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Simple Summary: Microvascular invasion (MVI) is a universally recognised predictor of hepato-
cellular carcinoma (HCC) recurrence after curative treatments, whose diagnosis, nowadays, is still
postponed to surgery, through histopathological specimen investigation. This retrospective study
aims to exploit a radiomic approach to pre-procedural diagnosis MVI in early-stage HCC, with a
diameter ≤3 cm. The main novelty of the study is the use of the zone of transition (ZOT), crossing
tumour and peritumour, detected adaptively through a standardized procedure based on the analysis
of image gradients. After generating radiomics features from ZOT and tumour core in arterial and
venous computed tomography phases, a classifier is trained and validated using a signature of
four features only. The achieved radiomic model enables the early diagnosis of small HCC (≤3 cm)
showing MVI with high specificity (82%) and sensitivity (79%), perspectively providing an effective
tool to detect the best candidates for surgical treatment and liver transplantation (negative predictive
value = 87%).

Abstract: Background: Microvascular invasion (MVI) is a consolidated predictor of hepatocellular
carcinoma (HCC) recurrence after treatments. No reliable radiological imaging findings are available
for preoperatively diagnosing MVI, despite some progresses of radiomic analysis. Furthermore,
current MVI radiomic studies have not been designed for small HCC nodules, for which a plethora
of treatments exists. This study aimed to identify radiomic MVI predictors in nodules ≤3.0 cm by
analysing the zone of transition (ZOT), crossing tumour and peritumour, automatically detected
to face the uncertainties of radiologist’s tumour segmentation. Methods: The study considered
117 patients imaged by contrast-enhanced computed tomography; 78 patients were finally enrolled
in the radiomic analysis. Radiomic features were extracted from the tumour and the ZOT, detected
using an adaptive procedure based on local image contrast variations. After data oversampling, a
support vector machine classifier was developed and validated. Classifier performance was assessed
using receiver operating characteristic (ROC) curve analysis and related metrics. Results: The original
89 HCC nodules (32 MVI+ and 57 MVI−) became 169 (62 MVI+ and 107 MVI−) after oversampling.
Of the four features within the signature, three are ZOT heterogeneity measures regarding both
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arterial and venous phases. On the test set (19MVI+ and 33MVI−), the classifier predicts MVI+ with
area under the curve of 0.86 (95%CI (0.70–0.93), p∼10−5), sensitivity = 79% and specificity = 82%. The
classifier showed negative and positive predictive values of 87% and 71%, respectively. Conclusions:
The classifier showed the highest diagnostic performance in the literature, disclosing the role of ZOT
heterogeneity in predicting the MVI+ status.

Keywords: machine learning; computed tomography; hepatocellular carcinoma; imaging biomarkers;
radiomics

1. Introduction

Hepatocellular carcinoma (HCC), the most common primary hepatic malignant tu-
mour, represents a global health problem, and its incidence is increasing worldwide [1,2].
HCC is the third leading cause of cancer-related deaths worldwide and the second leading
cause of cancer-specific mortality in the Asia-Pacific regions, especially in China [1,3].

One of the most significant problems plaguing the potentially curative treatments of
patients with HCC, such as ablation, surgical resection, or liver transplantation (LT) [4], is
the high rate of recurrence which negatively impacts overall survival [5,6]. The cumulative
tumour recurrence rates at three-year after the ablation of HCCs ≤ 3.0 cm in patients in
the low-, middle-, and high-risk groups were 68.2%, 100%, and 100%, respectively [7].
Five-year HCC recurrence complicates 35% of cases after LT and 70% of cases after hepatic
resection [6,8–11].

Vascular invasion, both macro- and micro-vascular invasion (MVI), is universally
recognised as a predictor of recurrence and poor overall survival after treatments for
HCC [6,12,13]. However, the pre-treatment clinical significance of the two forms of vascular
infiltration is clearly different. Macrovascular infiltration can be correctly diagnosed by
imaging in the pre-treatment phase, thus allowing to correctly classify those patients in
the advanced stage and direct them to the best treatment, which is systemic therapy [14].
Conversely, MVI is a histologic finding which can only be postoperatively diagnosed with
a surgical specimen [13,15], nullifying the potential usefulness of MVI diagnosis in the
preclinical phase for selecting patients to submit to systemic therapy, turning MVI into
just a post-procedural prognostic factor. In recent years, much effort has been made to
identify reliable imaging findings in order to reach an accurate pre-procedural diagnosis of
MVI in HCC patients [11,16–19]. Unfortunately, to date, these criteria for a preoperative
radiologic diagnosis of MVI in HCC have not been widely recognised, and thus have
not been reported in the current guidelines for the management of HCC [14]. A possible
explanation for failing to evolve towards the pre-treatment radiological diagnosis of MVI is
that it is merely based on direct observation by radiologists. In fact, to make a diagnosis,
radiologists use contrast differences between adjacent tissues which fade in the peritumour
where MVI is supposed to most frequently occur [12]. In addition, several aspects may
limit the accuracy of their diagnosis, such as basic knowledge, diagnostic experience,
and work status, etc. On the other hand, radiological images contain more information
than what is visible to the radiologist’s eye; these can be much more informative regarding
the tissue of interest than what a radiologist can see [20]. Some progress in the MVI
evaluation of HCC has recently been made using radiomics [21–24]. Moreover, radiomics
has emerged as the application of the consolidation of artificial intelligence and machine
learning techniques in the radiological field to overcome human limitations. In practice,
radiomics relies on the extraction of quantitative features from medical images with the
aim of decoding tissue pathology and measuring tumour heterogeneity related to changes
in cellularity, necrosis, angiogenesis, and extracellular matrix deposition in the tumour
microenvironment [25]. However, radiomic studies dealing with MVI diagnosis have
presented several limitations. One of the most important studies is the lack of investigation
related to nodule size. According to the most up-to-date guidelines on the management of
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HCC, the treatments which ensure longer survival, such as ablation, resection, and LT, are
dedicated to patients in the very early and early stages of the Barcelona clinic liver cancer
(BCLC) staging system [14]. Except for single lesions for which there are no dimensional
criteria, the remaining therapeutic choices for patients in the very early and early stages
concern nodules, sized ≤3.0 cm in diameter. Moreover, even concerning single lesions,
in the era of the ever-increasing extension of the surveillance program for patients at
high risk of developing HCC, it is more likely that small lesions will be identified during
surveillance. In addition, when analysing the peritumoural area, MVI radiomic studies
consider regions relying on the radiologist’s definition of the tumour profile. Furthermore,
these peritumoural regions have size and regular shape a-priori defined scarcely fitting
natural phenomena. Therefore, it is mandatory, when including the peritumoural area,
to overcome the limits of human segmentation by defining the zone of transition (ZOT)
between the tumour and the surrounding non-tumour parenchyma, similar to what was
done by Zhang et al. [26], thus relaxing the constraints of the defined human profile.

