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Abstract: The heterogeneity of psychiatric disorders makes researching disorder-specific neurobiological 
markers an ill-posed problem. Here, we face the need for disease stratification models by presenting a 
generalizable multivariate normative modelling framework for characterizing brain morphology, applied to 
bipolar disorder (BD). We employed deep autoencoders in an anomaly detection framework, combined with a 
confounder removal step integrating training and external validation.  
The model was trained with healthy control (HC) data from the human connectome project and applied to 
multi-site external data of HC and BD individuals. We found that brain deviating scores were greater, more 
heterogeneous, and with increased extreme values in the BD group, with volumes prominently from the basal 
ganglia, hippocampus and adjacent regions emerging as significantly deviating. Similarly, individual brain 
deviating maps based on modified z scores expressed higher abnormalities occurrences, but their overall 
spatial overlap was lower compared to HCs. 
Our generalizable framework enabled the identification of subject- and group-level brain normative-deviating 
patterns, a step forward towards the development of more effective and personalized clinical decision support 
systems and patient stratification in psychiatry. 

Keywords: Normative Modelling; Anomaly Detection; Multi-site Harmonization; Psychiatric Disorders; Brain 
MRI 

1.Introduction  

Psychiatric disorders, as described in the current categorical classification system, are highly heterogeneous marked 

by a complex interplay of genetic and environmental factors that lead to altered physiological mechanisms [1]–[3]. 

Many neuroimaging studies have attempted to objectively characterize these disorders by searching for brain 

markers that could support diagnosis or disease management [4]–[10]. Nonetheless, no clinically useful markers have 

emerged until now [11]. For instance, brain models of bipolar disorder (BD) are currently being investigated, but the 

overall findings appear fragmented [12], [13]. A recurrent problem lies in the inability to generalize findings within a 

patient population, as group-level diagnostic effects have been shown to not replicate at subject level [14] and 

appear to be shared between different diagnostic groups [15]–[17]. Thus, delineating disorder-specific 

neurobiological patterns is challenging as the categorization of psychiatric disorders into well-defined diagnostic 

groups was not guided by neurobiological evidence [18], [19]. Accordingly, the study of brain morphological markers 

of psychiatric disorders should account for the uncertainty associated with the diagnostic labels and move away from 

classic case-control group comparisons to personalized normative-based statistical inferences [20]–[22].  

Deep learning (DL) autoencoder (AE) models are widely employed in anomaly detection frameworks and have 

emerged has suitable multivariate models for brain normative frameworks [23]–[25]. AEs are encoder-decoder 

models based on artificial neural networks designed to capture relevant regularities in data through the minimization 

of a reconstruction error (RE). The REs are fully traceable, enabling the identification of specific brain regions with 

higher deviations from the norm. Thus, leveraging this normative-based anomaly detection approach effectively 

attenuates the lack of interpretability associated with their “black box” nature. In addition, model interpretability can 

be further increased through the application of the AE on confounder-free data [26].  

By leveraging these promising modelling tools and a large multi-site T1-weighted structural magnetic resonance 

imaging (sMRI) data of healthy controls (HC) and individuals with BD, our study proposes a robust and innovative 

personalized medicine framework for improving the complex clinical management of BD (and other mental 

disorders). A shift from a disease-centred to a patient-centred paradigm is promoted via the development of a 

generalizable, and extendable AE-based brain normative modelling and anomaly detection framework. For the first 

time, the proposed data processing pipeline includes a confounders’ removal step fully generalizable to external 

datasets and the normative model integrates cortical thickness (CT), gray matter (GMV), and white matter volumes 

(WMV) features. 

We developed an end-to-end pipeline to manage both biological and site-related confounding sources embedded in 

the external validation (EV) framework [27], allowing its application to new external data. The normative model 

framework was trained on region-based brain morphological features to integrate CT, GMV and WMV, from the 
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human connectome project young adults (HCP-YA) data [28] and applied to multi-site data from the StratiBip network 

[16], including HC and subjects with BD. Subject-level REs were extracted and compared between HC and BD to 

assess and characterize deviating brain patterns in affected individuals, under the hypothesis that individuals affected 

with BD would deviate more than HCs from the HCP-YA normative population in some of the brain features. We 

hypothesized that the AE-based normative model built on HCP-YA data would be a robust and effective tool to 

identify and characterize subject-level and group-level patterns of brain alterations.  

2. Related Work  

Numerous techniques have been proposed for brain normative modelling and anomaly detection, which we 

distinguish here as regression-based and DL-based. Unsupervised deep learning models for anomaly detection are 

mostly based on AEs or Generative Adversarial Networks [25]. According to a recent review, most DL-based anomaly 

detection techniques for brain medical imaging have been developed for lesion and tumor detection or for brain 

segmentation, taking raw images and volumes as input [29]. Few examples can be found in literature applying this 

framework to psychiatric disorders, where brain alterations are subtle and not explicitly present. The first to develop 

such an application with deep AEs was Pinaya et al. [23], training an AE model with brain morphological features 

from healthy controls and then employing an anomaly detection framework to study brain normative deviations of 

schizophrenic and autistic patients. In the same line, based on an adversarial AE model, the same author studied 

brain morphological deviations from patients with Alzheimer's disease and mild cognitive impairment [24]. More 

recently, a basic autoencoder was employed as a normative data-driven feature learner and applied to extract data-

driven brain-deviating scores [30]. In the latter work, the AE was trained with brain volumetric features from healthy 

controls and then the test set reconstruction errors associated with controls and subjects affected by bipolar disorder 

were extracted and fed to a feature selection module and a random forest classifier. Besides the described studies, 

most normative modelling approaches developed for psychiatric disorders have applied regression methods. In this 

case, normative brain curves have been mapped mainly using Gaussian process regression (GPR),  first proposed for 

normative modelling in [31], and since then has been extensively used [14], [20]. Differently, C. J. Fraza et al. [32] 

proposed warped Bayesian linear regression as an improvement upon the latter GPR, which was successfully 

implemented in the work developed by S. Rutherford et al. [22]. Other regression-based methods have also been 

proposed, such as generalized additive models [33], [34]; nevertheless, all these methods are univariate, since they 

fit a separate regression line to each brain region and therefore do not address the interdependences among brain 

regions [35]. Conversely, multivariate approaches can overcome this issue by facilitating the study of pattern-wise 

brain changes [36]. In R. Ge et al. [37], a comparative analysis of eight algorithms, including the aforementioned 

methods, identified multivariate fractional polynomials (MFP) as the most effective model; still, deep learning models 

surpass MFPs in capacity and in handling highly complex multivariate relationships.  

In summary, the majority of anomaly detection techniques developed for studying psychiatric disorders have relied 

on regression methods, which are limited in their capacity to model complex multivariate relationships. Few studies 

have employed DL-based techniques to investigate brain morphological anomalies, and those that have failed to 

address a critical challenge in psychiatry: the heterogeneity of diagnostic groups. The present study aims to fill this 

gap by proposing an end-to-end normative framework based on deep-AEs and statistical inference methods to study 

both within-group heterogeneity and between-group discrimination. 

 

2. Materials and methods  

The data analysis workflow is schematized in Fig. 1. We extracted brain regional features from sMRI data that were fed 

into an embedded confounder removal (CR) pipeline that integrated training with the external test set, comprising 

both biological and site confounding effects removal. Then the normative AE model was trained with the confounder-

free HCP-YA training set features. The StratiBip test set REs were extracted from the normative model and both 

subject’s and brain features-by-group mean deviation scores (MDS) were calculated employing the mean square error. 

