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The bacterial cell envelope is a protective barrier at the frontline of bacterial interaction
with the environment, and its integrity is regulated by various stress response systems.
The Rcs (regulator of capsule synthesis) system, a non-orthodox two-component
regulatory system (TCS) found in many members of the Enterobacteriaceae family, is
one of the envelope stress response pathways. The Rcs system can sense envelope
damage or defects and regulate the transcriptome to counteract stress, which is
particularly important for the survival and virulence of pathogenic bacteria. In this
review, we summarize the roles of the Rcs system in envelope stress responses
(ESRs) and virulence regulation. We discuss the environmental and intrinsic sources
of envelope stress that cause activation of the Rcs system with an emphasis on
the role of RcsF in detection of envelope stress and signal transduction. Finally, the
different regulation mechanisms governing the Rcs system’s control of virulence in
several common pathogens are introduced. This review highlights the important role
of the Rcs system in the environmental adaptation of bacteria and provides a theoretical
basis for the development of new strategies for control, prevention, and treatment of
bacterial infections.

Keywords: Rcs system, envelope stress response, virulence regulation, environmental adaptation,
Enterobacteriaceae

ENVELOPE STRESS RESPONSES

The cell envelope of Gram-negative bacteria is generally composed of an inner membrane (IM), a
periplasm with a thin peptidoglycan layer, and an outer membrane (OM) (Grabowicz and Silhavy,
2017) (Figure 1). The OM is a permeable barrier involved in the exchange of substances between
the cell and the environment (Nikaido, 1989, 2003). The OM is an asymmetric lipid bilayer in
which lipopolysaccharides (LPS), composed of lipid A, core oligosaccharide, and O-antigen, form
surface-exposed leaflet, while phospholipids form internal leaflet. Among them, saturated acyl
chains and hydrophilic lateral interactions between LPS bound by divalent cations hinder the ability
of large hydrophilic and hydrophobic molecules to penetrate the OM (Raetz and Whitfield, 2002).
Small molecular nutrients (<600 Daltons) can pass through the OM through the outer membrane
β-barrel proteins (OMPs) called porins (O’Shea and Moser, 2008; Li X. Z. et al., 2015). Additionally,
the periplasm exerts a remarkable protective effect as it contains many molecules related to the
protection of cells from stress, as well as key proteins related to transportation and metabolism
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(Mullineaux et al., 2006). More importantly, peptidoglycan in the
periplasmic space and OM can create a load-bearing structure
in bacteria, thereby allowing them to resist mechanical stress
and osmotic stress (Rojas et al., 2018). The IM is the location
of key cellular functions, in which inner membrane proteins
(IMPs) use different pathways for membrane targeting and
integration. Generally, the IM is the ultimate barrier between
the environment and the cytoplasm (Silhavy et al., 2010). Toxic
molecules are prevented from accumulating within cells by
efflux pumps that span the cell envelope (Nagakubo et al.,
2002; Li X. Z. et al., 2015). In summary, the cell envelope is a
protective barrier involved in the interaction between bacteria
and the environment, and it provides bacteria with considerable
resistance to environmental damage and toxic molecules.

Bacteria are exposed to various envelope stresses in both free-
living environmental and infectious lifestyles (Grabowicz and
Silhavy, 2017). Cell envelope stress may be due to environmental
flux (such as increased osmolarity, redox stress, and exposure
to toxic molecules and antimicrobials) and intrinsic stress
sources (such as errors in biosynthesis, assembly and transport
of membrane components, protein misfolding, and mutations)
(Mitchell and Silhavy, 2019). Indeed, the envelope must be
repaired and modified in response to these stresses. Bacterial
envelope stress responses (ESRs) sense cell envelope damage
or defects and alter the transcriptome to relieve destructive
stress, which is particularly important for survival and virulence
regulation (Grabowicz and Silhavy, 2017; Mitchell and Silhavy,
2019). Presently, multiple envelope stress response pathways,
including σE response system, Cpx response system, Bae response
system, Psp response system, and regulator of capsule synthesis
(Rcs) response system are known to sense and respond to cell
envelope assaults (Mitchell and Silhavy, 2019) (Table 1). The
σE system can respond to unfolded OMPs in the periplasm.
After the σE system is activated, genes are expressed from σE-
dependent promoters, leading to the upregulation of the OMP
folding pathway (Mecsas et al., 1993; Walsh et al., 2003; Rhodius
et al., 2006). The Cpx system is induced by defects in IM protein
secretion or by misfolding of IM or periplasmic proteins that
may occur due to a variety of situations, including changes in
pH or osmolarity, cell adherence to the hydrophobic surfaces,
peptidoglycan biosynthesis defects, and copper exposure. The
functional result of Cpx activation is the direct or indirect
transcriptional repression of genes encoding proteins that form
non-essential IM protein complexes and the increased expression
of genes related to peptidoglycan modification, efflux, and metal
and redox homeostasis (Danese and Silhavy, 1998; Otto and
Silhavy, 2002; Jubelin et al., 2005; Yamamoto and Ishihama, 2006;
Evans et al., 2013; López et al., 2018; Delhaye et al., 2019; May
et al., 2019). The Bae system is activated by exposure to toxic
molecules including ethanol, indole, nickel chloride, sodium
tungstate, and zinc, which leads to the upregulation of genes
encoding periplasmic chaperones and efflux pumps (Nagakubo
et al., 2002; Raffa and Raivio, 2002; Zhou et al., 2003; Nishino
et al., 2005; Bury-Moné et al., 2009; Leblanc et al., 2011). The
Psp system is induced by severe damage to the IM, including
infection by filamentous phages, extreme heat shock, osmotic
shock, organic solvent exposure, disruption of protein secretion,

and localization of OMPs at the IM, which then increases the
transcription of psp genes to counter these stresses (Brissette et al.,
1990; Carlson and Silhavy, 1993; Jovanovic et al., 1996; Kobayashi
et al., 1998; Jones et al., 2003). The Rcs system is activated by OM
damage, LPS synthesis defects, peptidoglycan perturbation, and
lipoprotein mislocalization (specific input signals are shown in
Table 2), which then causes changes in the expression of genes
involved in capsule biosynthesis, motility, biofilm formation, and
virulence (Girgis et al., 2007; Callewaert et al., 2009; Farris et al.,
2010; Tao et al., 2012; Konovalova et al., 2016; Meng et al., 2020a).