The aim of the present study was to investigate whether radiomic features extracted
from contrast-enhanced computed tomography (CT) could predict MVI in a selected
population of patients with HCC nodules ≤3.0 cm in diameter. The authors also extended
the peritumoural analysis to the ZOT, employing a method tailored on purpose, yielding a
region with adaptive shape and size.

2. Materials and Methods
2.1. Study Population

This single-centre retrospective study, involving standard of car carried out at the au-
thors’ tertiary liver care centre, was approved by the Institutional Review Board
(N° 197/2020/Oss/AOUBo), and the requirement for informed consent was waived. All
procedures involving human participants were performed in accordance with the 1975
Helsinki declaration and its later amendments. The database of the Surgical Unit of the
Department of Medical and Surgical Sciences–DIMEC of the IRCCS Polyclinic Sant’Orsola,
University of Bologna, Bologna, Italy, was reviewed from January 2014 to December 2018 to
identify all patients who underwent hepatic resection for HCC. The patients who satisfied
the following criteria were included in the present study: (a) preoperative CT performed
in the Authors’ Radiology Unit within three months before surgical resection, (b) an HCC
imaging diagnosis reached according to the European Association of the Study of the Liver
(EASL) guidelines [14], (c) nodule dimension ≤ 3 cm, and (d) hepatic resection indicated
according to the criteria described in a previously published article [27]. Patients who
underwent local-regional treatments prior to CT or during the period between CT and
hepatic resection were excluded. In the study period, 117 patients with HCC underwent
surgery. Of these, 12 who received previous treatments, 24 who had preoperative imaging
performed outside the Authors’ radiology unit, and 3 who had inadequate imaging studies
were excluded, thus allowing analysis in 78 patients. The protocol requirements for con-
trast–enhanced CT met the criteria recommended by the EASL guidelines [14]. In detail,
the technical specifications of CT were explained in a previously published paper [28].

2.2. Histological Data

At the authors’ hospital, all pathologic examinations were performed by a team of
pathologists, each one with more than 15 years of experience in liver pathology. Microvas-
cular invasion was defined as a tumour within a vascular space lined by the endothelium,
which was visible only at microscopy [12]. The MVI of tumour cells into the portal or
hepatic venules and capillaries was pathologically examined by sampling the HCC tissue.
For all the HCCs, thanks to having dimensions of≤3.0 cm, the entire tumour was examined.

2.3. Tumour Region Segmentation

Three-dimensional manual segmentation was performed by two experienced radiol-
ogists in consensus, using ImageJ software (https://imagej.nih.gov/ij/ (accessed on 10

https://imagej.nih.gov/ij/
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January 2021), a free, public domain software developed by the National Institutes of Health
(NIH). Regions of interest (ROIs) were drawn on the arterial-phase and the delayed-phase
images, slice-by-slice for each patient, strictly along the visible borders of the lesion to
include approximately its entire volume. For the radiomic analysis, all the slices were
considered.

2.4. Zone of Transition Detection

Recent studies have reported diverse imaging features which have been shown to
be reliable predictors of MVI in HCC [18]. Regarding the most relevant radiological
signs of MVI, there are the shape, morphology, and contrast-enhancement properties
observed at the tumour margins and immediately adjacent outer regions, referred to as
the peritumour [21]. For this reason, several radiomic studies for diagnosing MVI have
thoroughly considered the peritumoural areas, normally explored by dilating tumour ROIs
using standard morphological operators [29]. In effect, there is not clear identification of the
ZOT, also due to the uncertainty of the detection of tissues belonging only to the tumour.
For this purpose, the definition of ZOT provided in [26] was used to identify the region
between the tumour and the surrounding non-tumour tissue. Practically speaking, for ZOT
analysis, an ROI crossing tumour borders and including the inner and outer regions was
defined. To this end, a two-stage procedure was set up to carry out adaptive ZOT detection,
which exploited the image gradient variations analysed at tumour borders.