In the group-level analysis, we evaluated the MDS group's discriminative power, identified significant deviating 

neuroanatomical patterns in the BD group, and characterized both groups in terms of RE heterogeneity and extreme 

deviating values. Then, we built personalized subject-level brain deviating maps for all test subjects via modified z 

scores (mZ) transformation and studied individual abnormalities and groups’ spatial maps overlap. 
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Fig. 1 | Normative modelling framework: data confounders’ removal and normative anomaly detection pipeline. 

 

 

2.1 Datasets 

Normative Training set: HCP dataset. Our training set was obtained from the Human Connectome Project Young 

Adults (HCP-YA) public dataset, 1200 Subjects Data Release (S12000 Release,March 2017) [28], available on the 

connectomeDB platform (https://db.humanconnectome.org) [38]. The retrieved data consisted of 3T T1-weighted 

sMRI scans from 1109 HC subjects aged between 22 and 37 years. For this dataset, we obtained the Restricted Data 

Access Authorization by signing and agreeing to the WU-Minn HCP Terms. All methods developed and publication of 

source codes comply with the obligations and regulations of those terms. 

StratiBip Dataset: External Test set. The external test set consisted of data collected as part of the StratiBip network, 

an initiative promoted by PB and EM that originated from the ENPACT network [16]. The StratiBip dataset results from 
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the post-hoc integration of multi-site clinical and neuroimaging data collected from HC and subjects affected with BD, 

more details can be found in supplementary information. 

The sMRI data used as external test set was acquired from 550 subjects (363 HC and 187 with BD) across 7 sites using 

T1-weighted sequences on 3T MRI scanners. Each site employed its own resources, protocols, and sequences (Table 

S12). Consistent with the HCP training sample, only young adults were included, from 22 to 37 years old (Table S1-

S2). 

2.2 sMRI pre-processing 

All sMRI data were pre-processed in Matlab R2018a (The Mathworks, Inc®) environment. Firstly, T1-weighted images 

underwent a visual quality check and were converted from DICOM to NIFTI format. Following, the pre-processing was 

performed using the statistical parametric mapping software (SPM12) version 7771 [39], available at 

(http://www.fil.ion.ucl.ac.uk/spm/software/spm12/), and the computational anatomy toolbox add-on (CAT12) version 

12.7 [40]. The detailed pre-processing pipeline is described in Supplementary Information. The pre-processed volume-

based images were used to extract global measures as total intracranial volumes (TIV), regional cortical thickness 

measures for the Desikan-Killiany-Tourville (DK40) cortical atlas map [41], consisting of 68 ROIs (Table S13) and regional 

tissue volumes for the CoBra volume atlas map [42], provided by the Computational Brain Anatomy Laboratory at the 

Douglas Institute (CoBra Lab). The inclusion of volumetric measures was based entirely on the fully automated CAT12 

processing pipeline. Therefore, all CAT12 volumetric estimations (WMV and GMV) using the CoBra atlas were included 

without any selection based on prior knowledge. CAT12 estimates WMV for GM regions and vice versa, using subject-

specific tissue probability maps. WMV estimates for GM regions were interpreted as volume estimations for WM areas 

adjacent to the specific regions, and vice versa. A total of 50 GMV estimations (Table S14) and 52 WMV estimations 

(Table S15) were considered. The resulting GMV, WMV, and CT features were subject to the following processing steps.  

 

2.3 Confounder Removal Pipeline 

2.3.1 Multi-site M-ComBat Harmonization 
 

In the present work, we developed a framework for the harmonization of external test sets, i.e., with data collected in 

sites different from the normative training set. Site effects represent latent encoded information within MRI data 

associated with inter-site differences in MRI scanners and acquisition protocols. These differences make data not 

directly comparable, mask the biological effects of interest, e.g., diagnosis, and, most importantly, are learnable 

confounding features that significantly affect ML models and analysis [43]. In our study, the harmonization pipeline 

was developed to harmonize GM and WM volumes and CT features from the multi-site StratiBip external test set with 

the HCP-YA training set. This step was aimed to remove both intra-test set and inter-set differences, unlocking the 

possibility of applying the trained AE normative model in an external validation framework and performing reliable 

subject- and group-level statistical inferences. The pipeline was based on the ComBat (Combatting Batch Effects) tool, 

described below.  

ComBat model. ComBat [44] is a harmonization method widely employed for neuroimaging datasets and particularly 

robust for small sample sizes [45], [46]. It uses an empirical bayes (EB) framework to estimate model parameters for 

each included site, assuming both additive and multiplicative site effects on data, 𝛾𝑖𝑣, 𝛿𝑖𝑣, for the 𝑖𝑡ℎsite,   𝑗𝑡ℎ subject, 

and 𝑣𝑡ℎ feature 𝑦 : 

 

𝑦𝑖𝑗𝑣 = 𝑎𝑣 + 𝑋𝑗
𝑇𝛽𝑣 +  𝛾𝑖𝑣 + 𝛿𝑖𝑣𝜖𝑖𝑗𝑣 (1) 

 

Furthermore, it allows for the preservation of subject-specific biological covariates, 𝑋𝑗. The two site effect parameters 

are estimated from the standardized biocovariates-free data and then used to adjust the original data, as shown in Eq. 

2:   

�̂�𝑖𝑗𝑣
𝐶𝑜𝑚𝐵𝑎𝑡 =

𝑦𝑖𝑗𝑣 − �̂�𝑣 − 𝑋𝑗�̂�𝑣 − 𝛾𝑖𝑣
∗

𝛿𝑖𝑣
∗ + �̂�𝑣 + 𝑋𝑗�̂�𝑣 

(2) 
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In the original ComBat model, the adjusted data is transformed to a location and scale related to the overall mean and 

pooled variance of the estimated site effects. Hence, to harmonize data, ComBat depends on the sites available at the 

moment of estimation, enabling its application exclusively in internal validation frameworks [47]–[49]. This issue is 

overcome in M-ComBat which gives the possibility to shift samples to a pre-determined reference batch location, 𝑖 =

𝑟𝑒𝑓:  �̂�𝑖=𝑟𝑒𝑓,𝑣  �̂�𝑖=𝑟𝑒𝑓,𝑣, which we have employed for ML-EV frameworks as done before in [50]. 

 

Harmonization pipeline. The proposed harmonization pipeline is shown in Fig. 1.  As we work in a normative modelling 

context, the StratiBip site-effect estimation was performed exclusively on the HC portion of the StratiBip test set 

(N=363), 𝑦𝑖𝑗=𝐻𝐶,𝑣, using the HCP-YA normative training set as the reference 𝑖 = 𝐻𝐶𝑃. In the site-effect estimation 

stage, the model starts by standardizing data with the HCP-YA statistics, �̂�𝑖=𝐻𝐶𝑃,𝑣, �̂�𝑖=𝐻𝐶𝑃,𝑣 , while accounting for 

biological covariates at net of site for all included subjects 𝑦𝑖𝑗=𝐻𝐶,𝑣
𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑𝑖𝑧𝑒𝑑 =

𝑦𝑖𝑗=𝐻𝐶,𝑣− �̂�𝑖=𝐻𝐶𝑃,𝑣−  𝑋𝑖𝑗=𝐻𝐶,�̂�𝑣

�̂�𝑖=𝐻𝐶𝑃,𝑣
. Next, additive 

and multiplicative site effects were estimated using the EB framework and then applied in the correction stage to 

harmonize the StratiBip external test set (relative to both HC and BD). The harmonization of the test set was performed 

as indicated in Eq. 2, using the feature mean, standard deviation, and biocovariates coefficients computed on the HCP-

YA reference set. 

