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The quantity of music content is rapidly increasing and automated affective tagging

of music video clips can enable the development of intelligent retrieval, music

recommendation, automatic playlist generators, and music browsing interfaces tuned

to the users’ current desires, preferences, or affective states. To achieve this goal, the

field of affective computing has emerged, in particular the development of so-called

affective brain-computer interfaces, which measure the user’s affective state directly from

measured brain waves using non-invasive tools, such as electroencephalography (EEG).

Typically, conventional features extracted from the EEG signal have been used, such as

frequency subband powers and/or inter-hemispheric power asymmetry indices. More

recently, the coupling between EEG and peripheral physiological signals, such as the

galvanic skin response (GSR), have also been proposed. Here, we show the importance

of EEG amplitude modulations and propose several new features that measure the

amplitude-amplitude cross-frequency coupling per EEG electrode, as well as linear and

non-linear connections between multiple electrode pairs. When tested on a publicly

available dataset of music video clips tagged with subjective affective ratings, support

vector classifiers trained on the proposed features were shown to outperform those

trained on conventional benchmark EEG features by as much as 6, 20, 8, and 7% for

arousal, valence, dominance and liking, respectively. Moreover, fusion of the proposed

features with EEG-GSR coupling features showed to be particularly useful for arousal

(feature-level fusion) and liking (decision-level fusion) prediction. Together, these findings

show the importance of the proposed features to characterize human affective states

during music clip watching.

Keywords: emotion classification, affective computing, multimedia content, electroencephalography,

physiological signals, signal processing, pattern classification

1. INTRODUCTION

With the rise of music and video-on-demand, as well as personalized recommendation systems,
the need for accurate and reliable automated video tagging has emerged. In particular, user-centric
affective tagging has stood out, corresponding to the formation of user emotional tags elicited while
watching video clips (Kierkels et al., 2009; Shan et al., 2009; Koelstra and Patras, 2013). Emotions

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org/journals/computational-neuroscience#editorial-board
https://www.frontiersin.org/journals/computational-neuroscience#editorial-board
https://www.frontiersin.org/journals/computational-neuroscience#editorial-board
https://www.frontiersin.org/journals/computational-neuroscience#editorial-board
https://doi.org/10.3389/fncom.2017.00115
http://crossmark.crossref.org/dialog/?doi=10.3389/fncom.2017.00115&domain=pdf&date_stamp=2018-01-10
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles
https://creativecommons.org/licenses/by/4.0/
mailto:falk@emt.inrs.ca
https://doi.org/10.3389/fncom.2017.00115
https://www.frontiersin.org/articles/10.3389/fncom.2017.00115/full
http://loop.frontiersin.org/people/457647/overview
http://loop.frontiersin.org/people/115132/overview


Clerico et al. EEG Modulation Analysis for Affective Music-Tagging

are usually conceived as physiological and physical responses,
as part of natural communication between humans, and able
to influence our intelligence, shape our thoughts and govern
our interpersonal relationships (Marg, 1995; Loewenstein and
Lerner, 2003; De Martino et al., 2006). Typically, machines
were not required to have “emotion sensing” skills, but instead
relied solely on interactivity. Recent findings from neuroscience,
psychology and cognitive science, however, have modified this
mentality and have pushed for such emotion sensing skills to be
incorporated into machines. Such capability can allow machines
to learn, in real-time, the user’s preferences and emotions and
adapt accordingly, thus taking the first steps toward the basic
component of intelligence in human-human interaction (Preece
et al., 1994).

Incorporating emotions into machines constitutes the
burgeoning field of affective computing, which has as main
purpose reduce the distance between the end-user and the
machine by designing instruments that are able to accurately
address human needs (Picard, 2000). To this end, the area of
affective brain-computer interfaces (aBCIs) has recently emerged
(Mühl et al., 2014). While BCIs have been mostly used to date
for communication and rehabilitation applications (e.g., Li et al.,
2006; Leeb et al., 2012; Sorensen and Kjaer, 2013), aBCIs (also
known as passive BCIs) aim at measuring implicit information
from the users, such as their moods and emotional states
elicited by varying stimuli. Representative applications include
neurogaming (Bos et al., 2010), neuromarketing (Lee et al.,
2007), and “attention monitors” (Moore Jackson and Mappus,
2010), to name a few. As in Koelstra and Patras (2013), this
paper concerns the measurement of emotions elicited on users
by different music video clips, i.e., for automated multimedia
tagging.

Within aBCIs, electroencephalography (EEG) has remained
a popular modality due to its non-invasiveness, high temporal
resolution (in the order of milliseconds), portability, and
reasonable cost (Jenke et al., 2014). Typically, spectral features
such as subband spectral powers have been used to measure
emotional states elicited from music videos, pictures, and/or
movie clips (e.g., Kierkels et al., 2009; Koelstra et al., 2012), as
well as mental workload and stress (e.g., Heger et al., 2010; Kothe
and Makeig, 2011). Moreover, an inter-hemispheric asymmetry
in spectral power has been reported in the affective state literature
(Davidson and Tomarken, 1989; Jenke et al., 2014), particularly in
frontal brain regions (Coan and Allen, 2004).

Recent studies, however, have suggested that alternate
EEG feature representations may exist that convey more
discriminatory information over traditional spectral power
and asymmetry indices (Jenke et al., 2014; Gupta and Falk,
2015). More specifically, statistical relations among temporal
dynamics in different frequency bands (so-called “cross-
frequency coupling”) have been observed in several brain
regions and are thought to reflect neural communication
and information encoding to support different perceptual and
cognitive processes (Cohen, 2008) and emotional states (Schutter
and Knyazev, 2012). Typically, cross-frequency coupling can be
measured in three ways, namely, phase-phase, phase-amplitude
and amplitude-amplitude coupling. While the former two have

been widely studied and shown to be related to perception
and memory (e.g., theta-gamma coupling Canolty et al., 2006),
the latter has received lower attention. A few studies have
shown amplitude-amplitude coupling effects on personality
and motivation (Schutter and Knyazev, 2012) and recently,
the authors proposed an inter-hemispheric cross-frequency
amplitude coupling metric that correlated with affective states
(Clerico et al., 2015). Notwithstanding, existing coupling metrics
typically overlook temporal dynamics and are based on inter-
hemispheric synchrony, thus overlook synchronization of other
brain regions.

Moreover, in addition to EEG correlates, affective state
information has been widely obtained from physiological signals
measured from the peripheral autonomic nervous system
(PANS) (Nasoz et al., 2003; Lisetti and Nasoz, 2004; Wu
and Parsons, 2011), particularly the galvanic skin response
(GSR), a measure of the amount of sweat (conductivity)
in the skin (Picard and Healey, 1997; Bersak et al., 2001).
More recently, the interaction between the PANS and central
nervous systems (CNS) was measured via a phase-amplitude
coupling (PAC) between GSR and EEG signals and promising
emotion recognition results were found for highly arousing
videos (Kroupi et al., 2014). As emphasized in Canolty et al.
(2012), however, different ways of computing PAC may lead to
complementary information. As such, in this paper we explore
different PAC computation methods to gauge the advantages of
one method over another.

