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Abstract

Introduction

Gestational Diabetes Mellitus (GDM) is a condition in which women without history of diabe-

tes experience hyperglycemia during pregnancy, especially at the second and third trimes-

ters. In women who have had GDM, an elevated body mass index (BMI) may have a

substantial impact for persistent hyperglycemia in their lives after gestation. Beyond hyper-

glycemia, increased local oxidative stress directly promotes the formation of Advanced Gly-

cation End-products (AGEs). Hence, this systematic review and meta-analysis was aimed

to determine the relationship between the level of AGEs and/or related metabolic biomark-

ers with GDM.

Methods

Literature search was carried out through visiting electronic databases, indexing services,

and directories including PubMed/MEDLINE (Ovid®), EMBASE (Ovid®), google scholar and

WorldCat to retrieve studies without time limit. Following screening and eligibility evaluation,

relevant data were extracted from included studies and analyzed using Rev-Man 5.3 and

STATA 15.0. Inverse variance method with random effects pooling model was used for the

analysis of outcome measures at 95% confidence interval. Hedge’s adjusted g statistics

was applied to calculate the standardized mean difference (SMD) to consider the small sam-

ple bias. Besides, meta-regression, meta-influence, and publication bias analyses were

conducted. The protocol has been registered on PROSPERO with ID: CRD42020173867.

Results

A total of 16 original studies were included for the systematic review and meta-analysis.

Compared with women with pregnant controls, the level of AGE was significantly higher in

women with GDM (SMD [95% CI] = 2.26 [1.50–3.02], Z = 5.83, P < 0.00001; I2 = 97%, P<
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0.0001). The BMI was also significantly higher in women with GDM (SMD [95% CI] = 0.97

[0.33–1.62], Z = 2.98, P = 0.003) compared to controls. Regarding specific and related met-

abolic biomarkers, there was higher level of HOMA-IR (SMD [95% CI] = 0.39 [0.22–0.55],

Z = 4.65, P < 0.0001, after sensitivity analysis) and HbA1c (SMD [95% CI] = 0.58 [0.03–

1.12], Z = 2.07, P = 0.04, after sensitivity analysis) in gestational diabetic women. Subgroup

analyses indicated that studies conducted in Asia and Europe, at third trimester of preg-

nancy and blood/plasma AGE samples showed a significant difference in AGE level among

women with GDM compared to pregnant controls. What is more, meta-regression with

the sample size (regression coefficient (Q) = -0.0092, P = 0.207) and year of publication

(Q = 0.0035, P = 0.984) suggested that the covariates had no significant effect on the

heterogeneity.

Conclusion

The study indicated that there was a strong relationship between AGE and GDM. Besides,

the BMI and other specific biomarkers showed a significant difference between the two

groups indicating the high risk of developing long-standing type 2 diabetes and its complica-

tions in gestational diabetic women. Early detection of these biomarkers may play a pivotal

role in controlling postpartum diabetic complications.

Introduction

According to the American Diabetes Association (ADA), gestational diabetes mellitus (GDM)

can be defined as glucose intolerance with onset during pregnancy and typically resolves itself

postpartum. It is treated as a major public health concern due to its adverse maternal and neo-

natal outcomes and a likelihood of developing type-2 diabetes later in the lives of the mothers

and offsprings [1]. The genetic, epigenetic, and environmental factors may jointly contribute

to the development of GDM. Hence, the underlying mechanisms involved in the pathogenesis

of GDM remain complex and gradually evolving. Available evidence indicated that chronic

inflammation, oxidative stress, gluconeogenesis, and placental factors contribute to the pathol-

ogy of GDM [2]. Even if pregnancy is normally considered as a state of oxidative stress, the

presence of GDM heightens the oxidative state. The rise in the levels of reactive oxygen species

(ROS) has been associated with non-enzymatic glycation of macromolecules which may partly

play a role in the development of postpartum type 2 diabetes mellitus and maternal and neona-

tal complications [3, 4].

Under favorable conditions, a series of non-enzymatic reactions occur between the amino

groups of macromolecules and the carbonyl groups of reducing sugars, a process known as

Maillard reaction. Such early glycation adducts undergo further rearrangement into final sta-

ble heterogeneous products called advanced glycation end products (AGEs) [5, 6]. Such reac-

tions alter the structure and function of macromolecules leading to pathological aging

processes. To this end, hyperglycemic and oxidative stress conditions accelerate this process

[6]. AGEs can chemically be classified as fluorescent cross-linking AGEs (e.g. pentosidine and

crossline), non-fluorescent cross-linking AGEs (e.g. arginine–lysine imidazole cross-links),

and non-cross-linking AGEs (e.g. N-carboxymethyl-lysine (CML)) [7].