The python-based neurocombat functions made available in (https://github.com/Jfortin1/neuroCombat) by F.P. Fortin 

were adapted and integrated into a python classe available in (https://github.com/inesws/neurocombat_pyClasse), 

denominated neurocombat_pyClasse, compatible with sklearn Pipelines and with fit(), transform() methods for its 

application in CV frameworks.  

 

Feature harmonization. Using the pipeline described above, we harmonized TIV, WMV, GMV, and CT features of the 

StratiBip test set with the reference HCP-YA training set. For all feature sets, age and sex were included as biocovariates 

to preserve, while for volume features, previously harmonized TIV was also included. First, raw TIV measures were 

harmonized together with other extracted global measures. Then, regional volumes and CT features were separately 

harmonized. More detailed information is available in Supplementary Information. 

 

Harmonization pipeline validation. To ascertain the harmonization success, we proceed with a series of validation 

analyses. The compliance with the following criteria was assessed: 1) successful and efficacy of site effects removal, 

2)  total preservation of biological covariates after M-ComBat harmonization. To evaluate 1) we checked if site 

differences and effects identified before data harmonization were effectively removed after M-ComBat application. 

We employed Kruskal Wallis ANOVA tests to compare mean feature-type distributions among sites and a site 

classification paradigm with a support vector machine learning model, before and after harmonization. To evaluate 2) 

we study the significance of age, sex, and diagnosis effects on raw and harmonized data with linear regression 

models to assert their stability after M-ComBat harmonization. A more detailed description of this and 

complementary analyses is available in Supplementary Information. 

2.3.2 Biological covariates removal via linear regression 
After data harmonization, we proceeded with the removal of variance associated with age and sex biocovariates from 

regional volume and CT features, and harmonized TIV from volume features, via standard LR [51], [52]. We 

considered the outlined biological covariates as confounding variables as these are implicitly encoded in 

neuroimaging data and would contribute to a source ambiguity problem of the later developed AE model.  We 

embedded the LR estimations and corrections in the EV, consistently with the proposed CR pipeline. The LR 

coefficient estimations were performed exclusively on the HCP-YA training set, and the estimated effects were 

removed from both HCP-YA training set and StratiBip test set [53], [54]. After this step, data is referred to as 

corrected. More detailed information can be found in Supplementary Information.  

 

2.4 Autoencoder Normative Model 

After data has been adjusted for the identified confounders, the following step is the implementation of the 

normative AE-based model.  
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AE for normative modelling. The implementation of AEs for normative modelling is within the scope of methods for 

normality feature learning by characterizing regular feature patterns [25]. An AE has an encoder-decoder architecture 

based on artificial neural networks and is widely used for data embedding representation learning. In the normative 

framework, the model is trained in an unsupervised fashion to learn to represent normative data by optimizing a 

generic objective function that minimizes the model reconstruction error. Then, by employing an anomaly detection 

framework, anomalous data instances can be identified as the model was forced to encode relevant regularities. The 

working hypothesis revolves around the assumption that normal instances can be better reconstructed from the 

latent space than anomalous ones, a difference that can be characterized a posteriori quantifying the reconstruction 

error. 

The structure of AE models follows the following definition: a set of input data, denoted as 𝑋 = ( 𝑥1, … , 𝑥𝑛) is fed to 

the model. The latent variables, 𝑍, are outputted by an encoder, 𝐹(𝑋), and inputted in the decoder 𝐺(𝑍), which is 

trained to reconstruct 𝑋, 𝑥 = 𝐺(𝑧). The AE objective is then composed of one term, an unsupervised reconstruction 

loss [55]: 

𝐿𝑜𝑠𝑠𝐴𝐸 =  
1

𝑁
∑ 𝐿𝑟 (𝐺 (𝐹(𝑥𝑗)) , 𝑥𝑗)

𝑁

𝑗=1

 

𝑤ℎ𝑒𝑟𝑒 𝑁 𝑑𝑒𝑛𝑜𝑡𝑒𝑠 𝑠𝑎𝑚𝑝𝑙𝑒𝑠, 𝑎𝑛𝑑 𝐿𝑟 𝑡ℎ𝑒 𝑟𝑒𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛 𝑙𝑜𝑠𝑠 

 

Normative model development. We trained an AE model with the normative corrected HCP-YA training set (n=1109), 

composed of 170 tabular features: 68 CT, 50 GMV and 52 WMV features. Afterward, the trained normative model 

was employed in an anomaly detection framework using the StratiBip external test set. All the code was developed in 

python using tensorflow and sckikeras packages.  

The first step was to define the best architecture for AE-normative model. The model’s general initial architecture 

and hyperparameter search space were based on [23]. The model used selu activation function and lecun_normal 

weight initialization in all layers [56], except for the last layer of the network that was defined using a linear activation 

function and gorot weight initializer. An l2 norm was included in all layers for regularization. The model optimization 

was based on Adam [57] and the loss function, 𝐿𝑟 , on the mean squared error, 𝑀𝑆𝐸 =
1

𝑁
∑ (𝑥𝑗 − 𝑥𝑗)2𝑁

𝑗=1 . The 

number of layers, the number of neurons, the batch size, the number of epochs, the learning rate and the l2 norm 

coefficient were optimized in a 10 fold cross-validation (CV) hyperparameter tunning process with a random search 

strategy as detailed in the supplementary information. After hyperparameter tunning, the best AE model was re-

trained on the entire HCP-YA training set.  

2.5 Normative model application 

 
We applied the trained normative AE model to the external StratiBip test set. From the reconstructed StratiBip data, 

for each feature, we extracted the RE, the squared error between the original and reconstructed instances,  𝑅𝐸𝑣𝑗 =

(𝑥𝑣𝑗 − 𝑥𝑣𝑗)2. Then, the RE values were integrated with the mean squared error (MSE) for computing the subject’s 

mean deviation scores (MDS) by averaging the squared error across all the features: 𝑀𝐷𝑆𝐽 =
∑ (𝑥𝑣𝑗−�̂�𝑣𝑗)2𝑉

𝑣

𝑉
. To assess 

model robustness and variability to training data we employed a bootstrap with replacement strategy. The HCP 

training set underwent a random selection with replacement for 1000 iterations. Each time, an AE normative model 

was trained with each bootstrap sample and applied to the StratiBip test set. The MDS values resulting from the 1000 

bootstraps were subject to the analyses described in the group-level analysis section – BD- deviating brain features. 

We computed the percentile 95% confidence intervals in order to evaluate the variability of model performance and 

extract statistically significant deviating group-level features, in the BD group. 

2.5.1 Group-level analysis  

The RE metrics (both RE and MDS) extracted from HC and BD individuals of the StratiBip test set were entered in the 

following group comparisons.  

2.5.1.1 BD-deviating brain features 

AE-based anomaly detection. To assess whether BD individuals differed from HC in terms of their deviation outcomes 

from the AE normative model, group-level BD vs. HC comparison of feature-RE values was performed.  
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First, the median MDS between HC and BD subjects were compared. Then, feature-specific RE distributions were 

compared to identify region-based brain deviating patterns at the group level. For each brain morphological feature, 

we compared the RE non-normal distributions between HC and BD, using a one-tailed Mann-Whitney U (MWU) test 

(alternative hypothesis: BD group median to be higher than the HC group), assigning a critical level of 0.05 

(uncorrected), and computing the cliff’s delta effect size to quantify the magnitude of the differences. The initial 

significance criterion was established by evaluating the p-value 95% confidence interval (CI), accepting all tests with a 

mean p-value bootstrap estimate of less than 0.05. For the features identified from this initial assessment, the effect 

size was subsequently evaluated and considered significant if its 95% CI excluded zero [24]. The features resulting 

from this second-level assessment were identified as having significant increase deviations in the BD group. 