In this paper, we build on the work of Clerico et al. (2015) and
investigate the development of alternate features based on EEG
amplitude modulation analysis for automated affective tagging
of music video clips. In particular, we propose a number of
innovations, namely: (1) extended the inter-hemispheric cross-
frequency coupling measures of EEG amplitude modulations
analysis to all possible electrode pairs, thus exploring connections
beyond left-right pairs, (2) explored the use of a coherence
based coupling metric, as opposed to mutual information, to
explore linear relationships between inter-electrode coupling,
(3) explored a total amplitude modulation energy measure
to capture temporal dynamics, (4) proposed a normalization
scheme based on normalization of the proposed features relative
to a baseline period, thus facilitating cross-subject classification
(as opposed to per-subject classification in Clerico et al., 2015),
and (5) explored different ways of computing PAC between EEG
and GSR in order to gauge the benefits of one computation
method over another. Furthermore, we show the benefits of
the proposed features relative to existing spectral power-based
ones, and explore their complementarity via decision- and
feature-level fusion. Experimental results show the proposed
features outperforming conventional ones in recognizing arousal,
valence, and dominance emotional primitives, as well as a “liking”
subjective parameter.

The remainder of this paper is organized as follows: Section 2
provides the methodology used, including a description of the
proposed and baseline features, as well as classification and fusion
strategies used. Sections 3 and 4 describe the experimental results
and discusses the findings, respectively. Lastly, section 5 presents
the conclusions.
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2. MATERIALS AND METHODS

In this section, the database, the proposed and benchmark feature
sets, as well as the feature selection, classifier and classifier fusion
schemes used are described.

2.1. Affective Music Clip Audio-Visual
Database
In this paper, the publicly-available DEAP (Dataset for Emotion
Analysis using EEG and Physiological signals) database was
used (Koelstra et al., 2012). Thirty-two healthy subjects (gender-
balanced, average age of 26.9 years) were recruited to watch
40 video music clips while their neurophysiological signals
were recorded. The forty videos were carefully selected from
a larger set (roughly 200 videos), corresponding to the ones
eliciting the 10 highest ratings within each of the four quadrants
of the valence-arousal plane (Russell, 1980). Participants were
asked to rate their perceived valence, arousal, and dominance
emotional primitives, as well as other subjective ratings such as
liking and familiarity for each of the 40 music clips. The three
emotional primitives were scored using the 9-point continuous
self-assessment manikin scale (Bradley and Lang, 1994). The
liking scale was introduced to determine the user’s taste, and not
their feelings, about the music clip; as such, 9-point scale with
thumbs down/up symbols was adopted. Lastly, the familiarity
rating was scored using a 5-point scale. For the purpose of this
paper, the familiarity rating was not used.

Several neurophysiological signals were recorded during
music clip watching, namely 32-channel EEG (Biosemi Active II,
with 10–20 international electrode placement), skin temperature,
GSR, respiration, and blood volume pulse. The raw signals were
recorded at a 512 Hz sample rate and down sampled offline to
128 Hz. The EEG signals were further bandpass filtered from
4 to 45 Hz, pre-processed using principal component analysis
to remove ocular artifacts, averaged to a common reference
and made publicly available. The interested reader is referred to
Koelstra et al. (2012) for more details about the database.

2.2. Feature Extraction
2.2.1. Spectral Features
Spectrum subband power features are the most traditional
measures used in biomedical signal processing (Sörnmo and
Laguna, 2005). Within the affective state recognition literature,
spectral power in the theta (4–8Hz), alpha (8–12Hz), beta (12–30
Hz), and gamma (30–45 Hz) subbands are typically used (Jenke
et al., 2014) across different brain regions (Schutter et al., 2001;
Balconi and Lucchiari, 2008). In particular, alpha and gamma
band inter-hemispheric asymmetry indices have been shown to
be correlated with emotional ratings, particularly in frontal brain
regions (Müller et al., 1999; Mantini et al., 2007; Arndt et al.,
2013). Given their widespread usage and the fact that they were
also used in Koelstra et al. (2012) for affect recognition from
the DEAP database, spectral features (“SF”) are used here as a
benchmark to gauge the benefits of the proposed features. A total
of 128 spectral power features (32 electrodes × 4 subbands) and
56 asymmetry indices (14 inter-hemispheric pairs× 4 subbands)
were computed from the following electrode pairs: Fp1-Fp2,

AF3-AF4, F7-F8, F3-F4, FC5-FC6, FC1-FC2, T7-T8, C3-C4,
CP5-CP6, CP1-CP2, P7-P8, P3-P4, PO3-PO4, and O1-O2 (see
Figure 1 for electrode labels and locations). Overall, a total of 184
“SF” features are used as benchmark.

2.2.2. Amplitude Modulation Features
Cross-frequency amplitude-amplitude coupling in the EEG has
been explored in the past as a measure of anxiety and motivation
(e.g., Schutter and Knyazev, 2012), but has been under-explored
within the affective state recognition community. Recently, beta-
theta amplitude-amplitude coupling differences were observed
between healthy elderly controls and age-matched Alzheimer’s
disease patients; such findings were linked to lack of interest
and motivation within the patient population (Falk et al., 2012).
To explore the benefits of cross-frequency amplitude-amplitude
modulations for affective state recognition research, the authors
recently showed that non-linear coupling patterns within inter-
hemispheric electrode pairs was a reliable indicator of several
affective dimensions, but particularly for the valence emotional
primitive (Clerico et al., 2015). In this paper, we extend this
work by extracting a number of other amplitude modulation
features (“AMF”) and show their advantages for affective state
recognition.