Among these stress response pathways, the Rcs pathway is
intriguingly unique due to the following features: (i) the Rcs
system is the only signal transduction system known to have
an OM component (RcsF) that senses almost all induction cues
(Gervais and Drapeau, 1992; Majdalani and Gottesman, 2005;
Cho et al., 2014); and (ii) the response regulator RcsB can form
homodimers or heterodimers with a variety of auxiliary proteins
to regulate its target genes, thereby conferring flexibility to the
Rcs system and allowing bacteria to be fine-tuned to complex
environments (Stout et al., 1991; Castanié-Cornet et al., 2010;
Venkatesh et al., 2010; Pannen et al., 2016). Numerous studies
have shown that the Rcs system plays an important role in
sensing envelope stress and regulating the physiological behavior
of bacteria, especially virulence, thereby enabling bacteria to
better adapt to environmental changes (Hirakawa et al., 2003;
Erickson and Detweiler, 2006; Farizano et al., 2014; Meng et al.,
2020b). Therefore, this review focuses on the important roles of
the Rcs system in ESRs and bacterial virulence regulation.

AN OVERVIEW OF THE Rcs SYSTEM

The Components of the Rcs System
The Rcs system was first identified in 1985 as a positive regulator
of the biosynthesis of the capsular polysaccharide colanic acid of
Escherichia coli (Gottesman et al., 1985). Subsequent studies have
shown that the Rcs system is a non-orthodox two-component
regulatory system (TCS) present in many members of the
Enterobacteriaceae family of Gram-negative bacteria (Gottesman
et al., 1985; Majdalani and Gottesman, 2005; Guo and Sun,
2017). The Rcs system consists of three core proteins, namely the
transmembrane hybrid kinase RcsC, the transmembrane protein
RcsD, and the response regulator RcsB. The RcsC has both
kinase and phosphatase activities, and together with the response
regulator RcsB, represents the classic members of bacterial TCS,
while the RcsD lacks kinase activity (Majdalani and Gottesman,
2005). A recent study showed that the periplasmic domain of
RcsC is dispensable for sensing the inducing signals, and the Rcs
activity is not regulated at the level of RcsC (Wall et al., 2020).
In the absence of any environmental signal, RcsC and RcsD
together act as phosphatases to ensure that phosphorylated RcsB
(RcsB-P) in the cell is maintained at a low level (Clarke, 2010).
RcsF is an OM lipoprotein required for the perception of several
envelope stress signals that have been shown to activate the Rcs
system (Gervais and Drapeau, 1992; Majdalani and Gottesman,
2005; Castanie-Cornet et al., 2006). IgaA (YrfF in Salmonella
enterica serovar Typhimurium) is an IM protein that seems to
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FIGURE 1 | Cell envelope structure of Gram-negative bacteria. The cell envelope of Gram-negative bacteria is composed of an OM that is separated from the IM by
an aqueous periplasmic space that houses the peptidoglycan cell wall, thereby acting as a protective barrier at the frontline of the interaction between bacteria and
the environment.

TABLE 1 | Overview of envelope stress response pathways.

Pathways Envelope stresses Activation mechanisms Targets References

σE system Unfolded OMPs The unfolded OMP in the periplasm binds to the IM
protease DegS, causing the conformational change
of DegS and enabling it to cleave anti-sigma factor
RseA, thereby removing the inhibitory effect of
RseA on the σE system

OMP folding pathways Mecsas et al., 1993; Walsh
et al., 2003; Rhodius et al.,
2006

Cpx system Defects in IM protein
secretion; misfolding of
IM or periplasmic
protein; lipoprotein
export defect

Upon receiving a stimulus, CpxA
autophosphorylates at the histidine kinase (HK)
domain, and the phosphoryl group is transferred to
the phosphoryl receiver (PR) domain of response
regulator CpxR to activate the Cpx system

IM protein complexes; protein
folding and degradation;
peptidoglycan modification;
efflux; metal and redox
homeostasis

Danese and Silhavy, 1998; Otto
and Silhavy, 2002; Jubelin
et al., 2005; Yamamoto and
Ishihama, 2006; Evans et al.,
2013; López et al., 2018;
Delhaye et al., 2019; May et al.,
2019

Bae system Toxic molecules Upon receiving a stimulus, the BaeS
autophosphorylates at its HK domain, and the
phosphoryl group is transferred to the PR domain
of the response regulator BaeR to activate the Bae
system

Periplasmic chaperone; efflux Nagakubo et al., 2002; Raffa
and Raivio, 2002; Zhou et al.,
2003; Nishino et al., 2005;
Bury-Moné et al., 2009;
Leblanc et al., 2011

Psp system Severe damage to the
IM

Upon receiving a stimulus, the IM proteins PspB
and PspC interact with PspA, which releases PspF
to activate the Psp system

psp genes Brissette et al., 1990; Carlson
and Silhavy, 1993; Jovanovic
et al., 1996; Kobayashi et al.,
1998; Jones et al., 2003

Rcs system OM damage; LPS
synthesis defects;
peptidoglycan
perturbation; lipoprotein
mislocalization

Upon receiving a stimulus, RcsC
autophosphorylates at its HK domain. The
phosphoryl group is finally transferred to the PR
domain of response regulator RcsB through
multiple transfer steps to activate the Rcs system

Capsule; motility; biofilm
formation; virulence

Girgis et al., 2007; Callewaert
et al., 2009; Farris et al., 2010;
Tao et al., 2012; Konovalova
et al., 2016; Meng et al., 2020a

function by inhibiting the Rcs signaling, thus ensuring that the
signal through this phosphorylation is minimal in the absence of
environmental stimuli (Dominguez-Bernal et al., 2004; Hussein

et al., 2018; Wall et al., 2020). RcsA is an auxiliary protein
that assists RcsB binding to the sites marked as RcsAB boxes
(Pristovsek et al., 2003). In addition to RcsA, many auxiliary
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TABLE 2 | Examples of envelope stresses and effects that induce the Rcs system.