The first stage consisted of a segmentation refinement process of manually segmented
tumour ROIs (Figure 1a–c).

(a) (b) (c)

1. Manually
segmented ROI

2. ROI enlarged 
to be analysed

3. Gradient-based
edge detection

TUMOUR SEGMENTATION REFINEMENT

90.00
180.44
270.89
361.33
451.78
542.22
632.67
723.11
813.56
904.00

(d) (e) (f)

0
20
40
60
80
100
120
140
160
180

1. Border on gradient 
magnitude image

2. Gradient
transition zone

3. Segmentation of
ZOT

ZOT DETECTION2

1

Figure 1. A two-stage procedure for ZOT detection. The first stage (a–c) refines the manually
segmented ROIs. The second stage (d–f) detects ZOT, which is reconstructed starting from the
tumour border, by exploring gradient variations for each pixel of the tumour border.

The second stage consisted of ZOT detection based on gradient magnitude analysis,
stemming from the tumour border, output from the first stage (Figure 1d–f). Figure 1a
outlines a sample tumour ROI (green line), manually segmented. It was then coarsely
dilated as shown by the big purple ROI in Figure 1b in order to include a portion of normal
liver around the HCC nodule. Edge detection was carried out, based on gradient image
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variations, searching the directions of the maximum local image gradient. Thus, the red
line in Figure 1c shows the refined tumour ROI.

Figure 1d highlights the tumour border on the gradient magnitude image. The gradient
variations along the gradient direction as well as at ±45° were then analysed. Gradient
lines are expected to be bell-shaped curves with a maximum in correspondence of the
edge pixel and two local minima on the left and right tails, respectively. Thus, for each
gradient line, the gradient transition zone was defined as the distance between the two local
minima, when reliably detectable. The reconstructed gradient transition zone is reported in
Figure 1e, with the tumour border highlighted through the red circles. Finally, the ZOT
was segmented, stemming from the gradient transition zone, as outlined by the red area
in Figure 1f. Figure 2 shows two examples of the ZOT outlined as the region between the
two green lines, detected for an MVI+ (Figure 2a) and MVI− (Figure 2b) HCC nodule,
respectively, with the tumour ROIs superimposed in red.

(a) (b)

MVIMVI+

Figure 2. The ZOT is defined between the two green lines for two representative MVI+ (a) and MVI−
(b) nodules; the tumour ROIs are superimposed in red.

It is worth noting that the ZOT does not “isotropically” follow the segmented tumour
margins, but proceeds along the path characterised by the highest local contrast variations.
The ZOT detection was carried out for all patients, referring to the slice with the largest
segmented tumour ROI.

All the procedures performed in this study were implemented in MatLab® (R2019b
v.9.7, The MathWorks, Natick, MA, USA).

2.5. Classification Model Development

A classification model to predict the presence of MVI in HCC has been set up according
to the flowchart of Figure 3 (the single steps are deepened in Sections 2.5.1–2.5.5).
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Figure 3. Pipeline of the classification model development for MVI diagnosis.
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2.5.1. Feature Generation

Altogether, 654 radiomic features have been generated from both arterial and venous
contrast-enhanced CT images by analyzing tumour ROIs and ZOT. The scheme in Figure 4
summarizes the feature generation process.

654 Radiomic features

First order features
computed locally

12 global
descriptors

Volume/ROI
size (voxels)

2 features (A,V) 2 features (A,V)

168 features (A,V)

Ratio: 84 features

240 features (A,V)

Ratio: 120 features

24 features (A,V)

Ratio: 12 features

Tumour ZOT ZOT

7 local maps on
grey level CT image

gradient magnitude10 local maps on
gradient magnitude

A
V

A
V

A
V

A
V

A
V

(a) (b) (c)

(g) (h)

(d)

(e)

(f)

Ratio: 1 feature Ratio: 1 feature(i) (j)

ZOTTumour

Figure 4. The scheme summarizes the feature generation process. The six-hundred fifty-four radiomic
features include 648 features achieved through the computation of 12 global descriptors on different
local maps of first order features referred to tumour on grey level CT images (a) and ZOT (b,c) on
gradient magnitude images, yielding 84 (d), 120 (e), and 12 (f) features, respectively. In addition,
6 features measure, in pixels, the ROI volume of tumour (g) and ZOT (h) in both arterial (A) and
venous (V) phases as well as their ratio (i,j).

Based on the method proposed in a previous paper [30] for computing the local first
order radiomics features, 84 features originated from tumour ROIs, computed on the
grey level CT images of both the arterial and the venous contrast-enhancement phases.
In practice, 7 first order features were computed locally and represented through as many
parametric maps, each summarized in single values by 12 global descriptors, therefore
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giving 84 different features (Figure 4a). In addition, 120 features were generated from
the arterial and venous phases, respectively, by computing 10 local first order features on
the gradient magnitude images of the ZOT and the same 12 global descriptors as above,
on each of them (Figure 4b). Figure 5 depicts the Venn diagram reporting all the radiomics
features considered, whether they are computed as global descriptors (green area) or as
local parametric maps on T ROIs (blue area) and the ZOT (red area).