More specifically, three new amplitude-amplitude coupling
feature sets are extracted, namely the amplitude modulation
energy (AME), amplitude modulation interaction (AMI), and
the amplitude modulation coherence (AMC), as depicted by
Figure 1. In order to compute these three feature sets, first the
full-band EEG signal sk for channel “k” (see left side of the figure)
is decomposed into the four typical subbands (theta, alpha, beta
and gamma) using zero-phase digital bandpass filters. Here, the
time-domain index “n” is omitted for brevity, but without loss
of generality. For the sake of notation, the decomposed time-
domain signal is referred to as sk(i), i = 1, . . . , 4. The temporal
envelope is then extracted from each of the four subband time
series using the Hilbert transform (Le Van Quyen et al., 2001).
Figure 2 illustrates the extracted EEG subband time series in
gray and their respective Hilbert amplitude envelopes in black.
Here, the temporal envelopes ei(n) of each subband time series
were computed as the magnitude of the complex analytic signal
ζ (n) = sk(i)

2 + jH
{

sk(i)
}

, i.e.,

ei(i) =

√

sk(i)2 +H
{

sk(i)
}2
, (1)

where,H {·} corresponds to the Hilbert transform.
In order to measure cross-frequency amplitude-amplitude

coupling, a second decomposition of the EEG amplitude
envelopes is performed utilizing the same four subbands. To
distinguish between modulation and frequency subbands, the
former are referred to as m-θ (4–8 Hz), m-α (8–12 Hz), m-β
(12–30 Hz) and m-γ (30–45 Hz). For notation, the amplitude-
amplitude coupling pattern is termed sk(i, j), i, j = 1, . . . , 4, where
“i” indexes spectral subbands and “j” the modulation spectral
subbands. By using theHilbert transform to extract the amplitude
envelope, the types of cross-frequency interactions are limited by
Bedrosian’s theorem, which states that the envelope signals can
only contain frequencies (i.e., modulated frequencies) up to the
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FIGURE 1 | Signal processing steps used to compute the EEG amplitude modulation feature sets.

FIGURE 2 | Amplitude envelope extraction from each EEG subband time

series signal (gray) and their respective Hilbert amplitude envelopes (black).

maximum frequency of its original signal (Boashash, 1991; Smith
et al., 2002). As such, only the ten cross-frequency patterns shown
in Figure 1 are possible (per electrode), namely: θ_m-θ , α_m-θ ,
α_m-α, β_m-θ , β_m-α, β_m-β , γ _m-θ , γ _m-α, γ _m-β , and
γ _m-γ . From these patterns, the three feature sets are computed,
as detailed below:

2.2.2.1. Amplitude modulation energy (AME)
From the ten possible sk(i, j) patterns per electrode, two
energy measures are computed. The first measures the ratio
of energy in a given frequency–modulation-frequency pair
(ξk(i, j)) over the total energy across all possible subbands

pair (i.e.,
∑4

i=1

∑4
j=1 ξk(i, j)), thus resulting in 320 features (32

electrodes × 10 cross-frequency coupling patterns; see possible
combinations in Figure 1). The second measures the logarithm
of the ratio of modulation energy during the 60-s music clip to
the modulation energy during a 3-s baseline resting period, i.e.,

10 log
(

ξk(i, j)
video/ξk(i, j)

baseline
)

, thus resulting in an additional

320 features, for a total of 640 AMEk(i, j) features, k =

1, . . . , 32; i, j = 1, . . . , 4.

2.2.2.2. Amplitude modulation interaction (AMI)
In order to incorporate inter-electrode amplitude modulation
(non-linear) synchrony, the amplitude modulation interaction
(AMI) features from Clerico et al. (2015) are also computed.
Unlike the work described in Clerico et al. (2015), where
interactions were only computed per symmetric inter-
hemispheric pairs, here we measure interactions across
all possible 496 electrode pair combinations (i.e., 2-by-2
combinations over all possible 32 channels) for each of the
ten cross-frequency coupling patterns, thus resulting in 4960
features. The normalized mutual information (MI) is used to
measure the interaction:

AMIk,l =
H(sk)+H(sl)−H(sk, sl)

√

H(sk)H(sl)
, (2)

where the H(· ) operator represents marginal entropy and
H(· ,×) the joint entropy, and sk corresponds to sk(i, j) with the
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frequency and modulation frequency indices omitted for brevity.
Entropy was calculated using the histogram method with 50
discrete bins for each variable. Mutual information has been used
widely in affective recognition research (e.g., Cohen et al., 2003;
Khushaba et al., 2012; Hamm et al., 2014). Additionally a second
measurement of logarithmic ratio between the 60-s clip and the
3-s baseline has been obtained, thus totalling 9920 AMI features.

2.2.2.3. Amplitude modulation coherence (AMC)
While the AMI features capture non-linear interactions between
inter-electrode amplitude-amplitude coupling patterns, the
Pearson correlation coefficient between the patterns can also be
used to quantify the coherence, or linear interactions between
the patterns. Spectral coherence measures have been widely used
in EEG research and were recently shown to also be useful
for affective state research (e.g., Kar et al., 2014; Xielifuguli
et al., 2014). Hence, we explore the concept of amplitude
modulation coherence, or AMC as a new feature for affective state
recognition. The AMC features are computed as:

AMCk,l =

∑N
n=1(sk(n)− s̄k)(sl(n)− s̄l)

√

∑N
n=1(sk(n)− s̄k)2

∑N
n=1(sl(n)− s̄l)2

, (3)

where sk(n) indicates the n-th sample of the sk(i, j) time-series
(again, the frequency and modulation frequency indices were
omitted for brevity), and s̄k is the average over all samples of
such time series. As previously, a total of 9920 AMC features are
computed, including the logarithmic ratio with the 3-s baseline.

2.2.3. PANS-CNS Phase-Amplitude Coupling (PAC)
Electrophysiological signals reflect dynamical systems that
interact with each other at different frequencies. Phase-
Amplitude coupling represents one type of interaction and
typically refers to modulation of the amplitude of high-
frequency oscillators by the phase of low-frequency ones
(Samiee et al.). Typically, such phase-amplitude coupling
measures are computed from EEG signals alone (Schutter and
Knyazev, 2012), but the concept of electrodermal activity phase
coupled to EEG amplitude was recently introduced as a correlate
of emotion, particularly for high arousing, very pleasant and very
unpleasant stimuli (Kroupi et al., 2013, 2014). Here, we test three
different GSR-phase and EEG-amplitude coupling measures. For
the sake of notation, assume u(n) is the rapid transient response
called skin conductance response (SCR) with a narrowband of
0.5–1Hz (Kroupi et al., 2014), of the time-domain GSR signal.
Using the Hilbert transform (Gabor, 1946), we can extract the
signal’s instantaneous phase φu (n) as in Kroupi et al. (2014):

φu (n) = arctan
(

H{u(n)}

u (n)

)

. (4)

For the amplitude envelope of the EEG signal (A(sk(n))), a shape-
preserving piecewise cubic interpolation method of neighboring
values is used, as in Kroupi et al. (2014). Given the GSR signal
and phase, as well as the EEG amplitude envelope signals, the
following coupling measures were computed.

2.2.3.1. Envelope-to-signal coupling (ESC)
The simplest coupling feature can be calculated via the Pearson
correlation coefficient between the EEG amplitude envelope
signal A(sk(n)) and the raw GSR signal u(n). The ESC feature can
be computed using equation (3) with A(sk(n)) and u(n) in lieu of
sk(i, j) and sl(i, j), respectively (Arnulfo et al., 2015). ESC has been
shown to be particularly useful with noisy data (Onslow et al.,
2011). A total of 32 ESC features were computed.