Sources Input signals Species Envelope effects References

Environmental
stress

Increased osmolarity E. coli Perturbation of the membrane tension Sledjeski and Gottesman, 1996

Lysozyme E. coli Destruction of the periplasmic peptidoglycan Callewaert et al., 2009

Mecillinam E. coli Destruction of the periplasmic peptidoglycan Laubacher and Ades, 2008

β-lactam antibiotics E. coli Inhibition of periplasmic peptidoglycan
formation

Hirakawa et al., 2003

Redox stress S. enterica serovar
Typhimurium

Oxidative damage to membranes and proteins Farizano et al., 2014

Cationic antimicrobial peptides S. enterica OM damage Farris et al., 2010

Intrinsic stress waaF deletion E. coli Defect in LPS synthesis Ren et al., 2016

ugd deletion Ed. tarda Defect in LPS synthesis Lv et al., 2012

lolA mutation E. coli Lipoprotein mislocalization Tao et al., 2012

tolA deletion E. coli OM perturbation Morgan et al., 2014

bamA promoter (bamA101)
mutation

E. coli Defect in occluding RcsF from IgaA Cho et al., 2014

ompA deletion E. coli Defect in occluding RcsF from IgaA Cho et al., 2014

dsbA deletion S. enterica Defect in RcsF disulfide bonds Lin et al., 2008

pbp4, pbp5, pbp7 or ampH
deletion

E. coli Modification of the periplasmic peptidoglycan Evans et al., 2013

opgGH deletion Y. enterocolitica Mutation in periplasmic glycans that affect
peptidoglycan

Meng et al., 2020a

mdoH deletion E. coli Mutation in periplasmic glycans that affect
peptidoglycan

Shiba et al., 2012

proteins such as BglJ, MatA (EcpR), and GadE were shown to
interact with RcsB (Castanié-Cornet et al., 2010; Venkatesh et al.,
2010; Pannen et al., 2016).

Phosphorylation of the Rcs System
The phosphoryl transfer steps of the Rcs system generally
follow the His-Asp-His-Asp pathway. According to the system
observed in E. coli, upon receiving an extracytoplasmic stimulus,
likely via RcsF, the hybrid sensor RcsC autophosphorylates at
the conserved histidine residue His479 on its histidine kinase
(HK) domain in an ATP-dependent manner. The phosphoryl
group is then transferred to the aspartate residue Asp875 on
the phosphoryl receiver (PR) domain of RcsC. The phosphoryl
group is subsequently transferred to the histidine residue
His842 on the histidine-containing phosphotransmitter (HPT)
domain of RcsD, and finally to the aspartate residue Asp56
on the PR domain of RcsB (Chen et al., 2001; Takeda et al.,
2001; Clarke et al., 2002; Majdalani and Gottesman, 2005).
Additionally, in the absence of external stimuli or in response to
certain metabolic stresses, RcsB can also be phosphorylated by
low-molecular-weight phosphodonors such as acetyl phosphate
(AcP) (Hu et al., 2013). Recently, Wall et al. have found that
IgaA interacts with the phosphorelay protein RcsD, and the
interactions between IgaA and RcsD within their respective
periplasmic domains of these two proteins anchor repression
of signaling. However, the signaling response depends on a
second interaction between a truncated Per-Arndt-Sim (PAS-
like) domain in RcsD and cytoplasmic loop 1 of IgaA. In their
model, the change in the IgaA-RcsD interaction allows RcsC-
generated phosphate to flow from RcsC to RcsD, and then

to RcsB, activating RcsB-dependent transcription (Wall et al.,
2020). However, whether IgaA interacts with RcsC remains to
be clarified. So while the phosphate flow is from RcsC to RcsD
and then to RcsB, the signaling cascade comes from RcsF or
RcsF independent to IgaA to RcsD, which then activates the
autophosphorylation of RcsC to start the phosphate flow. Our
current understanding of the Rcs phosphorelay is shown in
Figure 2A. In addition, the interaction of RcsC and RcsF in
the periplasm may be involved in signal transduction in the Rcs
system (Sato et al., 2017).

Regulation of RcsB Homodimers and
Heterodimers
RcsB can form homodimers or heterodimers with auxiliary
proteins such as RcsA, BglJ, MatA, and GadE, and then bind
to a conserved motif in Rcs-regulated genes to activate or
inhibit transcription. For example, the RcsB-RcsB homodimer
positively regulates sRNA rprA and negatively regulates gadA in
an RcsB phosphorylation-dependent manner to modulate biofilm
formation and glutamate decarboxylase synthesis, respectively,
in E. coli (Majdalani et al., 2002; Castanié-Cornet et al., 2010).
The RcsB-RcsA heterodimer activates the expression of the
operon and represses expression of the flhDC operon to regulate
the capsular polysaccharide colanic acid and flagella synthesis,
respectively, in an RcsB-phosphorylation-dependent manner in
E. coli (Stout et al., 1991; Francez-Charlot et al., 2003). It has been
reported that RcsA function depends on RcsB phosphorylation,
while the effects of other auxiliary regulators, such as BglJ, MatA,
and GadE, function independently of phosphorylation of RcsB
(Figure 2B). In E. coli, the BglJ-RcsB heterodimer activates the bgl

