suppressed TNF-induced activation of NF-kB [46].

SS-31 mediated attenuation of superoxide production, NF-
kB activation and myokine release from C2C12 myotubes in
response to TNF-α. SS-31 peptide is a mitochondrial targeted
antioxidant peptide that accumulates on the inner mitochondrial
membrane. SS-31 has been proposed to scavenge superoxide
[48,49], although this function of SS-31 is controversial, with more
recent evidence that SS-31 preserves mitochondrial function by
preserving mitochondrial bioenergetics [50]. Treatment of muscle
cells with TNF-α resulted in increased 2-OH-Eþ

fluorescence and
this increase was reduced following treatment with SS-31 al-
though whether this is a direct effect of SS-31 or an indirect effect
of SS-31 on optimising mitochondrial function remains unclear.

Observations support previous findings that ROS may mediate
the TNF-α-induced NF-κB activation in skeletal muscle [21].
Moreover, cells pre-treated with sodium salicylate, an inhibitor of
NF-κB activation [17] (possibly by ROS scavenging mechanisms)
demonstrated a significant attenuation in the levels of cytokines
released in response to TNF-α treatment. These data suggest that
the SS-31 attenuated myokine release from muscle could, at least
in part, be mediated by NF-κB although the observation that
synthesis of all cytokines did not appear to be affected by this
treatment is somewhat confusing, potentially suggesting that a
threshold level may be needed before myokines are released by
muscle cells. Data support previous studies which used broad
spectrum antioxidants, which demonstrated that ROS generation
plays a role in cytokine release by muscle cells [25]. The results
presented here suggest that mitochondrial superoxide (and po-
tentially subsequent H2O2) may be a key ROS contributing to TNF-
α-induced myokine release. For example, if chronic exposure to IL-
6 is the main driver of the deleterious effects of IL-6 on muscle, the
use of specific targeted antioxidants may be a viable approach to
attenuate chronically elevated IL-6 levels, thus preserving muscle
mass and function.
5. Conclusions

We have demonstrated that treatment of skeletal muscle cells
with TNF-α induces an increase in ROS production, of which mi-
tochondrial superoxide is a significant component. We have also
identified that the cytokines IL-6, CXCL-1, CCL2 and CCL5 are re-
leased frommuscle in response to treatment with TNF-α. The TNF-
α-induced increased release of these myokines is mediated, at
least in part, by mitochondrial superoxide and the redox-sensitive
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transcription factor NF-κB. Our study results potentially provide
mechanistic insights into cytokine production and release by
skeletal muscle cells.
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