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Abstract: Pathogen-selective labeling was achieved by using
the novel gemcitabine metabolite analogue 2’-deoxy-2’,2’-
difluoro-5-ethynyluridine (dF-EdU) and click chemistry.
Cells infected with Herpes Simplex Virus-1 (HSV-1), but not
uninfected cells, exhibit nuclear staining upon the addition of
dF-EdU and a fluorescent azide. The incorporation of the dF-
EdU into DNA depends on its phosphorylation by a herpes
virus thymidine kinase (TK). Crystallographic analyses
revealed how dF-EdU is well accommodated in the active
site of HSV-1 TK, but steric clashes prevent dF-EdU from
binding human TK. These results provide the first example of
pathogen-enzyme-dependent incorporation and labeling of
bioorthogonal functional groups in human cells.

Bioorthogonal chemical reporters selectively modify bio-
molecules in their native context.[1] In this approach, endog-
enous biosynthetic pathways metabolically incorporate a bio-
orthogonal functional group (e.g., azide, alkyne, alkene) into
a biological macromolecule. Subsequent click reactions such
as [2++3] alkyne–azide and [2++4] alkene–tetrazine cycloaddi-
tions can be used to visualize and/or capture the labeled
biomolecules.[2, 3] Labeling is usually selective with respect to
macromolecule type, but nonselective with respect to cell
type. This imposes severe limitations on the study of specific
pathways in whole systems.[4] Advances in cell-type-selective
labeling have recently been published,[5] but the detection of
a pathogenic organism in human cells by using a bioorthog-
onal chemical reporter has not so far been demonstrated.
Based on the fundamental principles of medicinal chemistry,[6]

we anticipated that pathogen-specific reporters could be
developed from “clickable” biomolecular building blocks that
are metabolized by pathogen-infected cells but rejected by
healthy ones. To explore this concept, we selected Herpes
Simplex Virus-1 (HSV-1) as a model system.

Recent studies have demonstrated that modified nucleo-
sides containing a terminal alkyne can be metabolically
incorporated into the genomes of adenovirus, herpes virus,

vaccinia virus, and papillomavirus.[7] After screening a collec-
tion of ethynyl nucleosides including 5-ethynyl-2’-deoxyur-
idine (EdU),[8] (2’S)-2-deoxy-2’-fluoro-5-ethynyluridine (F-
ara-EdU),[9] 5-ethynyl-2’-deoxycytidine (EdC),[10] and 7-
deaza-7-ethynyl-2’-deoxyadenosine (EdA),[11] we discovered
that ethynyl-modified viral genomes could be produced
without negatively impacting viral infectivity or egress.[7] All
of these nucleosides, however, were also incorporated into
cellular genomes.[8–11] In samples in which the cells and viruses
were simultaneously replicating, viral DNA could not be
detected over the large background of cellular DNA.[7]

Herein, we report a strategy for pathogen-selective label-
ing that utilizes the relaxed fidelity of pathogen-encoded
enzymes.[6] The new gemcitabine metabolite analogue 2’-
deoxy-2’,2’-difluoro-5-ethynyluridine (dF-EdU) is selectively
metabolized in HSV-1 infected cells owing to the expression
of a viral thymidine kinase (TK).[12] Subsequent treatment
with CuI and an azide-conjugated fluorophore stains cells
harboring an HSV-1 infection but not uninfected cells. In
addition to the large number of viruses that encode nucleo-
side kinases,[13a] this general approach should be applicable to
viruses that encode error-prone polymerases (HIV, influenza
virus, rhinovirus, poliovirus, coronavirus, etc.),[13b,c] as well as
parasitic mycoplasma that encode unique purine salvage
enzymes.[13d]

The chemotherapeutic drug gemcitabine (dFdC, 1) is
deaminated in vivo[14] to give 2’-deoxy-2’,2’-difluorouridine
(dFdU, 2 ; Scheme 1). Both dFdC and dFdU are phosphory-

lated and incorporated into nucleic acids by endogenous
human enzymes.[15] dFdU is significantly less toxic than
dFdC[16] and was therefore selected for further development
as a metabolic label. dFdU derivatives containing substituents
at the 5-position, such as 2’-deoxy-2’,2’-difluoro-5-bromour-
idine (BrdFdU), are nontoxic to mammalian cell cultures but
they inhibit herpes virus replication.[17] These results suggest
the presence of BrdFdU-selective metabolism by one or more

Scheme 1. Synthesis of 2’-deoxy-2’-difluoro-5-ethynyluridine (dF-EdU,
3). a) Isopentyl nitrite, 0.1 N HCl, 70 88C, overnight; b) Ce(NH4)2(NO3)6,
I2, HOAc, 80 88C, 2 h; c) ethynyltrimethylsilane, Pd(PPh3)2Cl2, CuI, Et3N,
DMF, RT, 60 min; d) NaOH/H2O/MeOH, rt, 15 min. DMF= dimethyl-
formamide.
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virus-encoded enzymes, including herpes virus TK. We there-
fore selected the 5-position of dFdU as the attachment site for
a bioorthogonal functional group. While a variety of bio-
orthogonal functional groups, including methylazide,[2g]

vinyl,[3e] and ethynyl[8–10] groups can be utilized at this
position, an ethynyl group was selected for its robust
biocompatibility with DNA synthesis. According to these
design criteria, dF-EdU (3) was synthesized from gemcitabine
over four steps with a total yield of isolated product of 42%
(Scheme S1 in the Supporting Information).