2.2.3.2. Cross-frequency coherence (CFC)
Cross-frequency coherence evaluates the magnitude square
coherence between the filtered (0-1 Hz) GSR signal u(n) and
the filtered (4–45 Hz) envelope of the EEG signal A(sk(n)), as in
Onslow et al. (2011). The CFC feature is computed as:

CFCk(f ) =
|PAu(f )|

2

PAA(f )Puu(f )
, (5)

where |PAu(f )|
2 is the cross power spectral density of the EEG

amplitude A(sk(n)) and GSR signal u(n) at frequency f , and
PAA

(

f
)

and Puu
(

f
)

are the spectral power densities of the
two signals, respectively. The CFC feature ranges from 0 (no
spectral coherence) to 1 (perfect spectral coherence) and has been
used previously to quantify linear EEG synchrony in different
frequency bands and its relationship with emotions (Daly et al.,
2014). A total of 1344 CFC features were computed.

2.2.3.3. Modulation index (ModI)
PANS-CNS coupling measure tested is the so-called modulation
index (ModI), which was recently shown to accurately
characterize coupling intensity (Tort et al., 2010), particularly
for emotion recognition (Kroupi et al., 2014). For calculation
of the ModI feature, a composite times series is constructed as
[φu (n) ,A(sk(n))]. The phases are then binned and the mean
of A(sk(n)) over each phase bin is calculated and denoted by
〈As〉φu (m), where m indexes phase bin; 18 bins were used in
this experiment. Further, the mean amplitude distribution P(m)
is normalized by the sum over all bins, i.e.,:

P(m) =
〈As〉φu (m)

∑18
m=1 〈As〉φu (m)

. (6)

The normalized amplitude “distribution” P(m) has similar
properties as a probability density function. In fact, in the
scenario in which no phase-amplitude coupling exists, P(n)
assumes a uniform distribution. Having this said, the ModI
feature measures the deviation of P(m) from a uniform
distribution. This is achieved by means of a Kullback-Liebler
(KL) divergence measure (Kullback and Leibler, 1951) between
P(m) and a uniform distribution Q(m), given by:

DKL (P,Q) =

18
∑

m=1

U (m) log

[

P (m)

Q (m)

]

, (7)

The KL divergence DKL (P,Q) is always greater than zero, and
equal to zero only when the two distributions are the same.

Frontiers in Computational Neuroscience | www.frontiersin.org 5 January 2018 | Volume 11 | Article 115

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles


Clerico et al. EEG Modulation Analysis for Affective Music-Tagging

Finally, the ModI feature is defined as the ratio between the KL
divergence and the log of the number of phase bins, i.e.,:

ModI =
DKL (P,Q)

log (M)
. (8)

where M = 18 is used in our experiments. A total of 32 ModI
features were computed.

2.3. Feature Selection and Affective State
Recognition
In this section, a description of the feature selection, classifiers,
and classifier fusion strategies are discussed.

2.3.1. Feature Selection
Asmentioned above, a large number of proposed and benchmark
features were extracted. More specifically, a total of 184
SF, 20480 AMF, and 1408 PAC features were extracted. For
classification purposes, these numbers are large and may lead to
classifier overfitting. In such instances, feature ranking and/or
feature selection algorithms are typically used. Recently, several
feature selection algorithms were compared on an emotion
recognition task (Jenke et al., 2014). The minimum redundancy
maximum relevance (mRMR) algorithm (Peng et al., 2005)
showed improved performance when paired with a support
vector machine classifier (Wang et al., 2011). The mRMR
is a mutual information based algorithm that optimizes two
criteria simultaneously: the maximum-relevance criterion (i.e.,
maximizes the average mutual information between each feature
and the target vector) and the minimum-redundancy criterion
(i.e., minimizes the average mutual information between two
chosen features). The algorithm finds near-optimal features
using forward selection with the chosen features maximizing the
combined max-min criteria.

Moreover, in an allied domain, multi-stage feature selection
comprised of analysis of variance (ANOVA) between the features
and target labels as a pre-screening, followed by mRMR, was
shown to lead to improved results for SVM-based classifiers
(Dastgheib et al., 2016). This multi-stage feature selection
procedure is explored herein and during pre-screening, only
features that attained p-values smaller than 0.1 were kept. Here,
two tests are explored. With one, all top selected features for
each feature class are used for classifier training. Given the
different number of available features for each feature class,
the input dimensionality of the attained classifiers will differ.
For a more fair comparison, the second assumes that classifiers
are trained on the same number of features for each feature
class. To this end, the number of features used corresponds to
the number of benchmark SF features that pass the ANOVA
test.

In the available dataset, neurophysiological signals were
recorded from 32 subjects while each watched a total of 40 music
clips. Here, 25% of the available data (i.e., data from 10 music
clips per subject, roughly half from the high and half from the low
classes) was set aside for feature ranking. The remaining 75% was
used for classifier training and testing in a leave-one-sample-out

(LOSO) cross-validation scheme, as described next. This hold-
out scheme assures a more stringent setup, as feature selection
and model training are not performed on the same data subset,
which could lead to overly optimistic results. From the feature
selection set, it was found that 35, 23, 19, and 21 SF features
passed the ANOVA test for arousal, valence, dominance, and
liking dimensions, respectively.

2.3.2. Classification
During pilot phase, support vector machine (SVM), relevance
vector machine (RVM) and random forest classifiers were
explored. Overall, SVMs resulted in improved performance.
Indeed, they have been widely used in bioengineering and in
affective state recognition (e.g., Wang et al., 2011). Given their
widespread use, a description of the support vector machine
approach is not included here and the interested reader is referred
to Schölkopf and Smola (2002) and references therein for more
details. Here, SVM classifiers are trained on four different binary
classification problems, i.e., detecting low/high valence, low/high
arousal, low/high dominance and low/high liking.

With the DEAP database, subjective ratings followed a 9-
point scale. Typically, values greater or equal to 5 are assumed to
correspond to high activation levels or low, otherwise. However,
it is not guaranteed that all users objectively utilize the same scale
for grading. In fact, by using a threshold of 5, a 60/40 ratio of
high/low levels was obtained across all participants. In order to
take into account individual biases during rating, here we utilize
an individualized threshold corresponding to the value in which
an almost balanced high/low ratio was achieved per participant.
Figure 3 depicts the threshold found for each participant for
arousal and valence. As can be seen, on average a threshold of
5 was most often selected, though in a few cases, much higher or
much lower values were found, thus exemplifying the need for
such an individualized approach.

As mentioned previously, 75% of the available dataset was
used for classifier training/testing using a leave-one-sample-out
(LOSO) cross-validation scheme. For our experiments, a radial
basis function (RBF) kernel was used and implemented with the
Scikit-learn library in Python (Pedregosa et al., 2011). Since we
are interested in gauging the benefits of the proposed features,
and not of the classification schemes, we use the default SVM
parameters throughout our experiments (i.e., λ = 1 and γRBF =

0.01). As such, it is expected that improved performance should
be achieved once classifier optimization is performed, as in
Gupta et al. (2016). Such analysis, however, is left for future
study.