The formation of AGEs normally occurs both exogenously and endogenously. The exoge-

nous production of AGEs occurs when foods are processed with high temperature. It is evident

that fried food items such as cookies, biscuits, and chips having one or more AGE-forming
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ingredients are overwhelmed with high levels of AGEs [5, 8–10]. The contemporary lifestyle

provides a conducive environment for thermally processed food items replete with pro-inflam-

matory and oxidative stress-inducing AGEs. By stimulating appetite and causing overnutri-

tion, such food items pose a risk for overweight and obesity [8, 11]. A study indicated that a

dietary quality index score was negatively correlated with the serum levels of some AGEs [12]

emphasizing the quality of processed food items determines their AGE content. Likewise,

higher level of maternal consumption of fried fish and fried chicken just before conception

was associated with an increased risk of GDM [13]. A case-control study conducted in Iran

indicated that western dietary pattern was associated with an increased risk of GDM [14].

Therefore, wise dietary adjustment has a paramount importance for controlling an AGE load

in the body. The endogenous formation of AGEs is also heightened in the presence of hyper-

glycemia and oxidative stress, the two hallmarks of diabetes creating a vicious cycle and hence

the causal relationship remains “a chicken-egg dilemma”. AGEs also contribute to the develop-

ment of diabetes through augmenting further oxidative stress and AGE receptor (RAGE)

mediated downstream signaling [15]. AGEs mediate inflammatory actions via protein kinases

and the nuclear factor kappa B (NF-kB) signaling pathway in human gestational tissues [16].

The growing body of evidence has indicated AGEs-RAGE interaction elicits oxidative stress

which in turn triggers proliferative, inflammatory, thrombotic, and fibrotic reactions. This evi-

dence supports AGEs involvement in diabetes and age-related disorders [6, 7, 17]. In this

regard, Dariya and Nagaraju summarized the role of AGE-RAGE interaction and downstream

signaling pathways highly implicated for tumorigenesis and diabetic complications. The gener-

ation of ROS, activation of NF-kB, and protein kinases play a pivotal role for downstream sig-

naling processes. Activation of NF-kB in turn upregulates the RAGE and perpetuates the

signaling process [18]. The authors also pointed out phytochemical constituents such as genis-

tein and curcumin can sequester highly reactive dicarbonyl compounds such as methylglyoxal

and glyoxalase thereby prevent the formation of AGEs and their interaction with RAGE [18].

Piuri et al also elucidated the possible involvement of new inflammatory and metabolic bio-

markers (Methylglyoxal, glycated albumin, PAF, and TNF-α) in the mechanisms related to

GDM complications and exploration into the vicious cycle connecting inflammation, oxida-

tive stress, and AGEs [19]. What is more, AGEs may lead to abnormal expressions of tight

junction-associated integral membrane proteins (ZO-1 and Occludin) in vascular endothelial

cells of placenta via RAGE/NF-kB signaling pathway, thereby abolishing the integrity of the

membrane and increasing placental permeability [20]. In view of individual studies, they

had low statistical power for inference and a sort of inconsistency in reporting findings about

the relationship between the level of AGEs and/or related biomarkers with GDM. Hence, we

conducted this systematic review and meta-analysis to generate pooled estimates at global

level.

Methods

Study protocol and registration

The Preferred Reporting Items for Systematic Review and Meta-analysis (PRISMA) guideline

was used for screening and eligibility assessment of identified studies for systematic review

and meta-analysis [21]. This systematic review and meta-analysis was conducted by following

the PRISMA Protocol [22]. Besides, the contents of this systematic review and meta-analysis

have been well reported in the completed PRISMA checklist [23] (S1 Table). The study proto-

col has been registered on the International Prospective Register of Systematic Reviews

(PROSPERO) with unique ID: CRD42020173867 and available at: https://www.crd.york.ac.uk/

PROSPERO/display_record.php?ID=CRD42020173867&ID=CRD42020173867
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Data sources and search strategy

An electronic search was performed on legitimate databases, indexing services, and search

engines including PubMed/ MEDLINE (Ovid), EMBASE (Ovid), Google scholar, and World-

Cat with predefined keywords, indexing and MeSH terms until March 31st, 2020. By removing

the non-explanatory terms from the research question, the keywords and MeSH terms were

connected with Boolean operators in search of legitimate databases as follows without time

limit ([“advanced glycation end products” OR “AGEs” OR “advanced glycosylation end prod-

ucts” OR “glycosylation end products, advanced” [MeSH]] AND [“gestational diabetes”

[MeSH] OR gestational� OR pregnancy OR “pregnancy induced diabetes” OR “diabetes in

pregnancy”]). References of identified citations and Google Scholar were also searched to iden-

tify additional studies. Truncation was used when appropriate to fine-tune the search and

increase the number of relevant findings.