Frontiers in Microbiology | www.frontiersin.org 4 February 2021 | Volume 12 | Article 627104

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-12-627104 February 9, 2021 Time: 18:18 # 5

Meng et al. Rcs System in Enterobacteriaceae

FIGURE 2 | The phosphorylation and regulation of the Rcs system in E. coli. (A) The core components of the Rcs phosphorelay and the transfer of phosphate. RcsF,
the OM lipoprotein that senses signals from the OM and periplasm, is seated in an OMP within the OM and is shown interacting with the periplasmic domain of IgaA.
IgaA, a five-pass IM protein, is a negative regulator of the phosphorelay. Current model suggests that upon stress signaling, RcsF increases or changes contacts
with IgaA, leading to de-repression of the phosphorelay. Then the RcsC autophosphorylates at the HK domain in an ATP-dependent manner. The phosphoryl group
is then transferred to the PR domain of RcsC, to the HPT domain of RcsD, and finally to RcsB in a successive manner. In the absence of stress, acetyl phosphate
may act as a phosphoryl group donor to maintain a low level of RcsB-P. (B) Regulation of RcsB homodimers and heterodimers. RcsB can form an RcsB-RcsB
homodimer or an RcsB-RcsA heterodimer in an RcsB phosphorylation-dependent manner, or form BglJ-RcsB, MatA-RcsB, and GadE-RcsB heterodimers in an
RcsB phosphorylation-independent manner, which then interact with a conserved motif in target genes to modulate their transcription, thereby regulating the
physiological activities of bacteria.

gene involved in D-glucoside synthesis (Venkatesh et al., 2010);
the MatA-RcsB heterodimer activates the mat operon involved
in Mat fimbria biosynthesis (Pannen et al., 2016); the GadE-
RcsB heterodimer activates gad genes related to acid resistance

(Castanié-Cornet et al., 2010). In general, the participation
of multiple auxiliary proteins confers flexibility to the Rcs
system, thereby allowing for its adaptation to be fine-tuned to
complex environments.
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Sources of Envelope Stresses for
Induction of the Rcs System
Rcs Activation via Environmental Stress
The osmotic upshift was the first reported environmental signal
that could activate the Rcs system in E. coli (Sledjeski and
Gottesman, 1996), and other input signals involved in envelope
stress have been discovered since then (Table 2). One of the
main functions of the Rcs system in response to envelope stress
is to protect cells from environmental challenges (Mitchell and
Silhavy, 2019). For example, when the Rcs system is activated
by osmotic stress, the cps operon is transiently expressed,
thereby allowing the cell to produce colanic acid to enable
cellular response to environmental stress that is potentially lethal
to bacteria (Alon, 2007). Lysozyme destroys the periplasmic
peptidoglycan and induces activation of the Rcs system, which
upregulates the transcription of lysozyme inhibitors in E. coli,
thereby reducing the damage of lysozyme to cells (Callewaert
et al., 2009). In addition to lysozyme, Mecillinam can also affect
peptidoglycan, thereby inducing the Rcs system (Laubacher and
Ades, 2008). Oxidative stress in S. enterica serovar Typhimurium
can cause damage to the OM and activate the Rcs system,
which regulates the transcription of dps genes, thereby protecting
bacterial DNA from host reactive oxygen species (ROS)-mediated
damage during infection (Farizano et al., 2014). The cell
membrane damage induced by cationic antimicrobial peptides
such as polymyxin B in S. enterica can also lead to the activation
of the Rcs system. PMB induction at sublethal levels is transient,
which indicates that activation of the Rcs system may induce cell
surface modification, thereby reducing cationic peptide damage
to the OM (Farris et al., 2010). In addition to these environmental
stresses, the inhibition of peptidoglycan formation by repression
of the penicillin-binding protein (PBPs) caused by β-lactam
antibiotics is also an important input signal for activation of the
Rcs system (Hirakawa et al., 2003).

Rcs Activation via Intrinsic Sources of Stress
Toxic substances produced by cell metabolism, translation stress
caused by lack of specific amino acids, and mutations that cause
biogenesis alteration can all be considered as intrinsic sources of
envelope stress (Mitchell and Silhavy, 2019). Mutations that cause
alterations in envelope biogenesis pathways are the main Rcs
input signals that are often studied in cases of intrinsic stress (Guo
and Sun, 2017) (Table 2). In E. coli, these signals include LPS
core sugar deficiency caused by waaF deletion (Ren et al., 2016),
lipoprotein mislocalization caused by lolA mutation (Tao et al.,
2012), OM perturbation caused by tolA deletion (Morgan et al.,
2014), modification of the peptidoglycan caused by pbp4, pbp5,
pbp7, or ampH deletion (Evans et al., 2013), defect in occluding
RcsF from IgaA caused by bamA promoter (bamA101) mutation
and ompA deletion (Cho et al., 2014). Mutations in periplasmic
glycans (formed by enzymes encoded by mdoG and mdoH,
now referred to as opgG and opgH) can affect peptidoglycans,
thereby inducing the Rcs system. For instance, osmoregulated
periplasmic glucans (OPGs) defects caused by opgGH deletion in
Yersinia enterocolitica (Meng et al., 2020a) or membrane-derived
oligosaccharides synthesis defects caused by mdoH deletion in

E. coli (Shiba et al., 2012) both lead to the activation of the Rcs
system. Additionally, defects in LPS (a truncated core with no
O-antigen attached) caused by ugd deletion in Edwardsiella tarda
can also modulate the activity of the Rcs system (Lv et al., 2012).