2.3.3. Fusion
In an attempt to improve classification performance, two fusion
strategies are explored, namely, feature fusion and decision-level
fusion. In feature fusion, we explore the combination of the three
feature sets (SF, PAC, and AMF) and utilize the top selected
features. With classifier decision-level fusion, on the other hand,
the decisions of the three SVM classifiers trained on the top SF,
PAC, and AMF sets were fused using a simple majority voting
scheme with equal weights.
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FIGURE 3 | Individualized threshold such that approximately 50/50 ratio was achieved for high/low class for valence and arousal dimensions.

2.4. Figure of Merit
Balanced accuracy (BACC) is used as a figure of merit and
corresponds to the arithmetic mean of the classifier sensitivity
and specificity, namely:

BACC =
SENS+ SPEC

2
, (9)

where

SENS =
TP

P
; SPEC =

TN

N
, (10)

and P = TP + FN and N = FP + TN, TP and FP correspond
to true and false positives, respectively and TN and FN to
true and false negatives, respectively. Balanced accuracy takes
into account any remaining class unbalances and provides more
accurate results than the conventional accuracy metric. To test
the significance of the attained performances, an independent
one-sample t-test against a random voting classifier was used
(p < 0.05), as suggested in Koelstra et al. (2012).

3. RESULTS

Tables 1–4 show the top-selected features for the arousal, valence,
dominance, and liking dimensions, respectively, following multi-
stage feature selection and using the same number of features
across sets. Feature names listed in the tables should be self
explanatory. The “ratio” features correspond to the log-ratio ones
between the video and baseline periods (see section 2.2.2). In the
SF category, the “AI” features correspond to the asymmetry index
between the indicated channels.

Table 5, in turn, reports the balanced accuracy results
achieved with the individual features sets and the same
dimensionality, as well as with the feature- and decision-
level fusion strategies. All obtained results were significantly
higher (p < 0.05) than those achieved with a random voting
classifier (Koelstra et al., 2012). The column labeled “%” indicates
the relative improvement in balanced accuracy, in percentage,
relative to the SF baseline set. As can be seen, all proposed
AMF features outperform the benchmark, by as much as 4.4,

5.6, 5.6, and 1.9% for valence, arousal, dominance, and liking,
respectively. The PAC features also show advantages over the
benchmark, particularly for the valence dimension, in which
a 9.7% gain was observed. Feature fusion, in turn, showed to
be useful mostly for arousal prediction, whereas decision-level
fusion was useful for the liking dimension.

Moreover, for classifiers of varying dimensionality, maximum
balanced accuracy values of 0.625 (AMI), 0.652 (AME), 0.659
(AMC) could be achieved for valence, dominance, liking,
respectively, thus representing gains over the benchmark set of
8.1, 20.3, and 6.5%. For PAC features, gains could be seen only
for the dominance dimension where a balanced accuracy of 0.592
could be seen, representing a gain over SF of 9.2%.

4. DISCUSSION

4.1. Feature Ranking
From Tables 1–4, it can be seen that with the exception of
arousal, the number of SF features that passed the pre-screening
test was roughly 20. For valence, roughly half those features
corresponded to asymmetry index features, and across most
emotional primitives, α, β and θ frequency bands showed to
be the most relevant. These findings corroborate those widely
reported in the literature (e.g., Davidson et al., 1979; Hagemann
et al., 1999; Coan and Allen, 2004; Davidson, 2004).

Previous work on PAC, in turn, showed the coupling between
EEG and GSR (computed via the ModI feature) to be relevant
in emotion classification, particularly for arousal and valence
(Kroupi et al., 2014). Interestingly, the CFCmethod of computing
PANS-CNS phase-amplitude coupling was most often selected;
for arousal 97% of the top features corresponded to CFC-type
features. ModI features, in fact, were never selected as being a
top candidate. PAC features showed to be particularly useful for
valence estimation where 80% of the top features emanated from
central brain regions (C3, CP1, FC1) and the attained balanced
accuracy outperformed all other tested features. Such findings
suggest that alternate PAC representations should be explored,
especially within the scope of valence estimation.
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TABLE 1 | Selected top-35 features for the arousal dimension.