 

Mass-univariate analysis. We performed a standard mass-univariate analysis to facilitate the interpretation of 

findings regarding the BD normative deviating brain features results from the previous section. Consistently with our 

pipeline, the corrected features used in this analysis were the same fed to the AE-normative model. A two-tailed 

MWU test mass-univariate analysis was employed to assess differences between the distributions of the original 

corrected feature sets between BD and HC group. The critical level was set to 0.05 and a Bejamini-Hochenberg false 

discovery rate (FDR) correction was employed for multiple comparisons.  

MDS-based discrimination of BD vs. HC: ROC curve analysis. Following, we evaluated whether the resulting brain 

deviations, quantified through the MDS, could discriminate the two StratiBip groups.  Each subjects’ REs was 

summarized with the MDS and an receiver operating characteristic (ROC) curve analysis was employed. The area 

under the curve (AUC) of the ROC curve was extracted and the optimal discriminative MDS threshold was identified. 

2.5.1.2 RE patterns heterogeneity 

After assessing group differences we investigated RE patterns heterogeneity within and between groups. We 

computed the pairwise feature RE absolute differences between every two subjects, in each group separately and 

then between groups. Then, we summarized the overall results feature-wised with the mean heterogeneity, Eq. 4, 

where v stands for feature, j1 and j2 denote two subjects from the same group with N total subjects, and m a 

selected subject from a different group with M total subjects. The more the RE outcomes varied across subjects for a 

specific brain feature, the higher the average difference and the heterogeneity. 

 
𝑊𝑖𝑡ℎ𝑖𝑛 𝐺𝑟𝑜𝑢𝑝: 

∑ ∑ 𝑅𝐸𝑗1,𝑣 − 𝑅𝐸𝑗2,𝑣
𝑁
𝑗2=𝑗1+1

𝑁−1
𝑗1

1
2 𝑁(𝑁 − 1)

 

 

(4) 

 
𝐵𝑒𝑡𝑤𝑒𝑒𝑛 𝐺𝑟𝑜𝑢𝑝:  

∑ ∑ 𝑅𝐸𝑗,𝑣 − 𝑅𝐸𝑚,𝑣
𝑀−1
𝑚

𝑁−1
𝑗

(𝑀 − 1)(𝑁 − 1)
  

 

 

2.5.1.3. RE extreme deviations 

Afterwards, we moved away from the description of group central tendencies, i.e., comparing medians/mean, and 

exploited extreme value statistics concepts to investigate the profiles of the RE distribution tails. First, a leave-one-

out (LOO)-CV was performed to extract unbiased reconstructions for all HCP-YA training set subjects. In each fold, all 

subjects except one were used to train the normative AE model. The left-out subject was used as test sample and its 

reconstruction was extracted. Then, we applied a block maxima approach, where a series of independent 

observations are summarized by its maximum value within a specific block [58]. In our case, in each group, each 

feature was considered a block of data with N independent subjects’ measurements and was summarized with the 

top 1% mean of extreme values (MEV), i.e., the 99% trimmed mean, Eq. 5, where k is the number of data points 

corresponding to the top 1%. We assessed differences in terms of MEVs for each feature in the three groups, 

StratiBip HC and BD, and HCP-YA. 

 
𝑀𝐸𝑉𝑗=𝑔𝑟𝑜𝑢𝑝,𝑣 =

1

𝑘
∑ 𝑅𝐸𝑖,𝑣

𝑘

𝑖

 
(5) 

 

2.5.2 Personalized brain deviating maps 

2.5.2.1 Modified z scores  

.CC-BY-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 7, 2024. ; https://doi.org/10.1101/2024.09.04.611239doi: bioRxiv preprint 

https://doi.org/10.1101/2024.09.04.611239
http://creativecommons.org/licenses/by-nd/4.0/


The most promising application of the proposed AE normative modelling framework is to move from group-level to 

individualized analyses. We charted the StratiBip test set features REs by comparing them with the distributions 

extracted from the HCP-YA training set with the LOO-CV analysis, via modified z scores, mZ. The mZ scores accounts 

for the median and median absolute deviation (MAD) and is more robust than its parametric version for outlier 

identification when the underlying data distribution is non-normal [59]. Besides, MAD is a robust measure that 

captures the dispersion around the median while not being influenced by extreme values and the range of the 

dataset. First, analysing the HCP-YA normative RE outcomes, we calculated the RE median for each feature, 

𝐸[𝑅𝐸𝐻𝐶𝑃;𝑣], which we considered as the expected model normative RE. Then, we calculated the MAD, the measure 

of model uncertainty for reconstructing feature 𝑣, adjusting the MAD with a correction factor of 1/Q(0.75), where 

Q(0.75) corresponds to the 75th quantile in the respective normative feature distribution [59]. Then, the mZ score 

foresees that each new data point be standardized with the median and MAD of the normative expected RE 

distribution, Eq. 6, and was used to compute personalized deviating brain maps for each subject in the StratiBip test 

set. Afterwards, we defined an abnormality criterion based on the MAD, to derive abnormal features at individual 

level. Usually, when data is normally distributed, a known threshold for outlier detection is the measure of 3 standard 

deviations, or 3.5 MADs [60], [61]. In our case, we defined a threshold for each feature based on its specific 

normative RE distribution. Our data did not follow a normal distribution and we assume that each feature was 

encoded differently by the model, having different expected normative RE outcomes. Thus, we translated this 

feature-specific encoding into a definition of feature-specific abnormal thresholds. For each normative RE feature 

distribution, we took the mZ threshold corresponding to the 99th percentile. Thus, an individual feature was 

considered abnormal if fell in the top 1% of the normative RE expected distribution. 

 

 
𝑚𝑍𝑗𝑣 =

𝑅𝐸𝑗𝑣 − 𝐸[𝑅𝐸𝐻𝐶𝑃;𝑣]

𝑀𝐴𝐷𝐻𝐶𝑃;𝑣
 

(6) 

 

2.5.2.2 Spatial overlapping deviating patterns 

 Finally, we investigated the spatial overlap of deviating brain maps within groups. First, for each feature, we 

computed the frequency of abnormality occurrences within each group. Next, the subjects’ brain deviating maps 

were transformed into descriptive sets of abnormal features, and the pairwise subject overlap coefficient (OC) and 

Jaccard similarity (J) were computed within and between groups, Eq. 8, 9. The OC calculates the minimal overlap 

between two item sets, ranging between 0 and 1, where 1 is totally similar or one set is a subset of the other, Eq. 7. 

On the other hand, the Jaccard coefficient calculates the total similarity between two item sets, ranging from 0 to 1, 

where 1 stands for totally similar., thus testing whether two sets share the same members, accounting for all the 

members, Eq. 7. 

