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Our understanding of the evolution of domestication has changed radically

in the past 10 years, from a relatively simplistic rapid origin scenario to a

protracted complex process in which plants adapted to the human environ-

ment. The adaptation of plants continued as the human environment

changed with the expansion of agriculture from its centres of origin. Using

archaeogenomics and computational models, we can observe genome

evolution directly and understand how plants adapted to the human

environment and the regional conditions to which agriculture expanded.

We have applied various archaeogenomics approaches as exemplars to

study local adaptation of barley to drought resistance at Qasr Ibrim,

Egypt. We show the utility of DNA capture, ancient RNA, methylation pat-

terns and DNA from charred remains of archaeobotanical samples from low

latitudes where preservation conditions restrict ancient DNA research to

within a Holocene timescale. The genomic level of analyses that is now pos-

sible, and the complexity of the evolutionary process of local adaptation

means that plant studies are set to move to the genome level, and account

for the interaction of genes under selection in systems-level approaches.

This way we can understand how plants adapted during the expansion of

agriculture across many latitudes with rapidity.
1. Introduction
During the closing phases of the last glacial stage that had predominated the

climate system for previous 100 000 years or so, a number of plant species

became adapted to an emergent human environment independently at different

centres around the globe. This process led to the evolution of domesticated and

commensal species. Initially, the evolution of domestication involved the selec-

tion of a characteristic group of traits collectively termed the domestication

syndrome [1,2]. These traits, which included the loss of shattering, changes in

seed size, loss of photoperiod sensitivity and changes in plant and floral archi-

tecture [3], enabled the better survival of plants in the human environment.

That this was an adaptation to the human environment by plants is emphasized

by the fact that a number of non-food plants such as small-seeded grasses and

legumes also adapted to this environment under the same regime of cultivation

and became commensals, and indeed also display traits of the domestication

syndrome [4–6].

Evolution is an interminable process, and the story of the evolution of dom-

estication did not end with the emergence of those first adaptors to the human

environment. Some of the commensals later went on to become domesticated

crops themselves, such as in the case of oats and rye (reviewed in reference

[7]). The human environment to which the plants had adapted was dynamic

and presented plants with new challenges, resulting in new adaptations and

also new winners and losers among the domesticated species [8]. One of the
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Figure 1. Graph shows DNA content of desiccated barley seeds over time in
Qasr Ibrim, North Africa [19].
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greatest challenges was undoubtedly the spread of agri-

culture from various centres of origin to new latitudes, in

almost all cases far away from the biogeographic distribution

of the wild progenitor species. For plants, the environment

changed in terms of temperature, rainfall and daylength on

a grand scale, particularly for instance as crops were dis-

persed northwards into Europe. Further demands were

placed on plants on a local and regional scale as they

were moved to new soil types and specific environmental

conditions, such as high altitude or arid environments.

Alongside this, cultural innovation and changing agrarian

practices altered the selection regime [9]. Evidence is emer-

ging of the adaptation of different cultural complexes to

specific ecological niches as agriculture spread into Europe

[10], and stalls occurred in the spread of agriculture that are

associated with a combination of the time required for the

adaptation of crops to new environments as well as to

the changing assemblage composition of the agrarian pack-

age itself [11,12]. In both Europe and Asia, the push

northwards was associated with adaptations to changing

daylength [13–15], and with commensals better adapted to

the northern ecologies, such as European rye making the

transition from commensal to domesticated species [16].