Ranking Arousal

AMI AMC AME PAC SF

1 γ _m-γ _FC5_CP2 α_m-α_T8_CP6 ratio_γ _m-γ _Fz cfc_FC1_7_Hz AI_β_FC1_FC2

2 β_m-α_FC5_CP5 θ_m-θ_Fp1_Pz β_m-α_F7 cfc_CP5_7_Hz AI_θ_FC1_FC2

3 γ _m-γ _FC5_Cz γ _m-γ _FC5_FC1 ratio_γ _m-β_Pz cfc_O1_19_Hz γ _Fp1

4 γ _m-γ _FC5_AF4 γ _m-θ_CP5_F8 θ_m-θ_O1 cfc_FC5_15_Hz θ_O2

5 γ _m-γ _AF4_CP2 θ_m-θ_C3_O2 ratio_β_m-θ_CP5 cfc_FC1_44_Hz α_O2

6 β_m-α_CP5_Pz α_m-α_P7_C4 β_m-β_O2 cfc_O1_20_Hz α_F7

7 γ _m-γ _FC5_PO4 α_m-θ_F7_T7 ratio_α_m-θ_O2 cfc_O1_27_Hz θ_CP6

8 γ _m-α_PO3_F8 γ _m-γ _P7_F8 γ _m-β_F7 cfc_O1_28_Hz α_Pz

9 γ _m-γ _FC5_C4 β_m-θ_C4_P4 ratio_α_m-α_T8 cfc_FC5_16_Hz AI_β_AF3_AF4

10 γ _m-β_FC5_PO4 θ_m-θ_FC6_Cz ratio_β_m-β_FC2 cfc_FC1_39_Hz β_FC5

11 β_m-θ_FC2_P8 α_m-θ_T8_CP6 θ_m-θ_FC5 cfc_FC1_43_Hz θ_AF4

12 γ _m-γ _FC5_Fp2 θ_m-θ_Fp1_P7 ratio_α_m-θ_Cz cfc_FC1_42_Hz θ_P4

13 γ _m-γ _FC5_Fz γ _m-θ_P7_F8 ratio_β_m-θ_Pz cfc_O1_18_Hz AI_β_P7_P8

14 γ _m-γ _AF4_Cz α_m-α_FC2_P8 α_m-α_Cz cfc_O1_26_Hz θ_F8

15 β_m-β_AF3_CP5 α_m-θ_P7_C4 ratio_α_m-α_O2 cfc_P8_5_Hz AI_β_FC5_FC6

16 β_m-β_FC5_CP5 β_m-α_C4_P4 ratio_α_m-θ_Fz cfc_FC1_37_Hz β_Fp2

17 α_m-α_FC1_T8 θ_m-θ_C3_O1 ratio_α_m-α_Cz cfc_O1_29_Hz θ_FC6

18 α_m-α_Oz_CP2 θ_m-θ_P3_P8 γ _m-α_F7 cfc_O1_23_Hz θ_T8

19 γ _m-γ _FC5_FC6 α_m-θ_Fp1_Cz α_m-θ_O2 cfc_O1_22_Hz α_Fz

20 β_m-β_PO3_P8 γ _m-α_T7_FC2 ratio_β_m-θ_P3 cfc_FC1_8_Hz α_PO3

21 γ _m-β_AF4_PO4 γ _m-β_FC5_FC1 α_m-θ_T8 cfc_FC5_18_Hz γ _F4

22 γ _m-β_FC5_Fz β_m-θ_T7_T8 ratio_γ _m-γ _Oz cfc_FC1_35_Hz AI_θ_O1_O2

23 β_m-α_AF3_Pz γ _m-α_FC5_FC1 θ_m-θ_P7 cfc_Fz_19_Hz θ_P8

24 γ _m-γ _AF4_PO4 β_m-θ_Cz_PO4 ratio_γ _m-θ_CP1 esc_C4 AI_β_Fp1_Fp2

25 γ _m-β_FC5_Fp2 θ_m-θ_O1_CP6 α_m-θ_CP6 cfc_CP1_5_Hz β_F3

26 γ _m-γ _Fp2_AF4 γ _m-γ _CP5_F8 α_m-α_T8 cfc_O1_25_Hz β_FC1

27 α_m-θ_PO3_CP2 γ _m-γ _T7_FC2 β_m-α_C3 cfc_FC1_41_Hz γ _P3

28 γ _m-γ _FC5_P3 β_m-β_F3_PO3 ratio_γ _m-γ _Pz cfc_FC1_40_Hz β_Fp1

29 γ _m-γ _FC5_FC1 γ _m-β_T7_FC2 ratio_γ _m-θ_Pz cfc_FC1_38_Hz α_PO4

30 β_m-β_AF3_O2 β_m-β_C4_P4 ratio_α_m-α_Fz cfc_O1_30_Hz θ_Fp2

31 α_m-θ_FC1_T8 α_m-θ_FC2_P8 ratio_γ _m-θ_P3 cfc_FC5_20_Hz α_F4

32 α_m-θ_F3_Oz γ _m-β_CP5_F8 α_m-θ_Cz cfc_FC5_19_Hz α_P7

33 γ _m-β_FC5_FC6 γ _m-β_P7_F8 ratio_θ_m-θ_O2 cfc_O1_21_Hz AI_β_F7_F8

34 γ _m-γ _F3_Fp2 α_m-α_F7_T7 β_m-β_F7 cfc_FC5_17_Hz β_AF3

35 γ _m-γ _FC1_AF4 α_m-α_Fp1_Cz ratio_α_m-θ_AF4 cfc_O1_24_Hz θ_CP2

Feature names listed should be self explanatory. The “ratio” features correspond to the log-ratio ones between the video and baseline periods; “AI” corresponds to the asymmetry index

between the indicated channels.

Regarding the proposed AMF features, for arousal estimation,
γ and β bands showed to be particularly useful, corresponding
to roughly 86% of the top AMI features and 50% of the
AMC and AME features. These findings are inline with results
from Jenke et al. (2014). For valence, α interactions showed
to be particularly useful, appearing in roughly 70% of the
top AMI features. In particular α_m-θ interactions stood out,
thus corroborating previous findings (Kensinger, 2004) which
related these bands to states of internalized attention and
positive emotional experience (Aftanas and Golocheikine, 2001).
Such alpha/theta cross-frequency synchronization has also been
previously related to memory usage (Chik, 2013). To corroborate

this hypothesis, the correlation between the proposed features
derived from the α_m-θ patterns and the subjective “familiarity”
ratings reported by the participants was computed. The majority
of the features showed to be significantly correlated (≥ 0.35, p <

0.05) with the familiarity rating, thus suggesting memory may
have indeed played an effect on the elicited affective states.

Moreover, it was previously demonstrated that the power in
the γ and β bands were also able to discriminate between liking
and disliking judgements (Hadjidimitriou and Hadjileontiadis,
2012). By analyzing their amplitude modulation cross-frequency
coupling via the proposed features, improved results were
observed, thus showing the importance of EEG amplitude
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TABLE 2 | Selected top-23 features for the valence dimension.