 
𝑂𝐶(𝐴, 𝐵) =

𝐴 ∩ 𝐵

min ( |𝐴|, |𝐵|)
, 𝐽(𝐴, 𝐵) =

𝐴 ∩ 𝐵

𝐴 ∪ 𝐵
 

 

(7) 

 
𝑂𝑣𝑒𝑟𝑙𝑎𝑝 𝑤𝑖𝑡ℎ𝑖𝑛 𝑔𝑟𝑜𝑢𝑝: 

∑ ∑ 𝑋(𝐽1, 𝐽2)𝑁
𝑗2=𝑗1+1

𝑁−1
𝑗1

1
2 𝑁(𝑁 − 1)

 

 

(8) 

 
𝑂𝑣𝑒𝑟𝑙𝑎𝑝 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑔𝑟𝑜𝑢𝑝:  

∑ ∑ 𝑋(𝐽, 𝑀)𝑀−1
𝑚

𝑁−1
𝑗

(𝑀 − 1)(𝑁 − 1)
, 𝑤ℎ𝑒𝑟𝑒 𝑋 = 0𝐶 𝑜𝑟 𝐽 𝑖𝑛𝑑𝑒𝑥 

(9) 

 

 

3. Results  

3.1 Datasets Characteristics 

The normative training set was extracted from the HCP-YA sMRI dataset [28], with 1109 subjects (median age = 29.00 

years, 604 females, 505 males), whereas the external test set was derived from 550 subjects, 363 HC (median age= 

27.00 years, 189 females, 174 males) and 187 subjects with BD (median age= 30.00 years, 101 females, 86 males), 
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from 7 acquisition sites of the StratiBip network (Table S1 and Fig. S1). All included subjects were between 22 and 37 

years old. A Kruskal-Wallis test revealed significant age differences among the three groups, HCP-YA, StratiBip-HC, and 

StratiBip-BD (χ2(2)= 34.85; p<10-7); the post-hoc comparisons showed that StratiBip-HC were younger than HCP-YA 

and StratiBip-BD subjects (Table S1). On the other hand, based on a Chi-Square test of independence, no significant 

differences among the three groups were found for sex proportions (χ2(2, N=1659)=0.6338, p=0.728). More detailed 

information on the sample characteristics in each site can be found in Table S2.  

 

3.2  Multi-site harmonization effectiveness  

We checked the quality of site effect removal performed via M-ComBat application. Before harmonization, all feature 

set distributions ( GMV, WMV, CT) for the HCs among the 8 sites (HCP site and 7 StratiBip sites) resulted significantly 

different (p<1e-29) but no differences were detected among sites after harmonization (p>0.680).  

For BD in the 7 StratiBip sites, all feature sets were significantly different across sites (p<1e-12) before harmonization, 

whereas statistically significant differences remained for CT and GMV features (p<0.018) after harmonization; the 

pairwise post-hoc comparisons corrected for multiple tests showed that differences survived for CT features between 

site 4 and site 6 (Table S3 and Fig. S2). A second quantitative check was performed by probing how the harmonization 

affected a support vector machine (SVM) model trained to classify sites based on the entire feature set. A substantial 

decline in average F1 score was observed, from 95% before harmonization to 23% after harmonization, and all sites 

showed a decrease in F1 score to below chance-level (Table 1). Group- and feature set-specific SVM site classification 

results were also extracted (Table S4). Further analyses assessing M-ComBat performances in terms of biological effect 

preservation were performed (Fig. S3, Tables S5-8).   

 

   Table 1. F1-score SVM site classification before and after harmonization. 

F1_score 
HCP-YA 
(N=555) 

1 
(N=38) 

2 
(N=82) 

3 
(N=51) 

4 
(N=14) 

5 
(N=41) 

6 
(N=33) 

7 
(N=22) 

Weighted 
Average 
(N=836) 

Before 
Harmonization 

1.00 0.88 0.89 0.94 0.38 0.99 0.72 0.67 0.95 

After 
Harmonization 

0.30 0.03 0.08 0.12 0.00 0.15 0.12 0.09 0.23 

 

3.4 AE-based normative model performance 

When trained on the HCP-YA training set, the AE normative model achieved a training loss MSE of 0.182 

([0.179;0.185]; 95% CI) and a validation loss MSE of 0.222 ([0.211;0.233]; 95% CI) after 2000 training epochs (Fig. S4).  

After training, we extracted the AE model reconstructions for the StratiBip external test set data and computed the 

respective REs and MDS by subject, by group, and by feature-by-group. Concerning the subjects’ MDS, as expected, 

the BD group showed a significantly higher MDS median, 0.2264 ([0.2210,0.2324]; 95% CI) compared to the HC 

group, 0.1988 ([0.1945,0.2030]; 95% CI). Such difference was statistically significant since the CI for the two groups 

did not overlap, or, in other terms, the median MDS difference CI did not include zero, -0.02760 ([-0.03390, -

0.02155]; 95% CI). The feature-wise MDS 95% CIs are reported in Fig.S5.    

3.5 Group-level BD vs. HC comparisons 

3.5.1 BD-deviating brain features 

We employed the trained AE model to extract the StratiBip external test set reconstruction errors and calculated the 

respective MDS. Several features from all types (CT, GMV, WMV) were found to have significantly higher deviations in 

the BD group, identified by a significant Cliff’s delta effect size and an uncorrected bootstrap mean estimate pvalue 

<0.05 (Fig. 2). We identified higher BD deviations in CT in the right inferior temporal gyrus, and in volumes of 

subcortical and adjacent regions belonging to the cerebellum and the limbic system (hippocampus, striatum, globus 

pallidus).  To provide a reference for the AE model findings, we also performed a standard mass-univariate statistical 
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BD vs. HC comparison using a two-tailed MWU test (p<0.05; uncorrected and FDR corrected). Only the WMV 

surrounding the left globus pallidus emerged as significantly different after correcting for multiple tests (Table S11).  

a. 

 
b.  

 
 
 

Feature 
Type 

Brain region Significant effect size: 
delta (95% CI) 

CT right inferior 
temporal 

-0.1111 ([-0.1889,-0.0366]) 

GMV right striatum -0.1273 ([-0.1996;-0.0566]) 

right CA4 -0.1097 ([-0.1738,-0.0448]) 

left anterior 
cerebellum LIII 

-0.1013 ([-0.1590,-0.0456] ]) 

WMV Adjacent to 
left globus 

pallidus 

-0.1045( [-0.1578;-0.0506]) 

right CA2_3 -0.1104 ([-0.1750,-0.0455] ]) 

Adjacent to 
right striatum 

-0.1140 ([-0.1774;-0.0391]) 

Fig. 2 | Brain features with significantly higher deviations in BD. a, Representation of all brain features that were 

identified with significantly higher deviations in the BD group. b, Table describing the identified features and their 

associated 95% CI cliff’s delta effect size.  

3.5.2 RE patterns heterogeneity   

We then quantified the feature-wise RE heterogeneity within and between each group by computing the average RE 

differences across pairs of subjects (Fig. 3). In general, RE patterns were more homogeneous in the HC group, with a 

maximum mean pairwise difference of 0.59 ± 1.2, compared to 1.8 ±6.8 in the BD group. Overall, for both groups, CT 

and WMV features presented higher levels of heterogeneity than GMV features. Among all features, the WMV of the 

left and right Stratum displayed the highest pairwise RE difference among BD subjects, ranking 1st  and 2nd in terms of 

heterogeneity (Fig.3a), but not among HC subjects, ranking 6th and 11th (Fig.3b); of note, these features showed the 

highest group difference, i.e., the absolute pairwise difference between subjects’ RE from the two groups, ranking 1st 

and 2nd (Fig.3c). In the BD group, other features with high RE heterogeneity included WMV of the left alveus, left 

HCA1, left and right CA2_3 and left CA4, and CT of left para-hippocampal gyrus and bilateral medial orbitofrontal 

cortex. In the HC group, the WMV of left CA4 and anterior cerebellum displayed the highest heterogeneity, followed 

by the left alveus, right CA2_3, left CA2_3, and left Stratum. Apart from WMV in the left and right Stratum, the 

features differing the most in terms of RE magnitudes between HC and BD groups included WMV in left alveus and 

CA4, bilateral CA2_3 and CT of para-hippocampal gyrus. 