Inclusion and exclusion criteria

During the screening and eligibility assessments, there were predefined inclusion and exclu-

sion criteria to include relevant studies. Observational studies (Case-control, cohort or cross-

sectional) addressing the level of AGEs and/or related metabolic biomarkers among pregnant

women with GDM (cases) and normally progressing pregnancy (controls) were included.

Restriction was not applied on the years of publication and geographical location, but only

studies written in English language were considered for inclusion. Review papers, editorials,

commentaries, opinions, and case reports were excluded during screening of titles and

abstracts. Studies addressing the AGEs in women with GDM without control and animal-

based preclinical studies were excluded during the selection process. We also excluded cases

mixed with other types of diabetes during eligibility assessment. Studies with irretrievable full

texts (after requesting full texts from the corresponding authors via email and/or Research

Gate accounts) or studies with unrelated or insufficient outcome measures or studies with

ambiguous outcomes of interest were excluded.

Screening and eligibility of studies

The reference lists identified from different sources were exported to ENDNOTE version

7.2 software (Thomson Reuters, Stamford, CT, USA) with compatible formats. Studies

retrieved from various databases were combined. Duplicate records were removed with the

help of ENDNOTE software followed by careful visual inspection by considering distinct

referencing styles of sources which the software could not detect as duplicate. Each record

was independently assessed by two authors (MS and TA) using the predefined inclusion

and exclusion criteria stated above. Following initial screening of records with their titles

and abstracts, rigorous assessment of full texts was made by MS and DE. Disagreement

raised among authors at any phase of the work was solved by discussion with the rest

authors.

Data extraction

Important data were extracted from included studies using Excel sheet (S2 Table).The authors

(MS and ANM) independently extracted the data related to study characteristics and outcome

measures: including first author, publication year, study design and population, study setting

and country, body mass index (BMI) (Mean ± standard deviation (SD)), stage of pregnancy,

sample size (sum of cases and controls), type of samples collected, mean level of AGEs and spe-

cific metabolic biomarkers including homeostatic assessment for insulin resistance (HOMA-
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IR), intercellular/vascular cell adhesion molecule -1 (ICAM-1/VCAM-1), and glycated hemo-

globin (HbA1c) in both groups with specific units of measurement (Mean ± SD or Mean [95%

confidence interval]).

Critical appraisal of studies (risk of bias assessments)

Following the assessment of eligible articles, two authors (MS and AG) independently assessed

the methodological validity and analysis of outcome measures using the Joanna Briggs Insti-

tute (JBI) critical appraisal checklist for observational studies, University of Adelaide, Australia

[24]. The assessment tool consisted of design-specific questions about the quality of the study

based on the following responses: Yes, No, Unclear, and Not Applicable. This critical appraisal

was conducted to assess the internal and external validity of studies and to determine the

extent to which each study has addressed the possibility of bias in its design, conduct, and anal-

ysis. The mean score of the two authors was taken for final decision and studies with a score of

‘Yes’ greater than or equal to half of the respective number of appraisal questions were

included in the study.

Outcome measurements

Our primary outcome of interest was the relationship between the level of overall AGEs with

GDM. Subgroup analyses were performed based on trimester of pregnancy, geographic loca-

tion, and type of samples. Additional meta-analyses were run to find out the association

between BMI (kg/m2) as well as clinically relevant metabolic biomarkers such as HOMA-IR,

HbA1c, and ICAM-1/VCAM-1 with GDM.

Data processing and analysis

The extracted data were exported from Excel to Rev-Man 5.3 software (Cochrane Organiza-

tion, England) for analysis of overall outcome measures, subgroups, and publication bias.

Meta-regression and meta-influence analyses were conducted using STATA 15.0 software

(Stata Corporation, College Station, TX, USA). Considering the variation in true effect sizes

across the population, inverse variance (IV) method with random effects pooling model was

applied for meta-analysis at 95% confidence interval. Considering instrumental variation

and small sample bias, the standardized mean difference (SMD) was calculated with Hedge’s

adjusted ‘g’ statistics [25]. The heterogeneity of studies was assessed using I2 statistics. The

“leave-one-out” sensitivity analysis was carried out to assess outliers that likely have a sub-

stantial impact on the overall effect size and between-study heterogeneity [26]. Influence

analysis was conducted to evaluate whether a single study significantly affected the pooled

SMD estimate [27]. The presence of publication bias was determined by using Egger’s regres-

sion test and visualization of funnel plot asymmetry [28, 29]. The pooled estimate was

declared statistically significant based on Z statistics and a cutoff point of p < 0.05 (two-

sided).

Results

Search results

A total of 472 studies were retrieved through visiting legitimate databases, indexing services,

search engines, and repositories. From these, 94 duplicate studies were identified and removed

using ENDNOTE and careful visual inspection. Then, 378 records were retained for further

screening using their titles and abstracts. Among which, a total of 341 records (234 studies by

titles and 107 studies by abstracts) were excluded. The full texts of the remaining 37 studies
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were assessed for eligibility and 21 of which were excluded with various reasons. Finally, 16

studies were included for systematic review and meta-analysis (Fig 1).

