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“. . . most complex, new direction for cancer medicine is to integrate our understanding
of aberrant genes and pathways to explain the behavior of cancer as a whole, thereby
renewing the cycle of knowledge, discovery and therapeutic intervention.”—“The Emperor
of all Maladies” [1].

Cancer is a disease caused by uncontrolled cell growth driven by genetic changes and
the misregulation of genetic information expression. Cancer cells recklessly and selfishly
propagate, neglecting the organized developmental scenarios for multicellular organisms,
harming the host and eventually themselves. Faults in cell growth control are caused by a
plethora of causes: point mutations, copy number variations, chromosome rearrangements,
epigenetic alterations, or aberrant forms of essential regulator proteins in the form of
amyloids. In few cases, there is a single primary initiation event, but in most cases, a
cascade of events causes changes in regulatory networks that result in tumor growth
and invasiveness. Defects in the maintenance and expression of hereditary information
predispose cells to cancer and influence the outcomes of therapeutic interventions. The
current Special Issue of Cancers collects five reviews and 13 experimental papers devoted
to the factors playing roles in predisposition to cancer and, in clear documented cases,
hereditary forms of cancer. These papers represent a collaborative, international effort
revealing the complexity of the problem.

The innovative parallel analysis of cancer-specific DNA sequence variations in genomes
and gene expression, affecting not individual genes but molecular pathways falling into
four functional groups: signaling, metabolic, cytoskeleton, and DNA repair, revealed that
the latter group’s genes had the highest mutation enrichment, and upregulation levels [2].
The signaling and cytoskeleton group members were enriched by the genes with many
SNVs and experienced the most substantial downregulation of gene expression, alluding
to their possible roles as initiators in carcinogenesis. The deregulation of gene expression in
angiosarcoma in a TP53-rat model revealed equal numbers of upregulated and downregu-
lated genes [3]. Consistent with the previous study, upregulated genes belong to the DNA
repair group and include genes for DNA helicases, chromosome maintenance complexes,
recombination, and replication. The Functional Signature Ontology (FUSION) approach
of genome-wide, loss-of-function screening is another way to identify critical genes in
cancer and find vulnerabilities of tumor cells [4]. A gene expression-based high-throughput
screening method allows researchers to identify novel therapeutic targets.

Recent studies on tumor genomes revealed that mutations in replicative DNA poly-
merase genes caused a predisposition for cancer by increasing genome instability. However,
out of three DNA polymerases operating at the replication fork, colon and endometrial
cancer-associated mutations (both sporadic and hereditary) predominantly affect the cat-
alytic subunit of polymerase ε that participates in leading strand DNA synthesis [5,6],
suggesting a unique role that this polymerase plays during replication and human devel-
opment. It is well established that defects in DNA mismatch repair (Lynch syndrome)
predispose to colon and other cancers. The new study found that the condition can also lie
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in the etiology of sarcomas [7]. Fanconi anemia is connected to the defects of machinery
dealing with the aberrant replication of damaged DNA with inter-strand DNA crosslinks.
The review [8] highlights the importance of Fanconi anemia genes in noncanonical path-
ways, such as mitochondria homeostasis, inflammation, and virophagy. The primary
defects in DNA repair mechanisms in such patients could be exacerbated by an impairment
of the cytoprotective pathways, contributing to the disease’s multifaceted manifestations.

The hereditary ovarian cancer and, commonly, breast cancer start early and in multiple
generations. DNA methylation patterns provide a paradigm for the epigenetic inheritance
of cancer susceptibility, with emphasis on co-methylated networks [9]. Multiple paragan-
gliomas and papillary thyroid carcinoma are likely connected to mutations in the DNMT3a
gene, responsible for de novo methylation [10]

Changes in developmental programs do not necessarily involve DNA or RNA. The
widespread Alzheimer’s disease is connected to the accumulation of misfolded polymerized
proteins, amyloid β (Aβ) and tau, in brains, and to neuronal degeneration, dementia, and
death. Alzheimer’s disease patients have a lower incidence of cancer. The study published
in this Special Issue revealed that the effect of cancer on the risk of death of Alzheimer’s
depended on age and the time since cancer diagnosis [11]. Cancer-directed chemotherapy
protects against Alzheimer’s disease-related death in patients diagnosed with breast cancer.
Emerging evidence connects some forms of cancer to the accumulation of critical proteins
(e.g., P53) in an amyloid form; therefore, these drugs may affect amyloids.

Several reports documented the roles of defined genes on particular cancer types:
CDH1 and CTNNA1 encoding for proteins of the cadherin and catenin families, respectively,
and thus cell adhesion, in hereditary diffuse gastric cancer and lobular breast cancer [12];
TNFSF13 (April) and TNSF13B (TACI), genes for ligands of the tumor necrosis factor family
in chronic lymphocytic leukemia [13]; and SPON2 (Spondin 2), involved in O-linked glyco-
sylation and ERK signaling in gastric cancer [14]. High levels of CES1 carboxylesterase,
responsible for the hydrolysis or transesterification of various xenobiotics’ expression,
predicted better outcomes for prostate cancer patients [15]. A polymorphism rs6942067
leading to a high transmembrane protein DCBLD1 expression worsens prognosis in human
papillomavirus-negative head and neck squamous cell carcinoma [16]. Tumor suscep-
tibility gene 101 (TSG101), encoding for an inactive homolog of ubiquitin-conjugating
enzyme, plays a role in normal development and disease [17]. The interaction between
two polymorphisms affecting PD-1 and PD-L1 immune checkpoints is connected to renal
cancer risk [18].

Two contributions are in the area of genetic counseling. In patients with gastric
and pancreatic adenocarcinoma, hereditary syndromes were associated with mutations
in mismatch repair, ATM, TP53, CDH1 (cadherin), and BRCA genes [19]. Another study
provides evidence for the notion that genetic testing should be done with a broader group
of women diagnosed with breast cancer than currently accepted [20].

In summary, this Special Issue of Cancers presents recent progress in the tantalizing
task of finding factors contributing to cancer development. When the culprit is identified
for a particular cancer type, life-saving strategies of treatment and support may become
available, as has happened with specific cancer types, for example, chronic myelogenous
leukemia, where treatment with tyrosine kinase inhibitors dramatically improved quality
of life and survival. For other types of cancers, progress is being made, but still, there is a
long road ahead in the battle of humanity with cancer, given the complexity of the disease
and the multiplicity of causing factors.

Conflicts of Interest: The author declares no conflict of interest.
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