Local maps on T ROIs

Local maps on ZOT

Global descriptors
Mean of last decile

Median of last decile

Maximum Value

Mean

Median Skewness

Kurtosis Entropy

Interquartile Range

Coefficient of Variation

Standard Deviation

Median Absolute Deviation

Uniformity

Figure 5. Venn diagram of the radiomics features computed as global descriptors (12, green area) or
locally as parametric maps on T ROIs (7, blue area) and ZOT (ten, red area).

Subsequently, 12 global descriptors were also computed directly on gradient mag-
nitude images of the arterial and venous phases within the ZOT (Figure 4c). Moreover,
216 radiomics features stem from the ratio between the features computed in the tumour
(i.e., 84 features, Figure 4d) and the ZOT (i.e., 132 features, Figure 4e,f) ROIs, on the arterial
and venous phases, respectively. Finally, 4 features refer to the volume measured in voxels
of T and the ROI size of the ZOT, separately, in the arterial and the venous phases (i.e.,
4 features, Figure 4g,h), together with the ratios of the two couple of features (i.e., referred
to arterial and venous phases) for the ZOT and the tumour separately (i.e., 2 features,
Figure 4i,j).

2.5.2. Feature Selection

Considering that there were two different ROIs (tumour and ZOT), the Authors
chose to finally select no more than four features, roughly two for each region. The most
informative radiomic features for diagnosing MVI were selected from the entire set of
features generated after data normalisation and standardisation. Data normalisation was
carried out by means of contrast stretching using the linear scaling of each single feature
histogram between the 2.5 and 97.5% percentiles of the distribution. The features were
then standardized. Feature relevance was ranked using the Least Absolute Shrinkage and
Selection Operator (LASSO) with the optimal tuning parameter (λ chosen using 3-fold
cross-validation (CV), by weighting each observation of the dataset in order to equalise the
balance between positive (MVI+) and negative (MVI−) class instances.

The features kept show non-zero LASSO coefficients at the minimum CV error function.
To prevent overfitting in the classification model for MVI diagnosis, an additional

subset limited to four features was then searched among all the features coming through
LASSO selection.

All possible combinations of four features were initially considered. The combinations
in which at least one couple was correlated with the coefficient ρ > 0.3 were then discarded.
Finally, the Wilcoxon rank-sum test at a significance level α = 10−3 was carried out and
corrected by Holm-Bonferroni for all the remaining combinations to select that one yielding
the highest discrimination capability (i.e., the lowest p-value).
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2.5.3. Dataset Oversampling

The four features arise from processing the initial dataset (ID). In order to increase the
statistical significance of the subsets involved in all the development phases of the classifier,
the ID was then oversampled. The strategy adopted exploited the univariate kernel density
estimation (KDE) of the four radiomic features selected from the ID, combined with the
Latin hypercube sampling (LHS) method [31]. KDE was carried out for the MVI+ and MVI−
populations separately, starting from the normalised feature distributions. A normal kernel
was adopted for KDE, exploiting a non-parametric approach for automatic estimation of
the optimal bandwidth, according to the method proposed in [32]. A stratified sampling
strategy was adopted for feature oversampling, thus simulating, via LHS, 30 MVI+ and
50 MVI− new instances. Since LHS allows controlling the correlation between oversampled
variables, the correlation matrices between the four selected features were computed for
the MVI+ and MVI− populations, respectively. Thus, 105 runs of LHS were carried out
and, for each run the difference matrix between the correlation matrix of oversampled and
initial features (matrix dρ) was assessed. The optimal LHS solution has been chosen as
the one minimizing the cost function, f (x), defined as the square of the dot product of all
entries of dρ, excluding the main diagonal (Equation (1)).

f (x) =

(
∏
i,j

dρ(i,j)

)2

j > i, ∀i, j ∈ {1, 2, 3, 4} (1)

Finally, an oversampled dataset (OD) was achieved, made up of 169 samples of which
62 were MVI+ and 107 were MVI− instances. The similarity between the initial and the
oversampled distributions of the four features selected was assessed using the mean square
error (MSE) between each distribution and the corresponding KDE function.

Hereinafter, all classifier development phases, including training with 3-fold CV and
external validation, refer to the OD. However, in order to verify the statistical represen-
tativeness of the OD with respect to ID, two preliminary MVI diagnostic models were
developed on the ID and the OD respectively, without carrying out external validation,
and were compared in order to check their equivalence. In this regard, details are provided
in Supplementary Materials.

2.5.4. Support Vector Machine (SVM) Training and Validation

An SVM classifier with a linear kernel was adopted to develop a diagnostic model
for MVI in which MVI+ instances were considered to be the True Positive (TP) and the
MVI− instances were True Negative (TN). The OD was split into a training set made up of
117 samples, 43 MVI+ and 74 MVI−, and a test set for external validation of 52 samples,
19 MVI+ and 33 MVI−, thus maintaining the original proportion in each subset of positive
and negative instances.

The SVM training was carried out using 100 runs of 3-fold CV for internal validation.
For each run, a random seed was used to split the training set into 3 folds, each of 14 MVI+
and 25 MVI− instances. To allow for class imbalance, the misclassification cost (C) of the
SVM classifier was scaled using the prior probability of each class [33].