3.5.3 RE extreme deviations 

We then modeled extreme REs applying a block maxima approach, where each feature was summarized by its 

extreme values within each group (HC, BD, HCP-YA). Employing a LOO-CV strategy, we retrieved unbiased 

reconstructions for each subject in the normative HCP-YA training set and constructed a normative RE distribution for 

each feature.    

 
a. 
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b. 

     
c. 

      
 

Fig. 3 | RE heterogeneity within and between groups. The mean and standard deviation RE pairwise differences 

are shown in a sorted heatmap, including 25 features with the highest heterogeneity levels and the least 15, for 

a, BD group; b, HC group; c, between the two groups HC vs.BD. 

Including only the top 1% REs (99% trimmed), we compared the MEV between the normative HCP-YA training set and 

StratiBip HC and BD test sets (Fig.4). In WMV and CT feature sets, the overall maximum MEV in the normative group 

resulted lower when compared with the 2 StratiBip groups;  conversely, all GMV features in the StratiBip HC group 

resulted within the respective normative group range. In all feature sets, selected features showed MEV differences 

among the three groups. In general, the BD group was characterized by a more pronounced extreme value profile, 

resulting in 7 CT, 4 GMV, and 4 WMV features with at least a double MEV compared to the normative and the 

StratiBip HC groups (Table 2). In contrast, in the HC group, only 2 WMV features showed at least a double MEV 

compared to both the normative range and BD group (Table 3). 

 

                Table 2. Summary of features with at least a double MEV in the StratiBip BD group vs. others 
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Features MEVs  BD-StratiBip HC-StratiBip HCP-YA 

CT Left parahippocampal gyrus 6.9 3 3 

Right parahippocampal gyrus 8.7 2.7 2.1 

Right lateral orbitofrontal 6.9 3 2.8 

Left medial orbitofrontal 11 2.8 2.4 

Right medial orbitofrontal 15 1.9 2.7 

Right superior parietal 6.3 1.4 1.7 

Right rostral anterior cingulate 4.9 1.8 1.5 

GMV Right Inferior posterior CerebLVIIIA 4.2 1.9 1.2 

Adjacent to left Fimbra 2.4 1.2 1.2 

Left Thalamus 6.3 2.5 1.2 

Right Thalamus 5.3 2.5 0.75 

WMV Right Stratum 19 6 5.3 

Left Stratum 44 5.9 3.6 

Left HCA1 5.6 2.6 2 

Adjacent to right Thalamus 4.7 2.3 1 

 

                Table 3. Summary of features with at leat a double MEV in the StratiBip HC group vs. others  

HC group features  BD-StratiBip HC-StratiBip HCP-YA 

WMV Left Cerebellum 2.5 10 1.4 

Right Cerebellum 2.9 5.8 1.3 

 

3.5.4 BD vs. HC MDS-based discrimination 

We assessed whether the subjects’ MDS would enable the discrimination between the BD group and HC one in the 

StratiBip test set, achieving an AUC-ROC of 0.6129 ([0.5989, 0.6270]; 95% CI). The optimal MDS threshold to 

differentiate HC vs. BD was 0.2138 ([0.2096,0.2181]; 95% CI) which yielded a mean accuracy of 58.3% 

([56.4%;60.4%]; 95% CI). Then, we inspected whether accounting for extreme value statistics would enhance this 

discrimination. This time, each subject was summarized by its extreme values under a block maxima approach, with 

the MEV (99% trimmed). Then, the ROC curve analysis was repeated, obtaining an AUC-ROC of 0.6218 ([0.5999, 

0.6452]; 95% CI), for an optimal MDS threshold to differentiate HC vs. BD of 1.9032 ([1.8417,1.9723]; 95% CI) yielding 

a mean accuracy of 59.0 % ([56.2%;61.8%]; 95% CI), a slight improvement when compared to using central tendency 

statistics to summarize the RE outcomes, i.e., the MDS.  

 

3.6 Personalized brain deviating maps  

Individual brain deviations were also employed for subject-level statistical inference. We calculated the mZ for the 

StratiBip dataset using the HCP-YA feature-wise median and MAD. Then, for each feature, we retrieved the 99th 

percentile in the normative HCP-YA distribution and used it as the normative mZ threshold, enabling the 

identification of subject-level deviating features (mZ > 99th percentile) for each StratiBip individual (Fig S6). We report 

the resulting brain CT, GMW, and WMV deviating maps of two exemplar subjects from the StratiBip test set, one 

control and one affected with BD (Fig. 5). The mZ distributions of all features in the StratiBip HC and BD groups are 

reported in Fig. S7. 
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Fig.4| Feature MEVs in the normative HCP-YA and StratiBip BD and HC test set groups. In the top heatmaps (a. 

WMV features, b. GMV features, c. CT features), the feature-wise MEVs for the StratiBip BD (BD column), StratiBip HC 

(HC column) and normative HCP-YA (HCP column) groups are plotted.  Features are sorted in descending order based 

on the normative HCP-YA MEVs. The StratiBip BD and HC group heatmaps are color-coded in the same range as the 

normative HCP-YA one to highlight deviations from the normative expectation within the same brain feature.  

 

 

 

 

 

 

a. b. c. 
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a. 

 
 
 

b. 

.CC-BY-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 7, 2024. ; https://doi.org/10.1101/2024.09.04.611239doi: bioRxiv preprint 

https://doi.org/10.1101/2024.09.04.611239
http://creativecommons.org/licenses/by-nd/4.0/


 
Fig. 5 | Individual deviating brain maps. We plot the deviating CT, GMV, and WMV feature maps for 2 subjects: a, HC 

subject CT, GMV and WMV mZ scores; b, BD subject CT, GMV and WMV mZ score. The color bar range is shared 

between the two subjects for each feature set group to better highlight differences in the deviating maps.  

Next, for the two StratiBip groups, we inspected the prevalence of subject-level abnormal features. Across all feature 

sets, subjects belonging to the HC group had an average of 1.3% abnormal features, corresponding to about 2 

features per subject, while in the BD group, this average percentage increased to 1.9%, corresponding to 3 abnormal 

features per subject. For each feature, we inspected the percentage of abnormal occurrences for each group (Fig. 6).  

In the BD group, the highest prevalence of abnormal patterns (11% of subjects) was found for the WMV adjacent to 

the left globus pallidus, followed by the GMV of the right thalamus (7.5%) and WMV: of right inferior posterior 

CerebLIX, surrounding the bilateral thalamus, of left HCA1 and right inferior posterior CerebLVIIIB (7%). Of note, in 

the HC group, the highest frequency of abnormal cases was also observed for the WMV adjacent to the globus 

pallidus (6.9%), followed by GMV of right thalamus (6.3%), WMV of left anterior Cerebellum (6.1%) and adjacent to 

bilateral thalamus (5.5%), and GMV of right amygdala (5.2%). The intra-group and inter-group similarity was also 

assessed by employing the average pairwise overlap coefficient (OC) and the Jaccard similarity index (J), achieving (i) 

in the HC group, higher level of similarity compared to the BD group, (ii) in the BD group, lower level of similarity 

compared to the inter-group one (BD-HC) (OCHC=0.72; OCBD=0.60; OCHC_BD=0.67 | JCHC=0.32; JCBD=0.23; JCHCvs.BD=0.27). 
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Fig.6 | Feature set percentage of abnormalities for each group. For each feature set and brain region, the brain 

maps show the prevalence of individuals, in percentage, with abnormal features within each group, HC and BD.  
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4. Discussion  

In this study, we designed a robust, generalizable, and extendable end-to-end pipeline for brain morphological 

multivariate normative modelling and personalized anomaly detection based on deep AEs. The pipeline embodies 

data pre-processing fully integrating training with external validation (including data harmonization and biocovariates 

confounders removal), normative modelling, and statistical comparison steps. This innovative framework was used 

for performing personalized and group-level statistical inference on brain morphological deviations characterizing 

individuals with BD. The AE-based normative model was built on brain regional features from the large normative 

HCP-YA cohort and tested on features from the external multi-site StratiBip cohort, including both controls and BD 

individuals.   