Ranking Valence

AMI AMC AME PAC SF

1 α_m-α_O1_CP2 θ_m-θ_T7_F8 β_m-θ_PO4 cfc_T8_5_Hz AI_α_PO3_PO4

2 α_m-α_O1_Oz β_m-β_AF3_F4 ratio_γ _m-α_PO3 cfc_C3_26_Hz α_P7

3 α_m-θ_F7_Pz γ _m-γ _CP1_P7 ratio_β_m-β_Fp1 cfc_CP1_25_Hz γ _Fz

4 α_m-α_F3_O1 γ _m-θ_AF3_Oz ratio_α_m-θ_Oz cfc_CP1_28_Hz α_P3

5 α_m-α_O1_Fp2 β_m-α_F7_P8 ratio_γ _m-β_PO3 cfc_O2_15_Hz AI_α_P3_P4

6 α_m-α_O1_O2 γ _m-β_F3_Oz β_m-θ_Pz cfc_C3_25_Hz AI_γ _O1_O2

7 α_m-α_T7_O1 γ _m-γ _AF3_P7 ratio_γ _m-β_Fp1 cfc_C3_24_Hz θ_Fz

8 β_m-β_CP6_CP2 γ _m-θ_AF3_P7 ratio_β_m-α_Fp1 esc_F3 α_PO3

9 α_m-θ_O1_CP2 γ _m-α_F3_Oz γ _m-β_PO4 cfc_O2_14_Hz AI_α_P7_P8

10 β_m-β_F4_CP2 θ_m-θ_Pz_PO4 ratio_β_m-θ_P8 cfc_FC1_42_Hz θ_O1

11 β_m-θ_AF3_Oz α_m-α_Fp1_Pz β_m-β_P3 cfc_FC1_43_Hz β_PO3

12 α_m-α_O1_PO4 θ_m-θ_F4_FC2 ratio_α_m-α_CP2 cfc_C3_27_Hz AI_α_F7_F8

13 β_m-β_F4_F8 γ _m-γ _F3_Oz γ _m-γ _PO4 cfc_CP1_23_Hz AI_γ _C3_C4

14 γ _m-β_F7_Cz γ _m-θ_F3_Oz β_m-θ_T8 cfc_C3_23_Hz AI_γ _FC1_FC2

15 α_m-θ_O1_O2 β_m-α_AF3_F4 β_m-α_P3 cfc_CP1_30_Hz AI_β_PO3_PO4

16 α_m-θ_O1_Cz γ _m-θ_Oz_O2 β_m-α_PO4 cfc_CP1_24_Hz AI_β_FC5_FC6

17 α_m-α_CP1_PO4 β_m-α_F4_P8 β_m-β_T7 esc_F4 AI_α_O1_O2

18 γ _m-θ_F3_O1 γ _m-α_CP1_P7 β_m-θ_T7 cfc_FC1_45_Hz AI_β_F7_F8

19 γ _m-β_P8_O2 γ _m-β_CP1_P7 ratio_β_m-α_PO3 cfc_CP1_26_Hz AI_θ_AF3_AF4

20 α_m-θ_O1_Fz β_m-β_CP5_T8 γ _m-θ_PO4 cfc_CP1_29_Hz α_Fz

21 α_m-θ_F7_AF4 β_m-β_F7_P8 ratio_β_m-β_PO3 cfc_CP1_27_Hz AI_β_P3_P4

22 α_m-α_O1_Cz γ _m-β_AF3_P7 ratio_θ_m-θ_CP2 cfc_FC1_44_Hz β_P3

23 α_m-θ_O1_Oz θ_m-θ_O1_Cz ratio_γ _m-α_Fp1 esc_AF3 θ_AF3

Feature names listed should be self explanatory. The “ratio” features correspond to the log-ratio ones between the video and baseline periods; “AI” corresponds to the asymmetry index

between the indicated channels.

modulation coupling for affective state recognition. In fact, for
the liking dimension 100% of the AMC features came from
these two bands and this feature set resulted in the greatest
improvement over the benchmark set (i.e., 1.9% increase).
Moreover, β and α interactions were shown useful for dominance
prediction in Liu and Sourina (2012). Here, 63% of the AMI
features corresponded to those bands with several β_m-α
features appearing at the top. Interestingly, for the AMC features,
all top 19 features corresponded to β band interactions, with
several coming from parietal regions, thus corroborating findings
in Liu and Sourina (2012).

From the Tables, it can also be seen that the proposed
normalization scheme over the baseline period was shown
to be extremely important for the AME features, which
unlike AMI and AMC, are energy-based features and not
connectivity ones. For arousal, roughly 57% of the features
corresponded to normalized features. For valence and liking
they roughly corresponded to half of the top feature set.
Normalization is important in order to remove participant-
specific variability. Interestingly, only for the dominance
dimension were normalized features seldom selected (20%) and
it was for this emotional primitive that the AME features showed
to be most useful. When analyzing the high/low threshold
used per subject, it was observed that for the dominance
dimension, the standard deviation of the optimal threshold

across participants was lower at 0.65. For comparison purposes,
the standard deviation for arousal (shown in Figure 3) was of
0.71. As such, since there was lower inter-subject variability for
the dominance dimension, normalization was not as important.
Overall, for the entire AMF set, channels that involved the frontal
region provided several relevant features, thus confirming the
importance of the frontal region for affective state recognition
(Mikutta et al., 2012).

4.2. Classification and Feature Fusion
As shown in Table 5, all tested features and feature combinations
resulted in balanced accuracy results significantly greater
than chance. When all classifiers relied on the same input
dimensionality and default parameters, the superiority of
the proposed amplitude modulation features could be seen,
particularly for the arousal, dominance and liking dimensions.
In the case of equal dimensionality, fusion of AMF features did
not result in any improvements over the individual amplitude
modulation features, both for feature- and decision-level fusion.
Notwithstanding, some improvement was seen when more
features were explored. PAC features, in turn, were shown
to be particularly useful for valence estimation. When PAC
features were fused with benchmark and proposed AMF features,
(i) feature-level fusion was shown to be particularly useful for
arousal estimation, achieving results significantly better than
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TABLE 3 | Selected top-19 features for the dominance dimension.

Ranking Dominance

AMI AMC AME PAC SF

1 θ_m-θ_CP1_T8 β_m-θ_P7_F8 γ _m-β_P7 esc_AF3 θ_FC2

2 α_m-α_P3_Oz β_m-α_CP1_F8 β_m-β_P3 cfc_FC2_11_Hz γ _F3

3 α_m-θ_AF3_T7 β_m-θ_T7_F8 α_m-α_Pz cfc_FC2_8_Hz α_PO3

4 γ _m-α_F7_CP6 β_m-α_CP5_AF4 γ _m-α_P7 cfc_CP6_7_Hz θ_C3

5 θ_m-θ_P3_P8 β_m-β_CP1_Fz γ _m-θ_PO4 cfc_CP6_8_Hz θ_Pz

6 θ_m-θ_FC2_P8 β_m-α_P7_FC6 α_m-θ_Pz cfc_F3_6_Hz γ _P7

7 β_m-α_CP1_Pz β_m-θ_PO3_P4 ratio_γ _m-β_P8 cfc_FC2_7_Hz θ_FC6

8 α_m-α_F3_Fz β_m-α_CP1_Fz ratio_β_m-θ_P8 cfc_FC5_5_Hz θ_P4

9 β_m-θ_P3_F4 β_m-θ_F8_P4 ratio_γ _m-γ _P8 cfc_F4_12_Hz β_F3

10 β_m-α_CP1_P3 β_m-β_CP1_F8 θ_m-θ_Pz cfc_FC2_9_Hz α_P7

11 β_m-α_P3_Pz β_m-α_PO3_PO4 γ _m-γ _PO4 cfc_FC5_11_Hz β_C4

12 β_m-θ_P3_PO4 β_m-α_P7_F8 ratio_γ _m-γ _PO4 cfc_CP1_42_Hz AI_β_CP5_CP6

13 α_m-α_AF3_Fz β_m-β_CP5_Pz β_m-α_F7 cfc_CP6_9_Hz θ_PO3

14 β_m-β_FC5_Pz β_m-α_CP5_Pz γ _m-β_F7 cfc_P4_6_Hz α_Pz

15 α_m-α_AF3_T7 β_m-β_CP5_AF4 γ _m-β_P3 cfc_F4_14_Hz θ_P3

16 γ _m-α_F7_CP2 β_m-β_P7_F8 γ _m-γ _F7 cfc_AF4_5_Hz θ_Fp2

17 θ_m-θ_CP1_CP2 β_m-β_PO3_PO4 γ _m-θ_Cz cfc_F4_13_Hz AI_β_PO3_PO4

18 θ_m-θ_T8_P8 β_m-θ_CP1_F8 β_m-β_Cz cfc_FC2_12_Hz θ_O1

19 β_m-β_FC5_P3 β_m-θ_CP1_Fz β_m-β_F7 cfc_FC2_10_Hz AI_γ _F7_F8

Feature names listed should be self explanatory. The “ratio” features correspond to the log-ratio ones between the video and baseline periods; “AI” corresponds to the asymmetry index

between the indicated channels.

TABLE 4 | Selected top-21 features for the liking dimension.