After each SVM training session, the predicted class of each sample and its correspond-
ing probability score, namely the radiomic score, were estimated using a binomial logit
function. In addition, the receiver operating characteristics (ROC) curve was built for each
trained SVM classifier, and the corresponding area under the curve (AUC) was computed.
Thus, the models most prone to overfitting, yielding an AUC on the internal validation
set higher than that on the corresponding training set were discarded and, for each run of
3-fold CV, just the SVM model with the highest AUC on the internal validation set was kept.

Hence, the selected models, at most 100 competitors, were trained on the entire
training set. The final SVM classifier was chosen to be the one with the highest AUC and
informedness (I) regarding the training set. Finally, the classifier was externally validated
on the test set.
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2.5.5. Performance Assessment

The performance of the final radiomic model was assessed using AUC, sensitivity
(SN), specificity (SP), and I measured at the Youden cut-off. In addition, the radiomic
scores achieved on both the training and the test sets were represented using waterfall
plots. The median and interquartile ranges (IQRs) of the radiomic score were computed in
the MVI+ and the MVI− classes for both the training and the test sets. Median differences
were statistically assessed using the Wilcoxon rank-sum test (α = 10−3).

To assess model performance on new clinical populations in which errors are unknown,
the negative predictive value (NPV), positive predictive value (PPV), negative predictive
ratio (NPR), positive predictive ratio (PPR), and the predictive summary index (PSI),
defined as PSI = PPV + NPV − 1 [34], were considered.

Moreover, the calibration curve of the classifier was drawn referring to the test set
and was used in combination with the Hosmer-–Lemeshow test (α = 0.05) to assess the
goodness-of-fit of the radiomic model, that is, the agreement between the predicted and the
measured MVI risk probabilities. Finally, to assess the clinical usefulness of the radiomic
model, decision curve analysis (DCA) [35] was used, thus computing the net benefit at
different threshold probabilities in the test set.

3. Results
3.1. Baseline Patient Characteristics

The baseline characteristics of the study population are detailed in Table 1. There were
89 tumours, 32 MVI+ and 57 MVI−, preoperatively detected by CT in 78 patients.

Table 1. Baseline Characteristics of the study population.

Variable Value

Age (y) 1 63 (53–73)
Mean (y) 2 62.91(±11.17)
Male sex 59 (75.6)

Age (y) 1 62 (50–73)
Mean age (y) 2 61.51 (±11.31)

Female sex 19 (24.3)
Age (y) 1 66 (64–73)
Mean age (y) 2 67.67 (±9.48)

Hepatitis C infection 55 (73.3)
Hepatitis B infection 12 (16)
Other disease origin 11 (14.7)
AFP 236.1 (4–57)
Total bilirubin level (mg/dL) 0.89 (0.60–0.96)
Serum albumin level (g/dL) 4.11 (3.9–4.5)
International normalized ratio 1.15 (1.5–1.2)
Platelet count (×103/µL) 142.9 (91–175.75)
Model for End-Stage Liver Disease score 7 (6–8)
Child-Pugh class

5 52 (66.7)
6 21 (26.9)
7 2 (2.6)
8 3 (3.8)

Presence of cirrhosis 55 (70.5)
Mean diameter of largest tumour (mm) 21.06 (17–26)
No. of tumors/patient

Solitary 68 (87.2)
Two tumors 9 (11.5)
Three tumors 1 (1.3)

Extension of hepatectomy
Single or multiple wedges 49 (62.8)
Segmentectomy 11 (14.1)
Bisegmentectomy 7 (9.0)
Major hepatectomy 11 (14.1)

Unless otherwise indicated, data are number of patients, with percentage in parentheses. 1 Data are continuous
variables, reported as medians with IQRs in parentheses. 2 Data are mean ± standard deviations.
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3.2. Radiomics Feature Selection and Data Oversampling

Feature selection, performed on the ID through LASSO, yielded 25 relevant radiomics
features, reported in Figure 6 according to their rank.
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Figure 6. Radiomics features (F) selected through LASSO, sorted by their coefficients. The four
features in red text colour (i.e., F63, F144, F312, and F501) are the ones finally selected to constitute
the radiomics signature.

From all possible combinations of four features (i.e., 12650 combinations), a total of
2788 were discarded due to their high correlation. Finally, 4 combinations were significant
at the Wilcoxon rank-sum test (p < 10−7), after considering the Holm-Bonferroni correction.
The most discriminant combination (p∼10−8) was composed of those features with the
highest absolute weight, the identifier of which is highlighted in red in Figure 6. In
particular, F63 is the skewness computed on the parametric maps of local skewness (S-s)
in the ZOT during the arterial phase (hereinafter, S-s [ZOT,A]). F144 refers to the entropy
computed on the local entropy map (E-e), calculated in the tumour ROI during the arterial
phase (hereinafter, E-e [T,A]). F312 is the entropy of the local uniformity (U-e) computed in
the ZOT during the venous enhancement CT phase (hereinafter, U-e [ZOT, V]). Finally, F501
is the ratio between S-s in the ZOT computed during the arterial and during the venous
phases (hereinafter, S-s [ZOT, A/V]).