There is no definable endpoint to the evolution of domesti-

cation, and it is a process that should be considered as

ongoing [17].
2. Crop adaptation to complex environments
(a) Ancient DNA as an approach to studying local

adaptation
The challenges facing plants and humans were complex and

dynamic. How and to what extent plants could adapt to com-

plex environments and how much change could be embraced

within their sphere of plasticity are questions of importance

to understanding evolution in general, as well as the emer-

gence and spread of agriculture. Ancient DNA (aDNA)

provides an inroad to understanding that evolutionary process

directly. Although the potential of aDNA in understanding the

spread of agriculture was recognized in the 1990s [18], major

obstacles became apparent. One major obstacle was that preser-

vation of DNA was largely unsuitable for large-scale analyses

with the technology of the time. There are two aspects to this

obstacle. The first is that it is an inherent problem that the

rise of agriculture took place in locales of low latitude where

relatively warm temperatures limit to just a few thousand

years the time depth from which ancient biomolecules can be

retrieved (figure 1) [19]. The second is that the vast majority

of archaeobotanical material are in the form of charred remains

and a few species mainly found under waterlogged conditions.

In the case of charring, evidence of DNA preservation was

found to be at best sporadic [20]. Partly owing to these

limitations, the number of studies of the evolution of domesti-

cation of plants that used aDNA was low relative to other

research areas in aDNA [21–23]. Despite these limitations,

some glimpses into the evolution of crops have been possible.

An extinct expansion of a wheat crop type was detected using

charred material that could have reflected an ecological limit

and failure to adapt to the dynamic human environment

[24]. However, insights using charred material were restricted

to the sporadic establishment of the phylogeographic presence
or absence of small markers from which little could be inferred

about how evolution or local adaptation had occurred [25–27].

The potential to observe selection and adaptation to the

human environment directly through aDNA was first achieved

with desiccated remains of maize, in which three biologically

significant genes were surveyed over time and space in a

handful of samples [28]. While these incremental advances

using aDNA offered tantalizing glimpses of the evolution-

ary process, the relatively small datasets generated meant

that progress was prohibitively slow until the advent of

next-generation sequencing a few years later.
(b) Genetic expectations revealed through models
A second major obstacle to understanding how plants adapted

to complex environments was a wider problem of accurate

interpretation of genetic diversity that has been produced by

complex processes [29–32]. This problem became apparent

when interpretations of genetic data became increasingly

divergent from the evidence unearthed in archaeology [30].

On the one hand, a long-held assumption of the high strength

of artificial selection giving rise to a rapid and geographically

definable origin of crop domestication was supported by

many genome-wide-based analyses. On the other hand,

archaeological evidence suggested a long protracted arrival

of domesticated forms of cereal crops, with a hitherto unap-

preciated long period of pre-domestication cultivation that

stretched thousands of years back into the Pleistocene

[33,34], and a slow subsequent fixation of traits over a period

of thousands of years [35].

Increasingly, computational models are being applied to

phylogeographic data to assess alternative domestication history

hypotheses. Modelling has revealed that the genetic inferences

were based on analysis of data with low discriminatory power,

and in fact, genetic data diversity is compatible with the notion

of a protracted origin [30]. More precise estimates of the strength

of domestication syndrome traits directly from the archaeologi-

cal record have led to the further unexpected conclusion that

the selection coefficients involved are low (in the order of

0.003) for traits as divergent as shattering, largely under mono-

genic control and increased seed size, under polygenic control

[36]. This level of selection is more akin to natural selection
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than the popular perception of artificial selection. These results

are surprising given that field experiments have shown that

selection under cultivation can be strong [37]. Consequently, it

has now become a central question to understand how plants

became adapted to the human environment, and why it took

as long as it did. This poses a second question: how much selec-

tion could have occurred? Haldane [38] first formally recognized

that one could not have unbridled amounts of selection, because

selection necessarily comes at a cost. In order for differential sur-

vival to occur, some individuals have to die (or fail to be born).

For this reason, Haldane concluded that plant breeders are lim-

ited in the number of traits they can breed into varieties. A model

of the number of genes, intensity of selection and probability of

population survival shows that the limit to the number of genes

that could be under selection is in the order of 50–100 for plant

populations at the levels of intensity observed in the archaeologi-

cal record [39] (electronic supplementary material, figure S1a).