Results of critical appraisal

Rigorous appraisal of included observational studies (case-control and cross-sectional studies

with 10- and 9-point scales, respectively) resulted in average quality scores ranging between 5

and 10. Fortunately, all included studies fulfilled the minimum criteria and retained for sys-

tematic review and meta-analysis (S3 Table).

Fig 1. PRISMA flow diagram showing the selection process of retrieved studies.

https://doi.org/10.1371/journal.pone.0240382.g001
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Study characteristics

A total of 16 studies (with one study retained for specific AGE measures and metabolic bio-

markers) were included for systematic review and meta-analysis. The publication years of

included studies ranged from 2008 to 2019. Regarding the geographical distribution, the

review included seven studies from Europe [30–36], seven studies from Asia [37–43] and two

studies from Latin America [44, 45]. Thirteen of these studies employed case-control design

[30, 32, 33, 35–44] whereas the rest three studies were cross-sectional in design [31, 34, 45].

Specifically, the meta-analysis of AGEs involved 774 cases and 834 controls. The systematic

review and meta-analysis involved studies that reported the outcome measures at both first

and second trimesters [32], first and third trimesters [36], second trimester [30, 31, 34, 41, 44],

second and third trimesters [38, 42], and third trimester of pregnancy [33, 35, 37, 39, 40]

whereas two studies did not specify gestational period during sample collection [43, 45]. Blood

sample was collected from 13 studies [30, 31, 33, 35–40, 42–45], skin sample from two studies

[32, 34], and placenta sample from one study [41] (Table 1). For analysis of specific AGEs and

metabolic biomarkers, five and four studies were included to generate the pooled estimates of

HOMA-IR [31, 37, 42, 43, 45], and HbA1c [31, 33, 37, 43], respectively. Three studies with

four effect measures (including one repeated measure at two gestational time points) were

included for ICAM-1/VCAM-1 analysis [39, 40, 45] (Table 2).

Meta-analysis of outcome measures

Fourteen effect measures with similar measurement units (AU/mL) (obtained from 11 studies

involving three repeated measures) were included for meta-analysis of the overall AGE levels

in the body. Compared with the control group, the level of AGE was significantly higher in

women with GDM (SMD [95% CI] = 2.26 [1.50–3.02], Z = 5.83, P < 0.00001; Tau2 = 1.95, I2 =

97%, P< 0.0001) (Fig 2). The BMI (Kg/m2) was also significantly higher in women with GDM

(SMD [95% CI] = 0.97 [0.33–1.62], Z = 2.98, P = 0.003) compared to normally progressing

pregnant controls (Fig 3). Regarding specific and related metabolic biomarkers, there was

higher level of HOMA-IR (SMD [95% CI] = 0.63 [0.24–1.03], Z = 3.13, P = 0.002 and SMD

[95% CI] = 0.39 [0.22–0.55], Z = 4.65, P< 0.0001 for before and after sensitivity analysis,

respectively) (Fig 4) and HbA1c (SMD [95% CI] = 1.55 [0.36–2.75], Z = 2.55, P = 0.01 and

SMD [95% CI] = 0.58 [0.03–1.12], Z = 2.07, P = 0.04 for before and after sensitivity analysis,

respectively) in gestational diabetic women (Fig 5). Despite showing higher magnitude in

GDM, the level of ICAM-1/VCAM-1 did not show significant difference between women with

GDM and controls (SMD [95% CI] = 1.18 [-0.17–2.53], Z = 1.71, P = 0.09) (Fig 6).

Subgroup analyses

Subgroup analysis based on the continent showed that the overall AGE level was associated

with GDM for studies conducted in Asia (SMD [95% CI] = 4.04 [2.48–5.59], Z = 5.09,

P< 0.0001) and Europe (SMD [95% CI] = 1.51 [0.72–2.30], Z = 3.74, P = 0.0002) but not in

those conducted in Latin America (SMD [95% CI] = -0.10 [-0.29–0.09], Z = 1.06, P = 0.29).

Gestational period-based analysis revealed that the overall level of AGEs was significantly

higher at the third trimester of pregnancy (SMD [95% CI] = 3.84 [2.31–5.37], Z = 4.92,

P< 0.00001) but not at first and second trimesters of pregnancy. Regarding the type of sam-

ples collected, the blood/plasma AGE level was significantly higher among GDM (SMD [95%

CI] = 2.86 [1.84–3.89], Z = 5.48, P < 0.00001) but not in AGE samples collected from skin and

other sources (SMD [95% CI] = 0.36 [-0.25–0.97], Z = 1.15, P = 0.25) compared to control

(Table 3).
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Table 1. Study characteristics of diabetic and non-diabetic pregnant women included in the study.