Figure 7 shows the distribution of the S-s [ZOT,A] for MVI− instances in the ID (a)
and OD (b), with the KDE function superimposed.
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Figure 7. Normalized histograms of feature S-s [ZOT,A] (i.e., F63) referred to ID (a) and OD (b) for
MVI− class.
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In addition, Table 2 reports MSEs computed between the KDE functions, and the initial
and the oversampled feature distributions, respectively, for MVI+ and MVI− instances,
separately. For all four features, the MSEs decreased from the ID to the OD.

Table 2. Mean square errors (MSEs) between kernel density estimation (KDE) functions and initial
and oversampled histograms of the four selected radiomics features, which refer to both tumour (T)
regions of interest (ROIs) and zone of transition (ZOT) of arterial (A) and venous (V) phases.

Feature MVI+ MVI−
Initial Oversampled Initial Oversampled

F63: S-s [ZOT,A] 0.038 0.014 0.039 0.017
F144: E-e [T,A] 0.227 0.115 0.259 0.074

F312: U-e [ZOT,V] 1.579 0.494 0.264 0.092
F501: S-s [ZOT, A/V] 10−4 10−5 10−6 10−6

3.3. Radiomics Signature and Classifier Performance

Of the 100 competing models stemming from the internal validation, 16 showed
equivalent performance, with the highest I regarding the training set, being 0.69. The
radiomics signature, g(x), for diagnosing MVI, as defined by the ultimately selected SVM
classifier, is reported in Equation (2):

g(x) = −0.004− 0.519 · S-s [ZOT,A]− 0.714 · E-e [T,A] + 0.718 ·U-e [ZOT,V] + 0.872 · S-s [ZOT,A/V] (2)

In the training set, the SVM classifier diagnoses the MVI presence in HCC nodules
according to the ROC curve shown in Figure 8a, with AUC = 0.88 (95%CI, (0.79–0.93)),
SN = 81%, and SP = 88% (I = 0.69). In the test set, diagnosing MVI was carried out according
to the ROC curve in Figure 8b, with AUC = 0.86 (95%CI (0.70–0.93)), SN = 79%, and SP = 82%
(I = 0.61).

AUC=0.88(0.79,0.93)
SN=81%
SP=88%
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1-SP
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(b)

Figure 8. ROC curves referred to the training (a) and test (b) sets, achieving AUC = 0.88 95%CI (0.79,
0.93) and AUC = 0.86 95%CI (0.70, 0.93), respectively.

Figure 9 shows the waterfall plots of the radiomic scores achieved on the training
(a) and the test (b) sets, with orange and purple bars representing MVI+ and MVI−
instances, respectively, with zero representing the cut-off. The radiomic score differs
between MVI+ and MVI− instances with p∼10−11 and p∼10−5 in the training and test
sets, respectively, with higher values in MVI+ class, indicating more intratumour and ZOT
heterogeneity. Indeed, the median MVI+ radiomics scores were 0.284 (IQR = 0.355) and
0.310 (IQR = 0.344) while the median MVI− radiomics scores are −0.276 (IQR = 0.240)
and −0.273 (IQR = 0.286), in the training and test sets, respectively. The MVI diagnosis
was achieved with 9 False Positive (FP) and 8 False Negative (FN) in the training set
(117 samples), and 6 FP and 4 FN in the test set (52 samples). Accordingly, the SVM
classifier in the training set showed an NPV = 89% and PPV = 80%, with NPR = 0.2 and
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PPR = 7.3 while, in the test set, NPV = 87% and PPV = 71%, which led to an NPR = 0.3
and a PPR = 5.5. Finally, the PSI was equal to 0.69 and 0.58 in the training and the test sets,
respectively.
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Figure 9. Waterfall plots for training (a) and test (b) sets. MVI+ and MVI− samples are represented
through orange and purple bars, respectively with zero representing the cut-off.

The SVM performance regarding the training and the test sets is reported in Table 3.

Table 3. Support vector machine (SVM) classifier performance for microvascular invasion (MVI)
diagnosis in training and test sets.

Training Set Test Set

SN 81% 79%
SP 88% 82%
I 0.69 0.61

NPV 89% 87%
PPV 80% 71%
NPR 0.2 0.3
PPR 7.3 5.5
PSI 0.69 0.58

3.4. Clinical Benefit of the Radiomics Model

Figure 10a shows the calibration curve of the radiomic signature in the test set,
with good agreement between predicted and observed risk probabilities. The Hosmer–
Lemeshow test yielded p = 0.556, which indicates no departure from the perfect fit. In addi-
tion, the DCA shown in Figure 10b indicated that the radiomic model was better than both
“all positive” and “all negative” strategies if the threshold probability was over 7%, which
corresponded to a maximum net benefit of 32%.
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Figure 10. Calibration line (a) yielding p-value at Hosmer–Lemeshow test equals to 0.558 and DCA
(b) with a net benefit of 32% at pt = 7%, referred to the test set.
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4. Discussion

The present study identified a CT-based radiomic model developed and validated
for the prediction of the MVI of HCCs ≤ 3.0 cm in diameter. The present classifier is a
very easy-to-use tool, made up of only four features, mainly referring to ZOT properties.
The radiomic signature achieved a very good diagnostic performance in the early detection
of MVI.