Interestingly, these values are similar to the number of genes

showing signatures of selection from genome studies of crops

such as maize, wheat and sunflower in which estimates vary

from 27 to 70 genes under selection [40–43]. Another important

insight from this model comes from the total amount of selection

(the selection load) that occurs under different selection intensi-

ties per locus (electronic supplementary material, figure S1b).

Here, we find that more selection can occur at lower selection

intensities. An interpretation of this is that a greater amount of

selection can occur under complexity than can occur under

strong selection. Furthermore, a selective sweep may render a

population vulnerable to further change, making it less able to

cope with a dynamic human environment and restricted to effec-

tive adaptation within low complexity environments. To put it

another way, we expect from these models for complex selection

to be more robust than selective sweeps. This analysis begs the

question about the nature of the human dynamic environment

to which plants have adapted—can it be considered complex

or simple? It may be tempting to speculate that cultivation

should be considered a simple environment in which humans

negate many of the issues plants would have to cope with in

the wild, but the evidence from the archaeological record

suggests otherwise [11].

The models outlined here suggest to us that we should

expect a number of loci in the order of 50–100 under relatively

weak selection. A corollary of this mode of change is that it

seems likely that traits would be targeted at multiple loci

weakly to effect strong selection rather than the more conven-

tional perspective of a strong selective sweep at a single

locus. It is therefore a prediction that we should see multiple

changes in the interactions of genes and their products, such

as regulatory and metabolic networks.
3. Complex adaptations viewed through ancient
DNA and next-generation sequencing

(a) Large amounts of genome evolution over short time
periods

The advent of next-generation sequencing (NGS) opened up

the real possibility of using aDNA to track evolution directly

and test the expectations of genetic diversity generated

through models and the archaeological record. One approach

to look at large-scale genome evolution is to monitor the

change in the transposable element (TE) composition.
Cotton provides a good example of a crop in which to study

the evolution of genome architecture in this way, because evi-

dence from interspecific comparisons suggests that there have

been recent significant expansions and contractions of TEs

[44–46]. We were astounded to observe the extent of change

of retroelement composition in the diploid species Gossypium
herbaceum (electronic supplementary material, figure S2). In

this case, 454 Roche FLX shotgun metagenomic data were gen-

erated from four samples of desiccated archaeological cotton

from Africa, Brazil and Peru, and compared with data from

modern accessions [47]. G. herbaceum is thought to be a very

young species, speculated to be little older than the Holocene

[48]. This youth is supported by the observation that lineage

sorting appears to be very incomplete between G. herbaceum
and its sister taxon Gossypium arboreum in which we found

out of 10 PCR systems none yielded alleles that were exclu-

sive to one or other species in a sample of 91 accessions

(SA Palmer, AJ Clapham, P Rose, F Freitas, BD Owen,

D Beresford-Jones, JD Moore, JL Kitchen, RG Allaby 2012,

unpublished data). We therefore find it surprising that

such differentiation in TE proportions is observed within

G. herbaceum. This finding contrasted with the tetraploids

(G. hirsutum and G. barbadense) in which we found very little

change within and between species. The tetraploid species

are related to the diploid species through a genome donation

of an ancestor of the diploids around 1.5 Ma [49]. The contrast-

ing pattern between the diploids and tetraploids appears to be

reminiscent of punctuated equilibrium, which has recently

been linked to TE composition and turnover [50,51]. In this

case, more work is needed to explore cotton genome evolution

directly. For example, tracing older cotton genomes would

enable us to see the development of expansions over time

and establish whether we see a reduction of diversity closer

to the origin of speciation, or whether there is standing vari-

ation that could better explain our results that lies in stark

contrast to the invariant tetraploids which were sampled

from a wider spatial and temporal range.

While the evidence of TE change over time would appear

to support the expectation of large amounts of small change

(assuming most transpositions had little effect on the genome

functionality), they tell us little about the adaptive value of

such change but hint at the potential pace of change and so

capability of adaptation that could be possible. In this par-

ticular study, we considered fragments of retrieved DNA

that fell in gene regions as a possible source of information

about adaptive change. Gene variants from these types of

data may represent allelic variants or sequencing errors

(which occur at a rate of about 1% for the platform used).