Authors Year of

publication

Country Study

Settings

Study

design

BMI (Kg/m2) Trimester

of

pregnancy

# Cases/

controls

Sample Level of AGEs (AU/mL)

GDM Controls

Mean ±SD or

Mean [95% CI]

Mean ±SD or

Mean [95% CI]

GDM Controls

Mean ±SD Mean ±SD

Aziz et al [37] 2015 Iraq Hospitals in

Baghdad

Case-

control

28.80±0.27 27.77±0.40 Third 30/30 Blood 5.29±0.28 2.76±0.33

Bartakova

et al [30]

2016 Czek Hospital of

Brno

Case-

control

24.80 ± 1.76 21.15± 1.73 Second 182/36 Blood 10.18 [8.09–

12.22]

5.73 [5.29–

8.66]

Boutzios et al

[31]

2013 Greece Aretaieion

University

Hospital,

Athens

Cross-

sectional

30.3 ± 4.4 27.9 ± 3.1 Second 54/56 Blood 7.28 ± 2.4 5.68 ± 1.3

Cosson et al

[32]

2019 France Jean-Verdier

hospital,

Paris

Case-

control

NR NR Second 48/70 Skin 1.99 ± 0.47 1.79 ± 0.32

First 62/70 2.11 ± 0.48

Davison et al

[33]

2011 UK Royal

Liverpool

University

Hospital

Case-

control

NR NR Third 15/29 Blood 3.58±0.83 3.13±0.51

de Ranitiz-

Greven et al

[34]

2012 Netherlands University

Medical

Center

Utrecht

Cross

sectional

27.6 ± 6.0 25.0 ± 6.3 Second 60/44 Skin 1.73 ± 0.33 1.81± 0.30

Harsem et al

[35]

2008 Norway Ulleval

University

Hospital.

Case-

control

32.1 ± 4.33 28.5 ± 4.89 Third 34/38 Blood 1.72 (1.47–1.91) 1.28 (1.13–

1.42)

Krishnasamy

et al [39]

2019a India Tertiary

referral

centers in

Tamil Nadu

Case-

control

25.72 ± 5.48 24.22 ± 4.67 Third 50/50 Blood 13.18 ± 8.74 2.68 ± 0.89

Krishnasamy

et al [40]

2019b India Two tertiary

care

hospitals

Case-

control

26.36 ± 0.61 26.27 ± 0.25 Third 50/50 Blood 10.40 ± 0.98 4.71 ± 0.39

Li et al [41] 2019 China Binzhou City

Center

Hospital

Case-

control

23.17±3.16 22.86±2.66 Second 72/80 Placenta 54.27±18.28 32.18±12.12

Li and Yang

[42]

2019 China Peking

University

First

Hospital

Case-

control

22.71 ± 3.20 21.65 ± 2.84 Second 90/90 Blood 473.65 ± 105.32 324.36 ± 57.86

(ng/L)�

Third 90/90 Blood 533.47 ± 146.95 315.50 ± 77.79

(ng/L)�

Lobo et al

[44]

2017 Brazil NS Case-

control

32.0 ± 2.22 25.4 ± 1.48 Second 225/217 Blood 2.42 ± 0.72 2.50 ± 0.86

Pertyn´ska-

Marczewska

[36]

2009 Poland Polish

Mother’s

Memorial

Hospital

Case-

control

24.25 ± 2.57 23.17 ± 4.43 First 14/14 Blood 9.5 ± 1.9 5.2 ± 1.3

NR NR Third 14/14 Blood 9.7 ± 1.9 5.3 ± 0.7

Guosheng

et al [38]

2009 China First

Affiliated

Hospital of

Jinan

University

Case-

control

NR NR Second 60/72 Blood 8.114±2.375 4.262±1.284

Third 72/80 Blood 8.085±2.396 4.830±1.156

Mai et al [43] 2014 China Guangdong

Women and

Children

Hospital

Case-

control

22.7±3.5 21.5±2.7 NS 190/80 Blood 403.0+ 208.6 321.8 +150.3

(ng/L) �

(Continued)
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Meta-regression and sensitivity analysis

Strong evidence of high heterogeneity (Tau2 = 1.95, I2 = 97%, P< 0.0001) was demonstrated in

the analysis of the relationship between the level of AGEs and GDM. For this, univariate meta-

regression was run to identify potential covariates that likely affect the magnitude and direc-

tion of the overall SMD estimate. Nonetheless, meta-regression with the sample size (sum of

cases and controls) (regression coefficient (Q) = -0.0092, P = 0.207) and year of publication

(Q = 0.0035, P = 0.984) suggested that the covariates had no significant effect on the heteroge-

neity between studies. Likewise, the bivariate meta-regression analysis also showed that either

of them did not significantly contribute to the heterogeneity (P = 0.65 and P = 0.20 for