Some recent studies ([20–24,36]) have proposed radiomic models for MVI prediction,
exploiting contrast-enhanced CT imaging. Unfortunately, these studies presented several
limitations. The first was the absence of an ad-hoc analysis concerning nodule dimension
in these series. This greatly limits the clinical usability of these results as, especially in the
era of expanding imaging surveillance, it is increasingly likely that liver lesions will be
identified at a very early diagnostic stage in the future. And, to date, it is doubtful that
the results of these studies could have the same diagnostic performance even for small
lesions. Another limitation was that all these studies exploited a very high number of
radiomic features when compared to the sample size of their validation datasets. From a
methodological point of view, this makes the risk of overfitting very high, thus jeopardising
the statistical and clinical significance of their results. Finally, almost all the studies ([21–24,36])
showed lower predictive performance rates as compared with those in the present study.
The only study [20] showing a better performance better than the present study did not
report the number of finally selected radiomic features.

Unlike the above-mentioned series, the present study analysed only small lesions
(nodules ≤ 3.0 cm) for two reasons. First, as reported above, the lesions detected during
surveillance program in patients at high risk of developing HCC are small in size. Second,
the majority of the therapeutic choices available for patients in the very early and early
stages of the BCLC staging system [14] were based on the patient’s clinical conditions and
on the tumour burden (tumour size and number). In particular, except for single lesions,
the therapeutic decisions in the very early and early stages concern nodules ≤3.0 cm.
Furthermore, the present study considered only four radiomic features as the minimum
subset size to classify MVI+ and MVI−HCC nodules, thus minimising the risk of overfitting
while preserving the goodness of prediction of MVI status. Nonetheless, it was also
decided to increase the representativeness of the training and test sets by carrying out data
oversampling. This was accomplished by generating new feature values (rather than new
image data). Finally, the authors’ choices allowed achieving the highest rates of diagnostic
performance in predicting MVI in HCC as compared with published series [20–24,36]).

As a matter of fact, the highest percentage of MVI in HCC occurs in the peritumoural
regions, approximately within 1 cm from the tumour margins [12]. For this reason, the ma-
jority of the previous studies included the peritumour in the radiomic analysis [21,23,24].
The peritumour area is generally a priori defined at 3 mm ([24]), 5 mm ([21]), or 1 cm ([23])
distance from the tumour margins, by applying dilation on segmented tumour ROIs. The
fixed distance from the tumour border produces an isotropic area which scarcely reflects the
region in which the microvascular infiltration of the tumour occurs. In addition, this area is
intrinsically dependent on the manual definition of the tumour profile by the radiologist,
thus being dependent on the limited accuracy of the human eye. An additional difficulty
arises from the uncertainty of the HCC profile on CT, especially for small lesions. There-
fore, the absence of a clear imaging distinction between the tumour and the peritumoural
parenchyma also requires focusing on the ZOT in which the most information regarding
functional and structural tissue modifications should be retained. To carry out a dedicated
radiomic analysis on the ZOT, the information in the proximities of the HCC nodule was
exploited, using an adaptive nodule-driven approach. Hence, the ZOT is detected by
searching for the areas alongside the tumour borders where CT images have the highest
density of local contrast variations. Of course, the resulting analysis is anisotropic, thus
giving the ZOT an irregular shape. The new approach for analysing the peritumoural in-
flammatory region makes the information derived from the ZOT crucial for distinguishing
MVI+ from MVI− HCC nodules. In fact, three out of four of the finally selected features
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in the radiomic signature retain information from the ZOT whether they refer to arterial
or venous contrast-enhanced CT phases. It should be noted that these vascular imaging
phases are those recommended by the guidelines [14] for reaching the imaging diagnosis
of HCC.

All the features in the radiomic signature (Equation (2)) depict different aspects of
tumour and ZOT heterogeneity. As highlighted by the waterfall plots in Figure 9, high ra-
diomics scores characterize MVI+ nodules, whilst low scores characterize MVI−. In general,
to explain which are the main properties differentiating HCC nodules with and without
MVI, it is necessary to under- stand the meaning of each single features, separately. Starting
from F144, that is E-e [T,A], it represents tumour heterogeneity measured during the arterial
enhancement CT phase. This feature assumes higher values in MVI+ than MVI− group.
This result is likely due to the high number of unpaired arteries developed into the lesion
during the de-differentiating process of the hepatocarcinogenesis. As regards F312, that is
U-e [ZOT, V], it still is a measure of tissue heterogeneity, referring to ZOT during the venous
enhancement CT phase. Probably this parameter reflects the heterogeneity of the contrast
distribution in the extravascular space due to the presence of microvascular infiltration
that produce a lower interstitial hyperdensity near the thrombotic vessels. Indeed, F312
has lower values in MVI− than in MVI+ group, meaning that HCC nodules without MVI
have homogeneous image contrast within ZOT, in the proximity of tumour borders, where
no relevant differences are detected between inner and outer tumour regions. Moreover,
F63, that is S-s [ZOT, A] characterizes the distribution of local areas with high and low
image contrast during the arterial phase within ZOT. According to the values assumed,
F63 shows that in ZOT of MVI+ nodules there is a predominance of areas characterized
by strong variations of image contrast. Of course, this represents one more heterogeneity
measure, although of a different type. So far, we have seen that MVI+ HCC nodules
have a higher intra-tumour heterogeneity, besides being characterized by the strongest
differences between tumour and peritumour yielding a high ZOT heterogeneity. Finally,
F501, S-s [ZOT, A/V], is the ratio of F63 computed during the arterial and venous phases,
respectively. Accordingly, it is somehow correlated to the time evolution of F63. Basically,
the higher values of F501 in MVI+ than MVI− group mean that, when comparing arterial
and venous CT enhancement phases, MVI+ HCC nodules report large variations between
the two phases, whilst MVI− HCC nodules seems keeping most similar to each other. In
the presence of a MVI+ status, this feature discloses the temporal heterogeneity of HCC
nodules between the arterial and vascular CT phases, which may hint at altered wash-out
vascular properties of MVI+ nodules probably due to the vascular infiltration.