To evaluate the phosphorylation of dF-EdU in vitro,
HSV-1 thymidine kinase (HSV1-TK) or human thymidine
kinase 1 (hTK) were incubated with dF-EdU in solutions
containing ATP. Reversed-phase ion-pair chromatography
was used to quantify the conversion of ATP into ADP, as well
as the conversion of dF-EdU into dF-EdU-5’-monophosphate
(dF-EdUMP). As a positive control, hTK was incubated with
2’-deoxythymidine (dT; Figure 1a). According to this assay,
hTK was unable to catalyze the phosphorylation of dF-EdU

(Figure 1b). In contrast, when HSV1-TK was used in place of
hTK, ATP was converted into ADP and dF-EdU was
converted into dF-EdUMP (Figure 1c, d and Figure S1 in
the Supporting Information).

To evaluate the structural basis of the TK selectivity of dF-
EdU, a comparative crystallographic analysis was conducted.
Crystals of HSV1-TK were soaked in solutions containing dF-
EdU and the X-ray data solved at 2.1 è resolution by
molecular replacement. The overall a/b architecture of the
TK homodimer was similar to previous HSV1-TK struc-
tures.[18, 19] The cocrystal structure was refined to an Rfactor of
17.8% and Rfree of 22.2 % (Table S1 in the Supporting
Information) to provide the first reported structure of a TK
bound to an ethnyl nucleoside. The (Fobs¢Fcalc) electron
density map contoured at 2.5 s was clearly interpretable, with
dF-EdU in the active site, along with a sulfate ion in the ATP

binding pocket (Figure 2a). The 5-ethynyl group of dF-EdU is
accommodated in a hydrophobic pocket defined by the side
chains of Trp88, Tyr132, Ala167, and Ala168. The sugar
moiety of dF-EdU adopts a 2’-endo conformation, forming
hydrogen bonds with Glu83, Arg 163, and Glu225 in an
analogous fashion to that of dT itself (Figure S2).[20] These
observations are consistent with the ability of dF-EdU to be
phosphorylated by HSV1-TK.

To evaluate why dF-EdU is rejected by hTK, a super-
imposition model of dF-EdU onto a dTTP-hTK cocrystal was
generated by using the “Superpose ligand” function in the
molecular graphic program COOT (Figure 2b).[21] According
to this model, the terminal ethynyl carbon of dF-EdU is only
2.67 è from the Cb of Thr 163, a position known to mediate
steric control over substrate specificity.[22] This potential steric
clash is insufficient for the rejection of dF-EdU because 5-
ethynyl-2’-deoxyuridine (EdU) is phosphorylated by hTK
(Figure S3). Likewise, 2’-deoxy-2’,2’-difluorouridine (dFdU,
Figure 1) is also a substrate for hTK.[15, 16] The combined
interplay of steric constraints from both the 5-ethnyl group
and the 2’-fluorine atoms is therefore responsible for the
inability of hTK to phosphorylate dF-EdU. Consistent with
this conclusion, the superimposition model places the (2’R)
fluorine atom of dF-EdU 2.20–2.32 è from Val 174/Ile175,
and its terminal ethynyl carbon atom 2.67 è from Thr163
(Figure 2b).

The ability of dF-EdU to be phosphorylated by HSV1-TK
and rejected by hTK suggested that dF-EdU might be
selectively phosphorylated by HSV1-infected cells and incor-

Figure 1. a,b) In vitro phosphorylation of dT (a) or dF-EdU (b) by hTK.
c, d) Phosphorylation of dF-EdU by HSV1-TK according to the relative
quantities of ADP, ATP, dF-EdU, and dF-EdUMP. In all panels,
Control 1 lacks the kinase and Control 2 lacks the nucleoside.