Ranking Liking

AMI AMC AME PAC SF

1 β_m-θ_AF4_CP6 γ _m-α_Pz_AF4 ratio_β_m-θ_FC6 cfc_P7_30_Hz α_P3

2 β_m-α_PO3_P8 β_m-β_O1_T8 γ _m-β_P7 cfc_FC1_7_Hz θ_C3

3 α_m-α_O1_Oz β_m-β_Pz_FC2 ratio_γ _m-γ _P8 cfc_P7_29_Hz β_P3

4 γ _m-γ _Fp1_T7 γ _m-β_Pz_AF4 γ _m-θ_P3 cfc_PO4_42_Hz β_T8

5 α_m-α_Oz_FC2 β_m-β_CP5_AF4 α_m-α_AF4 esc_T8 β_O1

6 θ_m-θ_Fp1_AF4 γ _m-γ _Pz_AF4 ratio_γ _m-α_P8 cfc_P7_32_Hz θ_P4

7 θ_m-θ_C3_P8 β_m-θ_FC1_O1 ratio_γ _m-θ_F3 cfc_P7_31_Hz α_F8

8 θ_m-θ_CP5_AF4 γ _m-θ_Pz_AF4 α_m-α_CP1 cfc_PO4_39_Hz β_PO3

9 β_m-θ_P3_AF4 γ _m-γ _AF3_Oz ratio_β_m-θ_P8 cfc_PO4_45_Hz AI_β_FC5_FC6

10 β_m-θ_F7_AF4 γ _m-β_CP1_AF4 γ _m-θ_F3 esc_F3 β_AF3

11 θ_m-θ_P7_AF4 β_m-α_O1_T8 ratio_β_m-β_C3 cfc_PO4_44_Hz θ_CP1

12 β_m-β_PO3_P8 γ _m-α_Fp1_T7 ratio_β_m-α_C3 cfc_Fp1_8_Hz α_CP5

13 θ_m-θ_PO3_Cz β_m-α_CP5_P4 ratio_β_m-α_F3 cfc_P7_26_Hz β_F3

14 β_m-θ_F3_AF4 γ _m-θ_CP1_AF4 ratio_α_m-θ_Fp1 esc_CP1 AI_α_P7_P8

15 θ_m-θ_CP1_AF4 γ _m-β_AF3_Oz ratio_γ _m-γ _FC6 cfc_PO4_41_Hz AI_β_F7_F8

16 α_m-θ_Oz_FC2 β_m-θ_FC5_PO3 ratio_β_m-α_Fp2 cfc_PO4_43_Hz AI_β_PO3_PO4

17 α_m-θ_P7_P8 γ _m-γ _CP1_AF4 ratio_γ _m-β_P8 cfc_P7_27_Hz θ_FC6

18 β_m-β_PO3_P4 γ _m-α_AF3_Oz β_m-θ_P7 esc_P8 β_FC5

19 θ_m-θ_Pz_CP6 β_m-θ_F3_P8 ratio_θ_m-θ_P7 cfc_FC1_8_Hz AI_θ_F7_F8

20 θ_m-θ_Pz_AF4 β_m-β_F3_P8 ratio_β_m-β_F3 cfc_FC6_10_Hz θ_F4

21 β_m-θ_AF4_T8 γ _m-α_CP1_AF4 β_m-β_T7 cfc_P7_28_Hz θ_Fz

Feature names listed should be self explanatory. The “ratio” features correspond to the log-ratio ones between the video and baseline periods; “AI” corresponds to the asymmetry index

between the indicated channels.
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TABLE 5 | Performance comparison of SVM classifiers for different feature sets and fusion strategies.

Feature class Fusion type Valence % Arousal % Dominance % Liking %

AMI – 0.604 4.4 0.583 5.6 0.564 4.1 0.626 1.1

AMC – 0.594 2.7 0.563 1.9 0.569 5.0 0.630 1.9

AME – 0.600 3.6 0.563 1.9 0.573 5.6 0.627 1.3

AMF Feature-level 0.594 2.7 0.583 5.6 0.566 4.4 0.624 0.9

PAC – 0.634 9.7 0.568 3.0 0.559 3.2 0.629 1.7

SF – 0.578 – 0.552 – 0.542 – 0.619 –

AMF + SF + PAC Feature-level 0.594 2.7 0.598 8.4 0.567 4.6 0.624 0.9

AMI + AMC + AME Decision-level 0.594 2.8 0.563 1.9 0.567 4.6 0.625 1.0

AMF + PAC + SF Decision-level 0.594 2.7 0.563 1.9 0.563 3.7 0.633 2.2

All reported results were significantly higher than chance achieved with a random voting classifier (p < 0.05). Column labeled “%” indicates relative improvement, in percentage, over

the SF baseline set.

the benchmark (p ≤ 0.05), and (ii) decision-level fusion was
shown to be useful for liking prediction. Once varying input
dimensionality was explored, the advantages of the proposed
features over the benchmark became more evident, with gains as
high as 8 and 20% being observed for the valence and dominance
dimensions, respectively. Such results were significantly better
than the benchmark (p ≤ 0.05).

4.3. Study Limitations
This study has relied on the publicly available pre-processed
DEAP database, which utilized a common average reference.
Such referencing scheme could have introduced an artificial
correspondence between nearby channels, thus potentially
biasing the amplitude modulation and connectivity measures
(Dezhong, 2001; Dezhong et al., 2005). By utilizing the multi-
stage feature selection strategy, such biases were reduced,
as feature redundancy was minimized and relevance was
maximized. Moreover, from the relevant connections reported
in the Tables, it can be seen that the majority of relevant
connections are from electrodes that are sufficiently far apart,
thus overcoming potential smearing contamination issues due
to referencing. Moreover, as with many other machine learning
problems, differences in data partitioning may lead to different
top-selected features and, consequently, to varying performance
results. This is particularly true for smaller datasets such as the
one used herein. To test the sensitivity of data partitioning on
feature selection, we randomly partitioned the 25% subset twice
and explored the top selected features in each partition. For
the AME features, for example, and the valence dimension, it
was found that 13 of the top 23 features coincided for the two
partitions. While this number is not very high, it is encouraging
and future work should explore the use of boosting strategies
and/or alternate data partitioning schemes to improve this.

5. CONCLUSIONS

In this work, experimental results with the publicly available
DEAP database showed the EEG amplitude modulation

based feature sets such as amplitude-amplitude cross-
frequency modulation coupling features, as well as linear
and nonlinear connection between multiple electrode pairs
outperformed benchmark measures based on spectral power by
as much as maximum 20% for dominance. Moreover, phase-
amplitude coupling of EEG and GSR signals outperformed
the benchmark by over 9% and when fused with the proposed
amplitude modulation features, further gains in arousal
and liking prediction were observed. Such findings suggest
the importance of the proposed features for affective state
recognition and signal the importance of EEG amplitude
modulation for affective tagging of music video clips and
content.
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