However, we would expect sequencing errors to be randomly

distributed throughout the genome, but our expectation from

the models outlined above is that variants are likely to be

clustered non-randomly in gene networks. We identified

210 gene fragments from our cotton metagenomic dataset

that differed from public database entries and of those we

were able to map 20 to the KEGG (http://www.genome.

jp/kegg/) metabolic pathways map (electronic supplemen-

tary material, figures S3 and S4). It is notable that of these

20 variants, 17 fall in close proximity to another variant in

their respective part of the metabolic network, on average

separated by three nodes from their nearest neighbour. In

this analysis, six metabolic clusters are apparent, supporting

the notion that they are not random and appear to fall in line

with the model predictions of multiple changes within gene

http://www.genome.jp/kegg/
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networks. The incorporation of such approaches in the study

of local adaptation holds the promise of systems level insights

through aDNA.

(b) Qasr Ibrim, Egypt: a site of local adaptation?
This early work with NGS in archaeobotanical remains

established that complex genome level insights into the evo-

lutionary process could be gained from samples of low

latitude sites. The archaeological site at Qasr Ibrim, Egypt, pro-

vides an opportunity to expand on these approaches. Qasr

Ibrim was a boundary settlement on the edge of the Nubian

and Roman Empires located between the first and second catar-

acts of the Nile, and was occupied by five successive cultures:

Napatan, Roman, Meroitic, Christian and Islamic [52]. The

site is very dry, and the preservation of archaeobotanical

remains is remarkably good [53]. There is a continuous record

of occupation over 3000 years that provides an ideal opportun-

ity to study crop evolution through time. Of particular interest

is the barley found at the site that appears to be a two-row form

that has evolved from a six-row form [19]. In modern barley,

two-row architecture is the wild state, caused by a transcription

factor Vrs1 that inhibits the development of the two lateral flor-

ets in a flower spike. The six-row architecture is caused by a loss

of function of this transcription factor allowing lateral floret

development [54]. The barley at Qasr Ibrim is curious because

it has the non-functional version of the transcription factor, so

should be six-row form. A simple model shows that the fecund-

ity difference incurred by the architectural change between row

types means that six-row barley is expected to quickly outcom-

pete two-row, within the lifetime of a farmer [19]. Fitting with

this expectation, the six-row type emerged very early in the

domestication of barley [55]. The predomination of two-rows

in the wild suggests that they must have a strong selective

advantage over six-row in the face of the fecundity difference,

and indeed, under conditions of water stress, two-row barleys

fair better [56]. We hypothesized that the Qasr Ibrim barley

may represent a local adaptation to the dry conditions of the

Upper Nile. If so, then it may be the case that other genes

show functional changes associated with adaptations to do

with water usage and drought tolerance. We have explored

several approaches to using NGS to study the ancient nucleic
acids of the barley of Qasr Ibrim that illustrate what is possible,

and which paint quite an unexpected picture of the history of

barley in this region.

(c) Survival of and insights from ancient RNA
While DNA contains the evolutionary record of the genome,

RNA has the potential to offer insights into the last activities

of the organism through a record of gene expression. Although

they were among the earliest in the field [57], few studies have

been carried out on ancient RNA because it is expected to

degrade about 50-fold faster than DNA, largely because it is

highly prone to hydrolytic attack [58–60]. Consequently,

under arid conditions, one might expect some preservation

of RNA. Recently, NGS has been successfully applied to

RNA from desiccated maize kernels [61]. We were surprised

to find that the RNA content of the barley at Qasr Ibrim is

actually higher than that of DNA [62]. At the point of death,

RNA content is expected to be higher than DNA because of

the multiple copies of RNA that exist relative to DNA gene

copies. Assuming a ratio of between 5- and 100-fold more

RNA than DNA at the point of deposition, we estimate that

at Qasr Ibrim the rate of RNA decay is in the order of two-

to fourfold greater than DNA, a much reduced rate than

expected, most likely owing to the very arid conditions of

this site and consequent reduced rate of hydrolytic attack.