In summary, the perturbation in the cell surface (OM/LPS),
periplasmic signals that perturb peptidoglycan, and lipoprotein
mislocalization caused by environmental stress or intrinsic
sources of stress lead to the activation of the Rcs system, which
in turn regulates its target genes to allow cells to adapt to
environmental and genetic changes.

The Role of RcsF in Detection of
Envelope Stress
RcsF Is Necessary for Sensing Most Induction
Signals
RcsF is an OM lipoprotein that contains a lipidated N-terminal
membrane-anchored helix followed by a 30-amino acid proline-
rich linker and a well-folded 87-amino acid periplasmic domain
(Leverrier et al., 2011; Rogov et al., 2011; Umekawa et al., 2013).
RcsF localization to the OM requires the Lol system (Konovalova
and Silhavy, 2015). The periplasmic domain of RcsF contains four
conserved cysteines. Studies have shown that disruption of RcsF
disulfide bonds (such as by generation of mutations in DsbA and
DsbC) prevents the activation of the Rcs phosphorelay by signals
that function through RcsF (Kadokura et al., 2004; Leverrier
et al., 2011; Rogov et al., 2011). RcsF overexpression activates
the Rcs system, suggesting that increased RcsF levels help to
activate the phosphorelay, although there is no evidence that
normal induction signals act by increasing RcsF levels (Gervais
and Drapeau, 1992). RcsF senses cell envelope stress from the OM
and periplasm, and then transmits the signal to the downstream
components of the Rcs system. Finally, the Rcs system is activated
in response to OM or peptidoglycan damage (Girgis et al., 2007;
Callewaert et al., 2009; Farris et al., 2010; Tao et al., 2012;
Konovalova et al., 2016; Meng et al., 2020c).

The Interaction of RcsF and IgaA to Control the
Switch of the Rcs System
IgaA is a five-pass transmembrane protein, which was first
identified in S. enterica for its effect on intracellular growth and
virulence (Cano et al., 2001). The igaA gene is also found in other
species of Enterobacterales that encode the Rcs system (Clarke,
2010). As mentioned above, the IM protein IgaA is an essential
negative regulator of Rcs signaling (Dominguez-Bernal et al.,
2004; Hussein et al., 2018; Wall et al., 2020). Ample evidence
suggests that RcsF does not directly transmit the stress signal
from the envelope to the downstream components of the Rcs
system, RcsC, RcsD, and RcsB, but through the interaction with
IgaA to counteract its negative regulatory effect on Rcs signaling
(Cho et al., 2014; Wall et al., 2018). When RcsF interacts with
IgaA, the Rcs system is activated (Hussein et al., 2018).

RcsF-Dependent Signal Transduction
RcsF at the OM is surface exposed within the lumen of OMPs.
A recent study showed that OmpA is unlikely the vehicle allowing
RcsF to reach the surface (Dekoninck et al., 2020). Components
of the Bam machinery, which assemble and localize OMPs, are
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needed to localize RcsF within the OMPs (Cho et al., 2014;
Konovalova et al., 2014, 2016; Dekoninck et al., 2020; Rodríguez-
Alonso et al., 2020). Rodríguez-Alonso et al. reported the crystal
structure of the key BAM component BamA in complex with
RcsF and revealed how BamA interacts with RcsF. This finding
provided insights into the mechanism used by BAM to assemble
RcsF-OMP complexes, a new activity by which BAM exports
this lipoprotein to the cell surface (Rodríguez-Alonso et al.,
2020). So far, there are two models that reveal the mechanism
by which envelope stress induces the Rcs system via RcsF, which
were proposed by Silhavy’s lab and Collet’s lab, respectively (Cho
et al., 2014; Konovalova et al., 2016). Cho et al. proposed that
the interaction of RcsF with BamA and three β-barrels (OmpA,
OmpF, and OmpC) plays a major role in RcsF sensing (Cho et al.,
2014). In the absence of envelope stress, BamA continuously
funnels RcsF through the β-barrel OmpA, and displays RcsF on
the cell surface. In this case, RcsF did not interact with IgaA to
activate the Rcs system (Cho et al., 2014) (Figure 3A). In the
presence of envelope stress, BamA failed to bind RcsF and funnel
it to OmpA. In this situation, RcsF interacts with IgaA, which
releases the inhibition of IgaA to Rcs signaling, which then leads
to the activation of the Rcs system (Cho et al., 2014) (Figure 3B).

Konovalova et al. (2014, 2016) have proposed another model
to explain the mechanism by which RcsF senses LPS defects. In
their proposed model, RcsF forms a complex with the β-barrel
and uses its positively charged, surface-exposed N-terminal
domain to directly sense the state of LPS lateral interactions,
thereby regulating the Rcs system activity (Konovalova et al.,
2014, 2016). When LPS lateral interactions are perturbed by
neutralization (by PMB or other cationic peptides), decreased
LPS phosphorylation (biosynthesis defects), or a lack of cations
to stabilize LPS cross-bridges (Mg2+ deficiency), this information
is transduced to the RcsF C-terminal signaling domain located in
the periplasm to activate the stress response (Konovalova et al.,
2014, 2016) (Figure 4). However, it is not yet understood how the
RcsF/OMP complexes transduce the induced signal from the cell
surface to the IM component of the Rcs system.

To date, the RcsF-dependent signal transduction is not yet
fully understood. Although two models have been proposed
to explain the mechanism of RcsF activation, none of them
have been confirmed. Even though, these findings clarify the
mechanism by which RcsF acts as a “sentinel” in the Rcs
signal transduction pathway that perceives and transmits signals,
which is essential for analysis of the regulatory mechanism
of the Rcs system.