Figure 2. a) Cocrystal structure of dF-EdU (violet) bound in the active
site of HSV1-TK (green, PDB entry code 4OQL). The electron density
map (2Fobs¢Fcalc) of dF-EdU with a resolution of 2.1 ç is contoured at
1 s and shown in cyan. Water molecules are depicted as red spheres
and hydrogen bonds as dashed red lines. b) Superposition of dF-EdU
(green) onto dTTP (brown) within the active site of hTK (pink, PDB
entry code 1W4R).[22]
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porated into DNA. To evaluate this possibility, Vero cells
were infected by HSV-1 in the presence of 10 mm of dF-EdU
for eight hours. Samples were then fixed and stained with an
azide-conjugated fluorophore (green, Figure 3) and the DNA
stain DAPI (blue, Figure 3). dF-EdU click labeling was
apparent in infected (Figure 3a) but not in uninfected (Fig-
ure 3b) cells. dF-EdU staining of HSV-1 viral replication
compartments was apparent in the DAPI-excluded areas of
the nuclei (circle in Figure 3a, and Figure 3c). These mor-
phologically distinct regions were confirmed as HSV-1 repli-
cation compartments by immunostaining of ICP8 as an HSV-
specific marker.[7] Cellular nucleic acids were also stained in
some cells (rectangle in Figure 3a, and Figure 3d), thus
suggesting that both viral and cellular polymerases were
capable of utilizing dF-EdU triphosphate as a substrate.

To evaluate wheher viral TK expression is required for the
incorporation of dF-EdU into cellular and viral nucleic acids,
HeLa cells were transduced with a lentiviral vector encoding
HSV1-TK and green fluorescent protein (GFP), and selected
by fluorescence-activated cell sorting (FACS) to generate the
cell line HeLa-HSVtk(++). These cells were subjected to
a second round of transduction and more stringent FACS
selection to generate the cell line HeLa-HSVtk(++++). Cell
cultures were then treated with dF-EdU, fixed, stained, and
characterized by fluorescence microscopy and flow cytometry
(Figure 4). Wild-type HeLa cells exhibited little or no
fluorescent staining of dF-EdU when dF-EdU was applied
at 1–100 mm (Figure 4a). In contrast, HeLa-HSVtk(++) and

HeLa-HSVtk(++++) cells exhibited strong labeling by 0.1–
1.0 mm of dF-EdU. The intensity of dF-EdU staining was
approximately 10-fold higher in HeLa-HSVtk(++++) cells than
HeLa-HSVtk(++) cells (Figure 4b,c). DNA was the primary
target of dF-EdU incorporation, as revealed by the selective
staining of metaphase chromosomes (Figure S4). dF-EdU was
essentially nontoxic to all three cell lines tested (Figure S5),
thus indicating a high degree of compatibility with DNA
synthesis.[12] Taken together, these results demonstrate that
the metabolic incorporation of dF-EdU into the DNA of
HSV-1-infected cells (Figure 3) is dependent upon HSV1-TK
expression (Figure 4).

The tendency of pathogen-encoded enzymes to exhibit
relaxed substrate specificity has been widely exploited in
medicinal chemistry[6] but it has not previously been utilized
for the pathogen-dependent incorporation of bioorthogonal
functional groups into mammalian cells. Herein, we report the

Figure 3. a) Vero cells infected with HSV-1 (multiplicity of infection
(MOI)= 10) were incubated with dF-EdU (10 mm) for 8 h, fixed, and
stained with azide-conjugated Alexa Fluor 488 in the presence of CuI.
b) Control samples were treated identically but received no HSV-1.
c) High-magnification images illustrating labeling of the viral replica-
tion compartments. d) High-magnification images illustrating labeling
of cellular nucleic acids. Scale bars: 10 mm.

Figure 4. Metabolic incorporation and staining of dF-EdU in HeLa,
HeLa-HSVtk(++), or HeLa-HSVtk(++++) cells. Variable concentrations of
dF-EdU were incubated with wild-type HeLa cells (a), HeLa-HSVtk(++)
cells (b), or HeLa-HSVtk(++++) cells (c) for 24 h. The cells were then
fixed and stained with 10 mm of azide-conjugated Alexa Fluor dye
(Alexa Fluor 594 for microscopy samples; Alexa Fluor 647 for flow
cytometry samples) in the presence of CuI. To maintain the fluores-
cence signal from GFP, aminoguanidinium HCl and the CuI ligand
THPTA[25] were included (Figure S6). Negative controls did not receive
any nucleoside analogue but were otherwise treated identically. Scale
bars: 50 mm.
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clickable nontoxic nucleoside analogue dF-EdU, which is
selectively metabolized by virus-infected cells as a result of
their expression of a low-fidelity thymidine kinase. As
a reporter molecule, dF-EdU is compatible with chain
elongation following its incorporation into DNA, thus allow-
ing highly sensitive and selective click staining of infected
cells. This same type of approach should also be applicable to
pathogens that encode unique polynucleotide polymerases
and/or nucleoside salvage enzymes.[13] Nucleoside derivatives
containing bioorthogonal functional groups will therefore
enable a wide variety of diagnostic and therapeutic applica-
tions,[23] including cell-fate control and suicide-gene thera-
pies.[24]
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