The diagenetic process of base modification appears to be simi-

lar in this RNA to that found in aDNA with frequent

conversion of cytosine to uracil, most likely through deamina-

tion as with DNA (figure 2). There are, however, interesting

differences also in the RNA degradation relative to DNA.

The distribution of cytosine base modifications mapped

through MAPDAMAGE v. 2.0 [63] is biased towards both ends

of the molecule in RNA, rather than towards the 50 end of

reads in dsDNA where exposed overhangs are more prone

to hydrolysis. We hypothesize that this may be due to second-

ary structures forming primarily over the central part of the

molecule and sheltering it from chemical attack.

We examined the RNA portion of the barley at Qasr Ibrim

using Illumina sequencing technology to see if we could learn

anything about the regulatory action of microRNAs [64].

Generally, we have succeeded in recovering miRNAs from
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archaeological barley, and we do view differences in the rela-

tive expression profiles of archaeological and modern barleys

that seem to indicate that the barley of the Christian era was

stressed. Briefly, our unpublished data (RG Allaby, R Gutaker,

AC Clarke, N Pearson, R Ware, SA Palmer, JL Kitchen, O Smith

2013) show the presence of miRNAs in the Christian era associ-

ated with germination inhibition, suggesting the avoidance of

growth under harsh environmental conditions. An unexpected

result was the retrieval of the first RNA genome that belonged

to the barley stripe mosaic virus (BSMV) [62]. Historical

records attributed to this virus only go back for the past 100

years or so, and analysis of modern genomes suggests an age

of origin no greater than 200 years. The inclusion of the ancient

RNA genome indicates that the Qasr Ibrim virus is close to the

base of the crown group, suggesting an expansion of this virus

contemporaneous with the Crusades, with an origin some time

before this. BSMV has no known vector and is spread by phys-

ical contact between grains or pollen [65], so its rise at this time

may have been linked to the intensification of agriculture that

occurred to support the medieval war machine.

The RNA results demonstrate that it is possible to identify

activated points of gene networks directly from the past. Further-

more, viruses play an important role in the adaptation of

organisms to new environments [66]. Viruses resident to an in-

digenous community may affect newcomers more severely

than their indigenous hosts, and likewise the introduction of

viruses by newcomers may affect the indigenous community

severely. In this respect, viruses can be considered an important

part of the adaptive arsenal carried by organisms rather than

simplya burden. The movement of domesticated plants through-

out history and particularly at a more global level in recent times

is of concern regarding the emergence of new diseases that affect

our food supply [67]. Therefore, viruses add an important

dimension to the understanding of the local adaptation of

crops that is visible through the archaeobotanical record.
(d) Methylation patterns
The global methylation state of a plant genome can be informa-

tive about the level of stress it is under. Methylation of cytosine

bases causes the silencing of genes and is an effective genomic

mechanism to control TEs. Typically, up to 90% of plant genomes

can become methylated under conditions of stress [68]. Given the

emergent picture of the barley at Qasr Ibrim, and our initial sus-

picions of water stress at the site, we were interested to know

whether anything remained of the methylation signal under

these preservation conditions [69]. Using the MethylMiner kit,

the CpG methylation signal of archaeological barley through

timewas established (figure 3). The methylation signal falls expo-

nentially over time, and extrapolation of the trend to modern

times results in methylation levels which are in the normal

range for barley. In ancient samples, the strength of the methyl-

ation signal is expected to be less than modern, because the

shorter DNA fragments that are bead captured will contain

fewer methylated cytosine sites. However, the decrease in

signal, in this case, we believe is due to chemical modification

of the methylation signal rather than DNA fragmentation,

because the size distribution of the DNA fragments did not

vary greatly between archaeobotanical samples of different

ages. The barley that corresponds to the Christian strata is notable

because its signal suggests 98% methylation of the living barley,

indicating a high degree of stress. Therefore, the barley at Qasr

Ibrim was not stressed as far as we can see, until the Christian

era, and returned to normal methylation levels after that time

in the Islamic era. We confirmed this pattern using bisulfite

sequencing of a region of the eIF4 locus that again showed the

high degree of methylation associated with the Christian era.