RcsF-Independent Signal Transduction
Although RcsF is necessary for sensing most induction signals,
not all Rcs input signals are RcsF-dependent. For example,
overproduction of DjlA, a DnaJ homolog localized to the IM,
was shown to activate the Rcs system in an E. coli strain with
rcsF gene deletion (Shiba et al., 2004). Other RcsF-independent
signaling pathways have been found in cell mutants of DsbA
(Majdalani and Gottesman, 2005). DsbA is a periplasmic protein
necessary for the formation of disulfide bonds, and this protein is
vital for processes such as flagellar assembly (Heras et al., 2009).
It has been shown that deletion of the dsbA gene can activate

the Rcs system in S. enterica, and this activation is associated
with the change in the disulfide bond state and therefore leads
to incorrect assembly of the flagellar apparatus (Lin et al., 2008).
It should be noted that these results occur only in RcsF mutants
created in the laboratory and that no naturally occurring RcsF
mutants have been observed. These results may reveal the cross-
talk of the system when RcsF is not present. Cross-talk may
be meaningful and this requires rigorous experimentation for
clarification. The transcriptomics of wild type and rcsF mutant
could be compared to screen signals or signaling proteins that
crosstalk with the Rcs system. Although the Rcs system seems
to function normally in the absence of RcsF, the mechanism by
which the Rcs system senses signals independent of RcsF is still
unknown and worth pursuing.

Virulence Regulation of the Rcs System in Several
Common Pathogens
The Rcs system has an important regulatory function in
bacterial virulence, mainly executed by regulating genes related
to the bacterial surface structures (such as flagella, fimbriae,
and extracellular polysaccharides). In addition, the Rcs system
also regulates genes involved in the assembly of the secretion
system and proteins that have predictive effects on cell surface
maintenance and modification. Therefore, it is generally believed
that the Rcs system affects bacterial motility, biofilm formation,
intracellular survival, and invasiveness (Clarke, 2010; Guo and
Sun, 2017; Wall et al., 2018). The Rcs system of different
species exerts virulence regulation through different mechanisms,
thereby affecting bacterial pathogenicity (Tobe et al., 2005;
Erickson and Detweiler, 2006; Wang et al., 2009; Li Y. L. et al.,
2015; Meng et al., 2020b).

Virulence Regulation of the Rcs System in Salmonella
The effect of the Rcs system on virulence regulation has been
well studied in S. enterica serovar Typhimurium, a principal
agent of gastroenteritis in humans (Detweiler et al., 2003;
Mouslim et al., 2004; Garcia-Calderon et al., 2005). It has been
reported that mutation in the rcsC allele (encoding a protein
with constitutive kinase activity) can reduce the virulence of
S. enterica in mice. This virulence attenuation depends on the
RcsB phosphorylation level and partly depends on RcsA and
colanic acid production (Mouslim et al., 2004; Garcia-Calderon
et al., 2005). Additionally, a constitutively active RcsC (encoded
by the rcsC11 allele) was also shown to reduce the phagocytosis
rates of Salmonella by murine macrophages, and this defect might
be attributed to an increase in colanic acid production (Mouslim
et al., 2004). It can be inferred that Rcs system overactivation
in Salmonella is harmful to phagocytosis by macrophages and
the persistent survival of bacteria in macrophages. Furthermore,
the Salmonella rcsC gene was confirmed to play an important
role in systemic infections in mice (Detweiler et al., 2003;
Erickson and Detweiler, 2006). There is evidence that the rcsC
mutant is less virulent to BALB/c mice than the wild-type
strain. Further, after the mice were continuously infected by
the rcsC mutant for 11 days, the recovery period of the spleen
and liver of the mice was significantly lower than that of
the wild-type strain (Detweiler et al., 2003). The rcsC gene in
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FIGURE 3 | RcsF-dependent signal transduction of the Rcs system in E. coli. RcsF, as an OM lipoprotein, is transported to the inner leaflet of the OM by the
chaperone LolA. (A) Under an unstressed condition, RcsF binds to BamA, which assembles RcsF and OmpA together as a complex. The complex displays RcsF on
the cell surface, thereby occluding RcsF from IgaA, an IM protein which inhibits the activation of Rcs signaling. (B) Upon stress occurrence in the OM or
peptidoglycan, the transported RcsF cannot interact with BamA. Then, the RcsF exposed to the periplasm binds to IgaA and inhibits its function, resulting in the
activation of the Rcs system. Additionally, when the LolA is destroyed, newly synthesized RcsF interacts with IgaA due to a failure in transportation to the OM.

FIGURE 4 | The role of RcsF/OMP complexes in sensing OM stress in E. coli. The OM lipoprotein RcsF is seated in an OMP. Its flexible, lipidated N-terminal domain
is surface exposed, probing the state of LPS lateral interactions. The transmembrane segment of RcsF is threaded through the lumen of the OMP exposing the
C-terminal domain in the periplasm. (A) In the absence of stress, IgaA inhibits the Rcs signaling, and the Rcs system is deactivated. (B) When LPS lateral
interactions are disrupted by cationic antimicrobial peptides, or by the loss of negatively charged phosphate groups on the LPS molecule, this information is
transduced to the RcsF C-terminal signaling domain located in the periplasm, resulting in the activation of the Rcs system by an unknown mechanism.

S. enterica serovar Typhimurium also regulates the expression
of ugd, a gene required for the synthesis and incorporation
of L-aminoarabinose into LPS to induce bacterial resistance to
polymyxin B (Mouslim and Groisman, 2003).