First, we showed the effectiveness of the proposed pipeline in removing site-related effects from the external 

StratiBip test set. This allowed us to leverage and integrate external test sets acquired in different sites, enabling 

robust comparisons and increasing statistical power. Then, we proved the effectiveness of our approach in 

characterizing brain morphological deviations in test samples, identifying subject- and group-level tendencies but 

also heterogeneity and extreme deviation patterns within and between groups. 

Our findings showed that, on average, group-level deviations from the norm were higher in BD compared to HC; in 

the BD group, RE patterns were also more heterogeneous and with greater extreme values than in HC. Moreover, at 

the individual level, the most prevalent deviations were observed in features that were common between HC and BD, 

but such prevalence was increased in the BD group. Notably, we also found that the spatial overlap of individual-level 

brain deviating maps was greater between BD and HC subjects than within the BD group itself.  

The latter evidence is in line with the hypothesis that brain morphological alterations in BD, and in general in 
psychiatric disorders, are subtle and might be nested within the spectrum of normative interindividual variability. 
Overall, these results support the conceptualization of BD as a non-unitary disease with a variety of neurobiological 
dimensions, whose characterization paves the way to the identification of personalized signatures of disease and 
more effective interventions.  
 

Innovative features of deep normative modelling and anomaly detection framework 

In this ever-growing research context, the proposed pipeline is distinguished from previous ones by combining the 

following features. Although AEs have been proposed before in literature for brain normative modelling [23],  our 

differs due to the innovative inclusion of a generalizable confounder removal step in the DL normative modelling 

pipeline, which enabled its effective translation to external datasets. In S. Rutherford et al. [62] authors proposed a 

method to extend a pretrained Bayesian regression model to data from new sites, but site-related variation is modelled 

together with features-of-interest within a single regression model by including the site variable as covariate, 

impending its usage in our deep learning framework. Just as innovative is the multivariate nature of deep learning AEs 

for normative modelling.  AEs are suitable for integrating data and have been successfully applied to multimodal 

datasets [63]–[65]. In the search for brain markers of BD, our study is the first to employ a multivariate normative 

analysis framework that integrated CT, GMV and WMV features for the subject- and group-level characterization of this 

complex disease.  

CR pipeline was effectively applied to external datasets  
To our knowledge, our study is the first to embed in the normative and external validation framework the removal of 

site-related and biological confounding effects from the brain features, in a deep learning normative model 

application. We considered working with confounder-free data as a pre-requisite towards more interpretable DL 

models. The inability to know what information drives the performance of a ML model can lead to erroneous result 

interpretations, known as source ambiguity problem [26], [53], [66]. Therefore, to achieve more interpretable 

models, it is recommended to control for alternative sources of information from the target of interest, known as 

covariate adjustment or confounding-effects correction. In our study, we showed that the normative M-ComBat 

successfully harmonized the external StratiBip test sets with the HCP-YA training set. This ComBat variation has been 

shown to effectively harmonize data from different sites and has been recently employed in a multi-site PET study in 

an external validation framework [50]. Moreover, our confounder removal pipeline was developed in a normative 

framework; therefore, in both harmonization and biocovariates linear regression models, any associations between 

diagnosis and brain features were not modelled, as this could have led to data leakage problems and consequently 

.CC-BY-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 7, 2024. ; https://doi.org/10.1101/2024.09.04.611239doi: bioRxiv preprint 

https://doi.org/10.1101/2024.09.04.611239
http://creativecommons.org/licenses/by-nd/4.0/


biased the model [53], [54]. The normative site and biological confounding effects were assumed to be generalizable 

to patient data, and both estimated effects (ComBat parameters, biological beta coefficients) were applied equally to 

data from the StratiBip HC and BD groups.   

 

AE-based normative modelling empowered identification of group-level brain morphology deviations in 

BD  
Group-level analyses on brain morphological correlates of psychiatric disorders have been extensively performed in 

literature, but only few in terms of normative deviation metrics [14], [20], [22], [23], [67]. Since normative models 

can detect individual deviations from the norm, they are especially suitable for unravelling brain heterogeneity in BD. 

Our findings showed higher median deviations in BD compared to HC; specifically, volumes of the basal ganglia and 

adjacent to it (striatum and globus pallidus) and from the hippocampus (CA4, CA2_3) revealed increased deviations 

in BD compared to HC. The WMV surrounding the globus pallidus was also significant in the mass-univariate case-

control analysis that we used as reference, supporting the neurobiological plausibility of the AE-based normative 

findings. These group-level deviations are in line with existing literature on BD, suggesting morphological alterations 

in brain regions involved in affective processing, including the basal ganglia, hippocampus, and temporal regions 

observed in our study. In the case-control mega-analyses of the ENIGMA BD Working Group, BD was found to be 

associated with cortical thinning in inferior temporal regions and with volumetric reduction in the hippocampus [4], 

[10]. Additionally, in another study employing a univariate normative approach, individuals with BD were also 

reported to have GMV deviations in cerebellar and temporal regions [14].  

While the overall agreement with the existing evidence supports the reliability of the deviations observed in our BD 

sample, it should be considered that our multivariate findings reflect hidden links among the brain features. Due to 

the multivariate nature of deep AEs, the features that emerged as deviant should be understood as patterns of 

alterations rather than region-specific alterations. 

Regarding the BD group discrimination, the whole-brain MDS presented a low discriminative power when compared 

with the state-of-art, achieving an AUC-ROC of 0.61 and an accuracy of 58.3% using the best MDS threshold. A recent 

review on machine learning studies that attempted to classify BD vs. HC reported a range of prediction accuracies of 

59%-78% based on WMV and GMV predictors [68] in parallel, the ENIGMA BD Working Group reported an AUC-ROC 

of 0.7149 (0.6939- 0.7359) using cortical thickness, surface area and subcortical volumes; this improved performance 

could be due to different factors, like the inclusion of a bigger BD sample or the non-removal of biological effects 

from the brain features used for classification [69]. 

 

Distribution and extreme pattern analyses highlighted brain morphology heterogeneity in BD  
Our normative model was exploited to assess and compare the heterogeneity and extreme profiles of the feature 

deviating patterns in BD and HC groups.  

BD individuals presented higher levels of heterogeneity, especially for WMV in subfields of the hippocampus, alveus, 

and cerebellum, and for CT of parahippocampal and medial orbitofrontal regions. The highest difference between 

groups, highlighting much greater heterogeneity in BD, was found for the WMV of the bilateral stratum. This more 

marked heterogeneity of REs reflects a greater model variability in reconstructing the data, which in turn is 

suggestive of brain morphological heterogeneity in the BD group. The enhanced brain heterogeneity could underlie 

the phenotypic variability of individuals affected by BD, which represents one of the main reasons that so far have 

impeded the identification of objective brain markers of disease [70]. In this respect, an increasing body of evidence 

is remarking the need to adopt a dimensional perspective for identifying the brain endophenotypes of clinical 

dimensions that are shared between BD and other disorders in the psychotic or affective spectrum [71], [72]. 