Table 1. (Continued)

Authors Year of

publication

Country Study

Settings

Study

design

BMI (Kg/m2) Trimester

of

pregnancy

# Cases/

controls

Sample Level of AGEs (AU/mL)

GDM Controls

Mean ±SD or

Mean [95% CI]

Mean ±SD or

Mean [95% CI]

GDM Controls

Mean ±SD Mean ±SD

Morales et al

[45]

2016 Mexico Regional

general

hospital

Cross-

sectional

33.99±5.32 30.09±4.02 NS 38/38 Blood NR NR

NS, not specified; NR, not recorded; SD, standardized difference

�measurements in units other than specified one. NB: Studies reported in 95% CI were converted to SD using STATA 15.0 for the sake of analysis.

https://doi.org/10.1371/journal.pone.0240382.t001

Table 2. Level of specific AGEs and related metabolic biomarkers implicated for diabetic complications.

Authors Level of specific AGE and related metabolic biomarkers Type of marker

GDM Controls

Mean ±SD/Mean [95% CI] Mean ±SD/Mean [95% CI]

Aziz et al 1.93±0.26 1.43±0.26 HOMA-IR

6.51±0.33 5.07±0.08 HbA1c (%)

Bartakova et al 683.64 [560.00–805.30] 507.54 [433.56–679.50] CML (ng/ml)

Boutzios et al 2.33 ±3.34 1.63 ±1.44 HOMA-IR

5.4 ±0.47 5.35 ±0.37 HbA1c (%)

Davison et al 6.15±0.71 5.39±0.39 HbA1c (%)

Harsem et al 2.18 (2.10–2.66) 2.49 (2.37–3.19) CML (U/ml)

Krishnasamy et al 217.8 ± 86.92 142.3 ± 38.21 ICAM-1 (ng/ml)

15.7 ± 13.54 9.26 ± 5.38 MGO (ng/ml)

Krishnasamy et al 201.04 ± 7.85 174.1 ± 7.11 ICAM-1 (ng/ml)

Li et al 6.21±1.03 3.87±0.71 MDA (ng/ml)

Li and Yang 2.53 ± 1.92 1.84 ± 1.21 HOMA-IR

Pertyn´ ska-Marczewska 825 (642–884 1231 (1040–1586) SRAGE (pg/ml)

705 (555–885) 985 (822–1221) SRAGE (pg/ml)

Mai et al 5.7 ±0.5 5.5 ± 0.3 HbA1c (%)

1.9 ±1.2 1.5 ±0.9 HOMA-IR

Morales et al 80.47±63.3 79.4±36.76 ICAM-1 (ng/ml)

427.58±72.7 420.58 ± 97.43 VCAM-1 (ng/ml)

2.70 ±1.56 1.96 ±1.08 HOMA-IR

AGE, Advanced glycation end products; HOMA-IR, Homeostatic assessment for insulin resistance; ICAM-1, Intercellular adhesion molecule-1; VCAM-1, Vascular cell

adhesion molecule-1; HbA1c, glycated hemoglobin; SRAGE, soluble receptor for AGEs; MDA, malondialdehyde; MGO, methylglyoxal; CML, Carboxymethyl-leucine.

https://doi.org/10.1371/journal.pone.0240382.t002
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publication year and sample size, respectively). The bubble plots of SMD with sample size and

publication year are presented in Figs 7 and 8, respectively. In the sensitivity analysis, three

studies were removed ‘turn by turn’ and ‘all at once’ but no significant change was observed

on the degree of heterogeneity and the pooled SMD remained significant in all analyses. In

case of HOMA-IR and HbA1C sensitivity analysis, the “leave-one-out” sensitivity analysis

indicated that excluding one outlier study abolished heterogeneity in HOMA-IR studies (I2 =

0.0%, P = 0.81) (Fig 4) and showed a substantial but non-significant reduction in heterogeneity

of studies reporting HbA1C (I2 = 81%, P = 0.005) (Fig 5).

Influence analysis and publication bias

In the influence analysis, no single study had excessive influence on the relationship between

AGE and GDM (the pooled SMD estimate) (Fig 9). To confirm a small study effect, Egger’s

regression test accompanied with funnel plot asymmetry demonstrated that there was a sort of

publication bias (Egger’s Q = 10.11, P < 0.022) (Fig 10).

Discussion

In this meta-analysis, we investigated the relationship between the overall level of AGEs and

GDM. The pooled SMD estimate revealed that the level of AGEs was significantly higher in

women with GDM than controls. Besides, the mean BMI of women with GDM showed a sig-

nificant difference compared with controls. Subgroup analyses indicated that studies from

Asia and Europe, outcome measures at the third trimester of pregnancy, and blood/plasma

AGE samples showed a statistically significant mean difference between women with GDM

and pregnant controls.