Further studies show that the Rcs system is involved in
the temporal regulation of virulence gene expression during
S. enterica serovar Typhimurium infection. Studies have shown
that the Rcs system in Salmonella can positively (low RcsB-P
levels) or negatively (high RcsB-P levels) regulate the expression
of the SPI-1 and SPI-2 pathogenicity island genes (Wang et al.,
2007, 2009), which are important in the early stages of bacterial
infection and can enable S. enterica to cross the epithelial
barrier and enter macrophages (Lostroh and Lee, 2001; Fass and
Groisman, 2009). In the early stages of infection, RcsB-P levels
are low in the cells, which allow for the expression of genes
related to motility, SPI-1, and SPI-2 pathogenicity islands. After
Salmonella enters macrophages, environmental signals trigger

the activation of RcsC kinase activity, leading to an increase in
the level of RcsB-P, which in turn inhibits the expression of genes
involved in motility, SPI-1, and SPI-2 pathogenicity islands. At
this instance, the Rcs system regulates the expression of ydeI
(encoding a 14-kDa periplasmic protein), which is important
for persistent S. enterica serovar Typhimurium infection in
mice (Erickson and Detweiler, 2006; Pilonieta et al., 2009).
It can be inferred that even in the same bacteria, the Rcs
system may have different regulatory effects on different stages
of the same physiological process. A recent study showed
that partially defective β-barrel assembly activated the RcsCDB
regulon, leading to the decreased transcription of hilA, encoding
the transcriptional activator of the SPI-1 structural genes (Palmer
and Slauch, 2020). All these data indicate that expression of the
SPI-1 pathogenicity island is tightly controlled in response to
various regulatory inputs, and the Rcs system plays a vital role
in this process.
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Virulence Regulation of the Rcs System in E. coli
Enterohemorrhagic E. coli (EHEC) O157: H7 can cause
hemorrhagic colitis with a low minimum infectious dose (Tobe
et al., 2005). In this bacterium, the Rcs system in the inactive
state negatively regulates expression of the locus of enterocyte
effacement (LEE) pathogenicity island genes by inhibiting the
pch regulatory gene, while the Rcs system in the active state
positively regulates expression of the LEE pathogenicity island
genes by inducing the expression of the grvA gene, thereby
leading to enhanced expression of effector proteins in the type III
secretion system (T3SS) (Tobe et al., 2005). The increase in these
virulence factors leads to the enhanced adhesion and invasion of
bacteria to the host cells, and finally promotes its infection ability
(Tobe et al., 2005).

As the name indicates, the Rcs system is necessary for the
synthesis of colanic acid capsules in E. coli K12 (Gottesman
et al., 1985). Colanic acid was identified to be involved in
some aspects of virulence in E. coli. For example, mutants in
colanic acid production were identified in a signature-tagged
mutagenesis (STM) study of avian pathogenic E. coli-mediated
septicemia in chickens (Li et al., 2005). The recent screening
of E. coli mutants that extend the lifespan of Caenorhabditis
elegans revealed the role of colanic acid. It was found that
overproduction of colanic acid could extend the lifespan of
C. elegans and Drosophila melanogaster with E. coli, and that
colanic acid itself demonstrated a similar effect (Han et al., 2017).
Additionally, colanic acid is also important for biofilm formation
in some strains of E. coli and for the optimal combination
of E. coli O157:H7 with alfalfa sprouts (Danese et al., 2000;
Matthysse et al., 2008).

The most studied effect of the Rcs system is its ability to inhibit
bacterial motility and the expression of the flhDC operon, which
encodes the master regulator of flagella production (Hagiwara
et al., 2003; Mariscotti and Garcia-del Portillo, 2009; Wang et al.,
2012; Howery et al., 2016). Flagella are considered as a surface
organelle and assists in the initial attachment of bacteria, thus
playing an important role in the development of E. coli biofilms
(Houdt and Michiels, 2005). More importantly, flagellar motility
is an important phenotypic characteristic of bacterial viability,
competitiveness, and pathogenicity, and plays a key role in the
early stage of E. coli infection (Josenhans and Suerbaum, 2002).
In addition to E. coli, transcriptomic studies on bacteria such
as S. enterica, Erwinia amylovora, and Proteus mirabilis have
also determined the negative regulatory effect of the Rcs system
on motility and flhDC expression (Mariscotti and Garcia-del
Portillo, 2009; Wang et al., 2012; Howery et al., 2016). Similar to
the system in E. coli, the Rcs system in these bacteria may affect
cell motility, bacterial colonization, biofilm formation, and even
the ability to infect the host by regulating flagella biosynthesis.

Studies have shown that the sRNA RprA in E. coli is positively
regulated by the Rcs system, and this sRNA can base-pair with the
5′-end of rpoS mRNA (encoding selective σ factor, σs), thereby
increasing the translation level of the rpoS mRNA (Majdalani
et al., 2002). Activation of the Rcs system can lead to an increase
in the expression of RprA in E. coli, thereby negatively regulating
biofilm formation (Majdalani et al., 2002). It has been reported
that the biofilm formation defect in E. coli associated with rcsC

or rcsD mutation is caused by the increased expression level of
σs in the cells, and this defect can be restored by mutating rcsB
or rprA (Ferrieres et al., 2009). A similar negative effect of Rcs
activation on biofilm formation was also found in S. enterica
serovar Typhimurium, which was also attributed to RprA and
its ability to negatively regulate the master regulator for curli
synthesis, CsgD (Latasa et al., 2012). Therefore, the Rcs system in
E. coli seems to be a complex regulatory network involving gene
regulation at the transcriptional and post-transcriptional levels.

Virulence Regulation of the Rcs System in Yersinia
The genus Yersinia belongs to the family Enterobacteriaceae
and comprises 18 species of Gram-negative bacteria. The
three documented species virulent to humans are: (i) Yersinia
pseudotuberculosis, a zoonotic pathogen of mammals and birds
that occasionally causes enterocolitis, mesenteric lymphadenitis,
septicemia, and immune-mediated diseases in humans; (ii)
Yersinia pestis, the causative agent of plague, including the
medieval “Black Death”; and (iii) Y. enterocolitica, the Yersinia
species most frequently associated with human infections. The
Rcs system has been proven to regulate the virulence of the three
bacteria (Fang et al., 2015; Li Y. L. et al., 2015; Meng et al., 2020b).