(e) The possible utility of charred grains
A DNA capture approach was also applied to the barley of

Qasr Ibrim through time. A chip of 183 genes selected for
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their possible roles in drought adaptation was used to capture

DNA from multiple points in the strata, which was sequenced

using Illumina technology (RG Allaby, R Gutaker, AC Clarke,

R Ware, SA Palmer, O Smith, W Nicholson, L Kistler 2013,

unpublished data). Some preliminary overviews of the results

are presented here to help complete the picture of the use of

NGS and aDNA to study local adaptation in barley at Qasr

Ibrim. Of particular interest was a single 2000 year old

(Roman) charred grain of barley from Kawa for which we

obtained a few reads (amounting to 82 000 bp of reads in

total). A frequency distribution of read lengths obtained from

this sample, and compared with a desiccated sample of slightly

greater age (Napatan) shows that the two are essentially iden-

tical in the size range and differ principally in absolute

frequency (figure 4). While all interpretations should be cau-

tious because of biases in size distribution introduced by the

library preparation process, the similarity of these profiles is

surprising and encouraging. Other research groups have man-

aged to produce shotgun NGS data from charred wheat using

alternative platforms [70], and sequencing technology has now

reached a point at which the vast charred archaeobotanical

record may be accessible to a useful degree.
( f ) The crusades as an example of the introduction of
poorly adapted crops

At the time of writing, we have recovered alleles of 86 loci

from 52 single grains of barley from Napatan, Roman, Mero-

itic, Christian and Islamic levels at Qasr Ibrim (data not

shown). Contrary to our expectations, the barley at Qasr

Ibrim is not very distinct from the barley of Nubia and the

Near East generally. However, we do see a distinct influx

of different alleles during the Christian era.

In each of the ways we have examined the Qasr Ibrim

barley, we have found that the Christian era is the distinct stra-

tum. This era is contemporaneous with the arrival of the

crusaders, during which time we see distinct barley, the arrival

of a virus and a methylation signature of stress. An interpret-

ation that we are now exploring is that the crusaders may

have brought barley with them that was less able to cope
with local conditions than the barley of the region. The original

barley type appears to have generally been reasserted during

the Late Christian and completely by the Islamic phases. If

the barley that was resident at Qasr Ibrim before this time

was truly locally adapted to the site, then the signature of

that adaptation is more subtle than the level of resolution our

analyses have currently reached. This would be in keeping

with expectations from the models that demonstrate that the

number of loci that can be under selection is limited, and the

effect of any one locus likely small. In such a model, we

might not expect fixation of differences, and that different

combinations of alleles may achieve a selectively similar out-

come. Qasr Ibrim still has a good deal to teach us about local

adaptation, and further unexpected turns may come to light.
4. Concluding remarks: archaeogenomes to
systems

(a) Getting behind introgressions
Technology has progressed to a level that allows the evolution of

crops to be studied at a truly genomic level, and the next step is

undoubtedly the retrieval of the first complete plant genomes

from the archaeological record. This will enable us better to

gauge the accuracy of the predictions of models for how evo-

lution and selection have proceeded in domesticated crops.