Our radiomics model demonstrated a good reliability for diagnosing MVI in small
HCC, in terms of PPV, NPV, PPR, NPR, and PSI values. In particular, NPV, the most
relevant parameter to select the best candidates for surgical treatments and liver trans-
plantation, is very high (87%). In addition, the low NPR (i.e., NPR < 1) and high PPR
(i.e., PPR� 1) values in both training and test sets, indicate a high effectiveness of the
classifier in performing a correct diagnosis of either MVI− or MVI+ nodules, which is far
most frequent than the diagnosis failure.

It is well known that the heterogeneity of the antigenic constellation in HCC suggests
an antigenic mosaicism, which can be expressed as synchronous or metachronous, depend-
ing on the tumour degree of differentiation [37]. Therefore, it is important to evaluate
the entire nodular volume to enhance the possibility of MVI detection in any segmental
portions of the lesion that expresses mosaicism. Moreover, in the future it will be important
to adopt an improved surveillance program, for example based on the use of MRI, in order
to identify small lesions [38,39] and analyse MVI in these small nodules, hoping that the
grade of differentiation is the same for all patients who underwent surveillance for high
risk of developing HCC.

A recent experience suggests an association of LIRADS-5 (LR-5) class with unfavourable
pathological characteristics of resected HCC, such as MVI, satellitosis and capsule infil-
tration, with a significant negative impact on postoperative oncological outcomes [40].
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Unfortunately, this approach could not be applied to our study due to two major limita-
tions. The first one is related to the intrinsic limitations of LIRADS system, not jet accepted
in the EASL guidelines for the management of HCC [14,41]. The second important limita-
tion arises from the nature of the mentioned study focused on the statistical associations
between LR-5 and prognostic negative features such as MVI. It will be important to design
a study to understand how the imaging features which determine the classification LR-5
could correlate with MVI in order to identify the real pathophysiological associations
between imaging features and negative prognostic factors.

Our results, if confirmed in a prospective study, could improve the daily clinical
practice for the management of patients with HCC. In fact, the use of radiomics could
help radiologists in the assessing the presence of MVI also for small lesions. In the era of
tailored medicine, this could help hepatologists in the decision making for patients in very
early and early stage, choosing the most effective treatments for each patient. Furthermore,
many other studies could be planned to understand which the best treatment strategy
will be to approach a small lesion with MVI positivity. For example, knowing the MVI
positivity of a HCC could encourage future studies combining locoregional treatments such
as chemoembolization with systemic therapies such as immune checkpoint inhibitor plus
tyrosine kinase inhibitor. Moreover, it is well known that, in hepatology, a major issue is the
choice of chemoembolization repetition and the optimum number of chemoembolization
sessions before switching to another treatment or best supportive care [42]. Probably,
the effectiveness of this treatment in some cases is low due to MVI positivity and this is
the reason why many proposed scores such as the ART score were not found to work as
objective tools to guide chemoembolization retreatment in all series and populations [42].
For all these reasons, the combination of chemoembolization with systemic therapies such
as immune checkpoint inhibitor plus tyrosine kinase inhibitor in MVI positive patients
with HCC could favour overcoming these limitations.

There are three main limitations in this study. The first one is the small sample
size of the ID, arising from strict inclusion criteria, which required CT imaging of HCC
nodules ≤3 cm in diameter. A future multicentre study will increase the study population,
especially to have more MVI+ instances. The second limitation refers to the retrospective
nature of the study. Then, another limitation is the lack of histopathological data to be
compared with those functional and structural properties of HCC nodules, which have
been highlighted from the analysis of the radiomics features meaning in tumour and ZOT,
for MVI+ and MVI− groups. A future prospective study will address this issue.

5. Conclusions

The present study developed a radiomics classification to early predict the MVI status
in HCC nodules of at most 3.0 cm in diameter, achieving the highest diagnostic performance
rates available in the literature. For the first time, this work presents a ZOT detection of
HCC nodules, whose analysis resulted to be crucial in MVI diagnosis. Our findings show
that a strong spatial and temporal ZOT radiomics heterogeneity captures the underlying
structural modifications occurring between tumour and normal tissues, this representing a
clear sign predictive of a MVI+ status. Finally, the radiomics classifier we identified, using
only four features, could represent an easy-to-use tool in the clinical practice for the MVI
diagnosis in small HCC.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/cancers14071816/s1, Figure S1: Median ROC curves achieved for training (a) and test (b)
referring to ID. The vertical lines indicate the MAD of TPR values, the red triangle highlights the
Youden cut-off. Figure S2: Median ROC curves achieved for training (a) and test (b) referring to OD.
The vertical lines indicate the MAD of TPR values, the red triangle highlights the Youden cut-off.
Figure S3: Comparison of between ROC curves of ID and OD, referring to training (a) and test (b)
sets, respectively.
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