In Y. pseudotuberculosis, the Rcs system can positively
regulate Ysc-Yop T3SS by regulating transcription of the
virG-lcrF operon (encoding LcrF), which increases the Yop
effector protein secreted by the bacteria in the host immune
cells, thereby enhancing survival of the bacteria (Li Y. L.
et al., 2015). Additionally, a null mutation in the rcsD
gene of Y. pseudotuberculosis results in decreased adhesion
to epithelial cells, an important prerequisite to infection
(Hinchliffe et al., 2008).

The formation of biofilms can enhance the transmission of the
plague pathogen Y. pestis in the midgut of its flea host (Sun et al.,
2011). In Y. pestis, the Rcs system was identified to regulate the
environmental adaptation of Y. pestis by regulating production
of c-di-GMP and synthesis of extracellular polysaccharides in the
biofilm matrix (Fang et al., 2015).

In Y. enterocolitica, rcsB deletion significantly downregulated
the expression of Ysa T3SS, which is involved in the colonization
of Y. enterocolitica in the terminal ileum of mice. Studies
show that the rcsB mutant has a disadvantage in fitness when
co-infected in mice with wild-type Y. enterocolitica (Venecia
and Young, 2005; Walker and Miller, 2009). Recent studies
in our laboratory have shown that the lack of rcsB activates
the adhesion and invasion ability of Y. enterocolitica to Caco-
2 cells, which may be attributed to the activation of flagella
synthesis and bacterial chemotaxis by the rcsB mutation (Meng
et al., 2020b). Noteworthy, the regulation of Y. enterocolitica
infection by the Rcs system was distinctly different in vivo and
in vitro. Furthermore, transcriptomic analysis showed that loss
of Y. enterocolitica rcsB resulted in significant downregulation of
phoQ and pagP (Meng et al., 2020b). pagP is the target gene of
the PhoP/PhoQ TCS and is responsible for the modification of
the LPS structure for improvement of the resistance of bacteria
to polymyxin B (Wang et al., 2009). Therefore, combined with
the positive effect of RcsB on resistance to polymyxin B as
previously determined (Meng et al., 2019), this evidence led us
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to suggest that the Rcs system positively regulated the activity of
the PhoP/PhoQ system to equip Y. enterocolitica with a certain
level of resistance to polymyxin B.

Virulence Regulation of the Rcs System in Other
Members of the Enterobacteriaceae Family
In Klebsiella pneumonia, the Rcs system would regulate the
expression of capsule polysaccharide (CPS) by regulating
the CPS-related genes; further, the Rcs system in Klebsiella
pneumoniae repressed the expression of fim gene cluster, which
could acts as a virulence factor that facilitates the urinary
tract infection (Su et al., 2018). Additionally, as found in
Y. enterocolitica, there is also a cross talk between PhoP/PhoQ
system and Rcs system in regulating the resistance of bacteria
to antimicrobial peptides (Llobet et al., 2011). The Rcs system
was also identified as a regulator of two well-studied virulence
genes, namely zapA, encoding a type-1 secretion ATP-binding
protein, and hpmBA encoding hemolysin in P. mirabilis (Howery
et al., 2016). Additionally, the Rcs system in P. mirabilis repressed
the expression of mrpA, pmfA, and ucaA genes involved in the
formation of fimbriae, a cell surface structure that may affect the
ability of bacteria to form biofilms and infect the host (Howery
et al., 2016). In Serratia marcescens, RcsB inhibits the pore-
forming toxin ShlA, which is responsible for the early induction
of autophagy in host cells (Di Venanzio et al., 2014). The Rcs
system has been reported to be essential for Er. amylovora
virulence by controlling amylovoran biosynthesis, which is one
of the main pathogenic factors of this bacterium that is exhibited
as ooze in infected tissues (Wang et al., 2009, 2012). Notably, Er.
amylovora RcsC positively controls the expression of amylovoran
biosynthetic genes in vivo but negatively controls their expression
in vitro (Wang et al., 2012), which further proves that the Rcs
system exhibits differences in the regulation of gene expression
in vivo and in vitro.

CONCLUSION AND FUTURE
PERSPECTIVES

The Rcs system is an important signal transduction pathway
found in many members of the Enterobacteriaceae family.
This system can integrate environmental signals, regulate gene
expression, and alter the physiological behavior of bacteria. The
OM protein RcsF can sense envelope stress signals that activate
the Rcs system, trigger the downstream signal transmission of
the Rcs system in the order RcsC→RcsD→RcsB, and finally

regulate the transcription of target genes. The dual function
of RcsC, the phosphorylation modification of RcsB, and the
participation of multiple auxiliary proteins lead to the complexity
and flexibility of the Rcs system, thereby achieving precise
regulation of its target genes. Additionally, the Rcs system
can exert its virulence regulation function through different
mechanisms, thereby affecting the pathogenicity of bacteria. This
review summarizes the role of the Rcs system in ESRs and
virulence regulation in different pathogens. It can be inferred
that the Rcs system plays an important role in the environmental
response of bacteria. However, there are many relevant issues that
need to be addressed urgently. For example, (i) in the absence of
RcsF, the Rcs system continues to function normally. For RcsF-
independent signals, the mechanism by which the Rcs system
senses signal molecules and achieves signal transduction remains
unknown; (ii) to date, most studies have identified Rcs-regulated
genes under in vitro growth conditions or by over-activating the
Rcs system, and few studies have performed genome-wide gene
expression under in vivo conditions. Owing to the differences
in the regulation of gene expression by the Rcs system in vivo
and in vitro, it is necessary to conduct transcriptomic studies of
the Rcs system in vivo to identify new virulence-related target
genes. In summary, the Rcs system provides a unique model for
studying the complexity of environmental adaptation in bacteria.
An understanding of the Rcs system will help to provide a
theoretical basis for the development of control, prevention, and
treatment of bacterial infections.
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