Models give us a framework in which we expect, for the most

part, that selection has been weak. A corollary of this prediction

is that if we sequence ancient plant genomes that come from a

time closer to the onset of entering into the human environment

at the beginning of the domestication trajectory then we should

expect to see stronger signals of selection at loci in which we see

no signal in modern genomes. Furthermore, as plants evolve

along the domestication trajectory over long periods of time,

and move to new environments where new wild populations

are encountered, there is ample opportunity for introgressions

to occur which have large functional consequences on the dom-

esticated crop. For instance, the majority of the known

domestication syndrome associated genes of Indian rice have

been acquired, through introgression, from Japanese rice that
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arrived in the Indian subcontinent [71–76]. In this way, the dom-

esticated crop was able to use adaptations of the different wild

races to local environments. While modern genomes are the

palimpsest of these complex histories and difficult to interpret,

aDNA approaches will be able to unravel the sequence of acqui-

sitions through introgression by sequencing genomes before

and after such events. These approaches will help identify the

origins of various parts of the genome and consequently the

environments to which they had been adapted prior to intro-

gression, as well as establishing the likely order of trait

acquisition through introgression.

(b) Low complexity adaptations in crops to complex
environments?

Our models lead us to expect a large number of genes under

weak selection rather than under one or two genes under

strong selection, which appears to be the emergent picture

from studies of adaptive evolution in wild plants [77–79].

They also lead us to expect that gene networks and metabolic

processes would be affected at multiple points. Interestingly,

such a pattern has recently been observed in the adaptation

of dogs to a starchy diet in the human environment [80].

This indicates that an important frontier to broach in geno-

mic-level analyses is to account for how selection acts on

genes that are interdependent in networks of interaction—

to move to a systems level of analysis. At a systems level,

the majority of adaptation is expected to be achieved through

the up- and downregulation of members of gene networks,

effecting rapid and complex responses to environmental

stimuli [81]. The DNA binding sites for transcription factors

involved in regulation are very simple and consequently fre-

quently form and disappear spontaneously with mutation,

answering to some extent Haldane’s original assertion in

his contribution to the modern synthesis that the majority

of mutations are expected to result in the loss of function

owing to the expectations of entropy [82]. This elegant

description of evolution implies the retention of function in

genes during most adaptive change. However, these expec-

tations are not met when we consider the adaptation of

domesticated plants, such as wheat, barley and rice, to

higher latitudes. Instead of adjusting the expression of

genes in the networks of the floral pathway to attune to

these new latitudes as we might expect to have occurred

naturally, we see irreversible loss-of-function mutations in
the associated gene networks (reviewed in reference [13]). It

was this that, in many cases, helped plants to move with

the human environment into northerly latitudes in which

survival of the winter season would not have been assured.

These adaptations of domesticated cereals to latitude appear

crude, one-way and simplistic relative to what we would expect

of natural systems. In many cases, a single mutation achieves the

phenotype rather than a number of mutations with each contrib-

uting a small effect. Furthermore, these genotypes probably rose

in frequency relatively rapidly given the rapid pace of the spread

of agriculture [11]. Could these be examples of selective sweeps

that are, by corollary, rapid adaptations of low complexity?

Under this scenario, it could have been the pace of agricultural

movement across latitude that drove the intensity of selection,

demanding rapid adaptation by plants in the human environ-

ment. Our models suggest that populations under strong

selection will be vulnerable to further selection pressures that

could cause population collapse, because the overall cost of selec-

tion would be too high. Intriguingly, the archaeological record

indicates that such processes may have occurred—we see repeat-

edly that agriculture arrived at certain latitudes and collapsed

not long after [83,84].

Ancient DNA and models have an important role in facil-

itating understanding of local adaptation in the future at a

systems level. In the case of adaptation to latitude, models

need to be applied to determine what the expectations are

for the evolution of gene networks moving over latitude

[85]. Does rapid movement across a selective gradient lead

to the expectation of the retention of loss-of-function mutations

that effectively break gene network interactions? Would a

slower pace of movement been more likely to have led to a

more refined adjustment response in networks? Archaeoge-

nomics provides a reasonable approach to track the timing

and order of the occurrence and subsequent selection of the

mutations involved. In the case of studying the adaptation to

latitude, aDNA technology will have to make further inroads

in to using DNA from charred material. The resulting insights

into how evolution works will be of relevance to understand-

ing how plants adapted to the complex and dynamic human

environment in the past, and how they might do so in the

future in an ever changing world.
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