Notwithstanding the presence of several reports that demonstrate the relationship between

AGEs, hyperglycemia, and oxidative stress, the underlying mechanism of causal relationship

between body AGEs and GDM remains equivocal. It has become evident that AGEs increase

Fig 2. Forest plot depicting the mean level (U/ml) of AGEs in GDM and pregnant controls.

https://doi.org/10.1371/journal.pone.0240382.g002

Fig 3. Forest plot depicting the BMI of women with GDM and controls.

https://doi.org/10.1371/journal.pone.0240382.g003
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ROS formation and impair antioxidant systems. Thus, AGEs can partly contribute to chronic

stress conditions in diabetes [46]. In turn, the formation of some AGEs is induced by states of

oxidative stress which plays a more important role in the formation of AGEs in type 2 diabetes

in which unhealth weight gain is commonly observed [47, 48]. Sustained load of these oxidants

may surmount host defense mechanisms and lead to unopposed oxidative stress and chronic

inflammation. Over time, these states can chronically impair insulin production and/or sensi-

tivity and lead to diabetes. Moreover, hyperglycemia is a major driving force for AGE forma-

tion, especially when there is a pre-existing oxidative stress. It is becoming increasingly vivid

that the contemporary diets are loaded with preformed AGEs, which may catalyze oxidative

stress [11]. There are several research reports that link the high level of AGEs in the body with

metabolic syndrome, type 2 diabetes, and cardiovascular diseases [49, 50], diabetic macrovas-

cular diseases [51], greater cognitive decline in older adults [52], and new or worsening

nephropathy [53].

Even though much is yet to be investigated, studies suggested that interaction of AGEs with

RAGE alters downstream signaling pathways and results in gene expression, release of pro-

inflammatory molecules and free radicals [7]. The AGE/RAGE axis may also play a pivotal

role in the arterial calcification of diabetes through various mechanisms [54]. Hence, blockade

of AGEs formation or interaction with RAGE and suppressing downstream signaling path-

ways have become viable targets in the treatment of diabetes and metabolic syndrome [55, 56].

A study revealed that AGE-mediated activation of early growth response protein 1 (EGR-1)

Fig 4. Forest plot comparing the level of HOMA-IR among women with GDM and pregnant controls. (A) without sensitivity analysis (B)

with sensitivity analysis.

https://doi.org/10.1371/journal.pone.0240382.g004
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and its downstream factors via protein kinase C- βII (PKC-βII) and extracellular signal-regu-

lated kinase 1/2 (ERK1/2) signaling pathway (AGEs/PKC-βII/ ERK1/2/EGR-1 pathway), is a

novel mechanism of inducing vascular inflammation in GDM [57]. AGE-RAGE interaction

activates its downstream signaling pathways, such as nuclear factor (NF)-kB and phosphoino-

sitide 3-kinase (PI3K)/Akt, ultimately leading to diabetes and cancers [18]. There is increasing

evidence that supports the role of RAGE in the pathogenesis of type 1 diabetes. Hence, block-

ade of RAGE, its ligands or signal transduction presents a viable target for the secondary pre-

vention of diabetes [58].

The pooled SMD estimate from studies reporting HOMA-IR and HbA1c indicated that

there is a significant difference between women with GDM and controls. In line with this, in

HIT-T15 cell lines cultured with AGEs, a reduced expression and nuclear localization of pan-

creatic and duodenal homeobox-1 (PDX-1) gene, a decreased phosphorylation, and an

increased acetylation of transcription factor (FoxO1) was observed. Consequently, AGEs

Fig 5. Forest plot depicting the level of HbA1c among women with GDM and controls. (A) without sensitivity analysis (B) with sensitivity

analysis.

https://doi.org/10.1371/journal.pone.0240382.g005

Fig 6. Forest plot depicting the level of ICAM-1 and VCAM-1 (ng/ml) among women with GDM and controls.

https://doi.org/10.1371/journal.pone.0240382.g006
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decrease insulin content through unbalancing the transcription factors and regulating insulin

gene expression [59]. AGEs can also promote insulin resistance and hence trigger diabetes by

depleting the antioxidant defenses such as AGE receptor-1 and a survival factor sirtuin-1 [8].

AGEs can undergo post-translational modification of insulin molecule and impair its function

[60, 61]. Tan et al. reported that serum level of AGEs is linked with insulin resistance even in

non-obese and non-diabetic subjects, reinforcing the notion that AGEs can be an independent

determinant of HOMA-IR [62].