Interesting evidence on BD was provided by the assessment of extreme deviations; Our findings suggest more 

pronounced extreme deviations in BD, being characterized by the greatest number of features with a MEV that was 

more than the double of both StratiBip HC and HCP-YA groups. Moreover, the discrimination between the BD and HC 

groups improved when using MEVs instead of MDS as subject-level deviating scores, achieving an AUC-ROC of 0.62. 

This suggests that examining extreme values can enhance the separability between groups. 

High extreme deviations were found in features that showed marked heterogeneity in the BD group, including WMV 
of bilateral Stratum and left HCA1 and CT of left parahippocampal and bilateral medial orbitofrontal regions. We 
hypothesize that this heterogeneity was driven by the incidence of extreme values in these features, possibly 
reflecting pronounced phenotypic differences in the BD group. Notably, in [30] authors identified normative deviation 
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scores of the GMV on the left middle orbital frontal gyrus as the most reproducible feature to discriminate BD from 
HC, applying a random forest classifier. We hypothesize that only a sub-group of subjects present more severe 
alterations in these regions and this may drive both the increased heterogeneity/extreme values observed in the 
present results and the high discriminatory stability in the second. 
 

AE-based normative modelling empowered the creation of personalized brain deviating maps  

Our normative framework allowed us to characterize subjects at the individual level. Individual brain deviation maps 
were built employing the mZ scores and considering a conservative 99th percentile threshold for abnormality.  
On average, subjects affected with BD and HCs showed a similar percentage of abnormalities, slightly higher in BD 
(1.9%) than in HC (1.3%). The maximum spatial overlap of features identified as abnormal was identified for the 
WMV surrounding the globus pallidus, expressed in 11% of BD subjects and in 6.9% of HCs, followed by the GMV of 
right thalamus (7.5% in BD, 6.3% in HC). Interestingly, previous univariate normative studies on BD reported the 
highest spatial overlap of abnormalities in the thalamic region, showing around 2% in [14], and 5.17%-8.19% in [73], 
and high discriminatory stability of GMV thalamus deviations [30]. Overall, our results show that abnormalities in BD 
spread mostly through the volumes of the bilateral thalamus and adjacent to it, hippocampus subregions, and 
cerebellum.  
Of note, this personalized inference on BD subjects unravelled brain morphological abnormalities in regions that did 

not emerge from the group-level comparisons. These regions included the thalamus, for which volumetric alterations 

have been previously reported in case-control mass-univariate comparisons [4]. It should be noticed that thalamic 

volume was deviating in a number of HC and BD subjects, albeit with higher frequency in the last group. This might 

be attributed to thalamic alterations being nested in healthy variations, overcoming this expected variability only for 

a subset of patients.  

Overall, across all features, we found a lower overlap of individual abnormalities in BD than in HC. In the BD group, a 

minimal subset of abnormal features replicated on average at the pairwise abnormal spatial maps comparisons 

(OC=60%), but the complete overlap of deviating patterns was lower (J=23%). Noticeably, abnormal profiles of BD 

subjects overlapped more with other HCs than with other BD subjects. These results further asserted the 

heterogeneity of BD and are in agreement with the accumulating evidence that brain changes in BD, as in other 

psychiatric disorders, might be nested within healthy variations [20], [74].  

5. Limitations 

Several limitations of this study should be highlighted. From a clinical perspective, only young adults were included, 

which prevented us from performing a more comprehensive analysis of BD in the entire lifespan. Additionally, in the 

StratiBip test set, sample size and biological covariates were not equally distributed among sites, and this could have 

affected the results. Dataset diversity and numerosity should be increased in future works to create a more 

generalizable normative framework inclusive of all age ranges. Another limitation concerned the adjustment for 

biological covariates.  Data was not corrected for medication on BD, as this was not considered in the biological 

covariates modelling, therefore we cannot exclude that the significant group differences and brain deviations might 

be driven by medication effects. Similarly, we did not account for comorbidities which might be important to 

distinguish between disorder-specific effects and others. 

Other limitations concern the implemented methodology. Although using confounder-free data contributes to the 

development of more interpretable DL models, Combat and biological covariates linear regression have their own 

caveats in terms of confounding source modelling. The former relies on a Bayesian framework for statistical inference 

of site effects and estimates might be affected by sample numerosity and imbalance between sites. Second, linear 

regression, although simple and easy to implement, might not capture completely the biological effects if these 

encompass non-linearities. Nonetheless, up to this date, there is not a gold standard to deal with confounding effects 

in neuroimaging to achieve confounder-free data, and both methods are widely employed in literature. 

On another note, the uncertainty of estimation of the MRI-based features was not evaluated. CAT12 brain tissue 

segmentation is based on algorithms that might struggle when encountering small brain regions with mixed tissues 

(gray and white matter) and borders. For example, subcortical gray matter regions on basal ganglia and thalamus 

have lower GM-WM contrast, with the high content of cellular iron rendering the T1-w signal similar to that of WM 

[75]. Due to the higher probability of incorrect tissue segmentation in these regions, we incorporated all volumetric 

estimates produced by CAT12 based on the CoBra atlas. This approach included both WMV estimates for GM regions, 

and vice-versa, and were interpreted as the volume adjacent to the respective region. These CAT12 estimates might 
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stem from intrinsic limitations in the segmentation software's voxel-based tissue classification or poor subject-atlas 

alignment. By utilizing all volume estimates, we avoid excluding potentially relevant information due to cherry-

picking selection. Nevertheless, we cannot exclude that our results might reflect the uncertainty associated with 

these volumetric estimations.  

Lastly, with respect to the normative model, a central limitation of our AE-based normative model concerns the lack 

of directionality information on deviations. Also, we found abnormal features for both HC and BD groups, showing 

that encoding normative levels is not straightforward and true normative ranges might encompass and generalize to 

non-normative data as well. On the one hand, the greater brain deviations in BD did not yield sufficient discriminative 

performance from a clinical application perspective. On the other hand, these findings remark the need to adopt a 

dimensional perspective for the personalized assessment of brain and phenotypic characteristics in BD as in the 

general population. A natural extension of this work would therefore be to perform a complete clinical 

characterization of the deviating scores and more deeply explore the patients’ stratification. 

6. Conclusion 

In this study, we developed a generalizable end-to-end multivariate normative modelling and anomaly detection 

framework based on deep AEs. The novelty of our pipeline resides in the integration of data harmonization, 

biological confounder removal, and integration of CT, GMV, and WMV in a multivariate AE-based normative model in 

an external validation framework. We demonstrated the successful application of this framework in the search for 

brain morphological deviations in BD, employing anomaly detection in an external multi-site test set composed of HC 

and BD subjects on a normative model trained with the HCP-YA cohort. Our findings support the hypothesis that 

brain morphological alterations in BD are heterogeneous and partly nested within healthy interindividual variations, 

remarking the importance of moving from categorical diagnoses to a transdiagnostic dimensional perspective. In this 

perspective shift, our multivariate normative modelling framework could capture individual brain differences that 

might be used for making more effective and personalized clinical decisions. 

Data availability 

The HCP-YA normative dataset is publicly available on connectomeDB platform (https://db.humanconnectome.org). 
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Code availability 

The custom code used in this study is available for research purposes (GitHub repository 

https://github.com/inesws/Normative_AE.git). A demo test code is available that allows to try the trained model with 

some pre-processed and corrected HCP-YA exemplar data. In order to apply the trained model to new data, 

researchers should follow the instructions. 
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