Regarding HbA1c and AGEs, a study indicated that HbA1c level was positively and signifi-

cantly correlated with blood AGEs in obese Brazilian subjects [63]. Gestational weight gain

and average third trimester HbA1c level (>5%) were found as risk factors for neonatal compli-

cations in mothers with GDM [64]. Likewise, measurement of HbA1c, at the end of pregnancy

was associated with adverse pregnancy outcomes [65]. Piuri et al also observed a positive cor-

relation between methylglyoxal (MGO) levels, the major precursor in the formation of AGEs,

and HbA1c both at diagnosis and after 12 weeks of gestation. MGO was significantly

Table 3. Subgroup analysis of outcome measures based on continent, trimester of pregnancy and sample type.

Variables and subgroups Effect size Heterogeneity

SMD [95% CI] IV, random Z-statistic P-value X2 I2 (%) p-value

Continent Asia 4.04 [2.48,5.59] 5.09 <0.0001 150.02 97 <0.00001

Europe 1.51 [0.72, 2.30] 3.74 0.0002 126.58 94 <0.00001

Latin America -0.10 [-0.29, 0.09] 1.06 0.29 --- ----- -----

Test for subgroup difference 40.84 95.1 <0.00001

Trimester of pregnancy First trimester 1.62 [-0.10, 3.33] 1.85 0.06 9.70 90 0.002

Second trimester 0.60 [-0.14, 1.34] 1.59 0.11 98.46 96 <0.0001

Third trimester 3.84 [2.31, 5.37] 4.92 <0.00001 202.09 97 <0.00001

Test for subgroup difference 14.19 85.9 0.008

Type of sample collected Blood 2.86 [1.84,3.89] 5.48 <0.00001 471.24 98 <0.00001

Skin 0.36 [-0.25,0.97] 1.15 0.25 15.32 87 0.0005

Test for subgroup difference 16.95 94.1 <0.0001

https://doi.org/10.1371/journal.pone.0240382.t003

Fig 7. Bubble plot depicting the univariate meta regression of SMD with overall sample size.

https://doi.org/10.1371/journal.pone.0240382.g007
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correlated with the HOMA-IR index as well. MGO levels were also positively correlated with

both the pregestational and gestational weight of women [19]. Hence, an HbA1c and

HOMA-IR value determined during pregnancy can provide useful information and identify

pregnancies that require fetal surveillance [66].

Elevated levels of endothelial cell adhesion molecules in GDM women indicate an imbal-

ance in vascular function. Transient hyperglycemia may provoke a persistent modification to

the memory cells and hence, women with GDM are more prone to develop future complica-

tions than controls. Likewise, an increased levels of ICAM-1, VCAM-1, and selectins in

women with GDM are a reflection of endothelial dysfunction contemplating the future meta-

bolic risks via metabolic memory effects [67–69]. Studies showed that circulating levels of

AGEs were positively associated with severity of aortic calcification and diabetes-related

Fig 8. Bubble plot depicting the univariate meta-regression of SMD with years of publication.

https://doi.org/10.1371/journal.pone.0240382.g008

Fig 9. Meta-influence plot showing the impact of every study on the overall SMD estimate.

https://doi.org/10.1371/journal.pone.0240382.g009
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complications. Therefore, increased levels of AGEs can be considered as a biomarker for vari-

ous vascular complications of diabetes [70, 71].

Observing the funnel plot asymmetry and Egger’s statistical test, this study showed a sort of

publication bias. It is evident that small studies with larger effect size are more likely to be pub-

lished [72]. Due to this, few studies fall on the right lower side of the funnel plot indicating

larger effect size with greater standard error. The SMD estimate by itself is more likely to dis-

tort funnel plot in publication bias assessment particularly when there are studies with small

sample size leading to overestimation of the existence and extent of publication bias [73].

Strength and limitations of the study

Having considered the variability in study characteristics and effect size measurements, we

employed inverse variance method with random effects pooling model. Different instrumental

scales and calibrations with diverse units of measurement for continuous data remain a chal-

lenge to get a comprehensive and aggregate result. For this, studies reporting uniform units of

measurement were considered for this meta-analysis section. Hedge’s g based SMD estimates

were considered for pooling the outcome measures. As this systematic review and meta-analy-

sis also reflects the methodological characteristics and outcome measures of individual studies,

the relationship between AGE and GDM should be considered as ‘non-causal’. This systematic

review and meta-analysis should be seen in the context of such limitations.

Conclusion

The findings indicated that there is a strong relationship between GDM and the level of AGEs

in the body. Further analysis on the level of few related metabolic biomarkers revealed a signif-

icant difference between women with GDM and controls. Subgroup analyses also indicated

that the third trimester of pregnancy and plasma samples were endowed with higher levels of

AGEs among women with GDM than controls. It should be pointed out the cause-effect rela-

tionship between AGEs levels and GDM remains elusive. Hence, further well-designed studies

should be conducted to find out the causal association between AGEs and GDM.

Fig 10. Funnel plot showing the publication bias of studies. Small studies with larger effect sizes are shown in the

right lower side of the plot.

https://doi.org/10.1371/journal.pone.0240382.g010
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