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ECNet is an evolutionary context-integrated deep
learning framework for protein engineering

Yunan Luo® "3, Guangde Jiang%3, Tianhao Yu?, Yang Liu', Lam Vo?, Hantian Ding', Yufeng Su',
Wesley Wei Qian!, Huimin Zhao® 2* & Jian Peng® ™

Machine learning has been increasingly used for protein engineering. However, because the
general sequence contexts they capture are not specific to the protein being engineered, the
accuracy of existing machine learning algorithms is rather limited. Here, we report ECNet
(evolutionary context-integrated neural network), a deep-learning algorithm that exploits
evolutionary contexts to predict functional fitness for protein engineering. This algorithm
integrates local evolutionary context from homologous sequences that explicitly model
residue-residue epistasis for the protein of interest with the global evolutionary context that
encodes rich semantic and structural features from the enormous protein sequence universe.
As such, it enables accurate mapping from sequence to function and provides generalization
from low-order mutants to higher-order mutants. We show that ECNet predicts the
sequence-function relationship more accurately as compared to existing machine learning
algorithms by using ~50 deep mutational scanning and random mutagenesis datasets.
Moreover, we used ECNet to guide the engineering of TEM-1 p-lactamase and identified
variants with improved ampicillin resistance with high success rates.
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ARTICLE

rotein engineering aims to create protein variants with

improved or novel functions. One powerful protein engi-

neering strategy is directed evolution, which consists of
iterative cycles of mutagenesis and high-throughput screening or
selection!=3. While directed evolution is highly successful, the
protein sequence space that can be sampled by directed evolution
is limited and developing an effective high-throughput screening
or selection can require a significant experimental effort?.

To address these limitations, machine learning (ML) algo-
rithms have been developed to assist directed evolution, which led
to many successfully engineered proteins*®. In ML-assisted
directed evolution, a machine learning model is trained to learn
the sequence-function relationship from sequence and screening
data. In one round of directed evolution, the model simulates and
predicts the fitness of all possible sequences, and a restricted list
of best-performing variants is used as the starting point for the
next round of directed evolution. In contrast to the classical
directed evolution, ML-assisted directed evolution can escape
from the local optimum by learning the entire functional land-
scape from data. It takes full advantage of all available sequence
and screening data, including those of unimproved variants,
thereby traversing the fitness landscape more efficiently.

A critical component of ML-guided directed evolution is to
build a machine learning algorithm that accurately maps
sequence to function. Unlike the qualitative predictions that
group protein sequences into different functional classes!?-13, in
protein engineering, a model is required to distinguish quanti-
tative functional levels of closely related sequences. For example,
in one round of directed evolution, the ML model needs to
predict the fitness of a sequence that differs from the parent
sequence by only one or very few single amino acids. Several ML
algorithms have been developed to predict the mutational effects
by leveraging the evolutionary information of homologous
sequences!41>, These methods built generative models to reveal
the underlying constraints of the evolutionary process, which can
then be used to infer which mutations are more tolerable or
favorable than others. Because of the unsupervised nature, how-
ever, these methods are not able to leverage the fitness data of
tested variants available during the directed evolution process and
thus may have limited accuracy when guiding the protein engi-
neering. More recently, inspired by the advances in natural lan-
guage processing!®, an emerging trend is to pre-train a language
model (LM) on large protein sequence datasets to learn the dis-
tribution of protein sequences'17-23. The protein sequences
observed in nature today are the results of natural selection by
evolution. Out of the possible mutations to a sequence, evolution
samples those that preserve or improve the protein’s fitness, such
as stability, structure, and function. The underlying constraints or
factors that determine protein’s fitness have shaped the dis-
tribution of protein sequences. LMs are used to unravel the
‘grammars’ or ‘semantics’ of sequence generation by evolution. By
being trained on natural sequences to predict the likelihood that a
particular amino acid appears within a context, the language
model learns representations that are semantically rich and
encode structure, evolutionary and biophysical contexts!”. Several
recent studies found that the representations learned by LMs can
be used to predict the sequence-function relationship in an
unsupervised way24-26, It was also found that using the learned
representation as the feature input to fine-tune a supervised
model improves fitness prediction on multiple protein muta-
genesis datasets!8. However, as these models are trained on
massive sequences such as those in UniProt?” and Pfam?28, the
learned representations only capture general context for a wide
spectrum of proteins but may not be specific to the protein to be
engineered. Lacking this specificity in the representation, the
prediction model may not be effective in capturing the underlying

mechanism (e.g., epistasis between residues) that determines the
fitness of a protein and is not able to effectively prioritize best-
performing variants to assist the directed evolution.

In this work, we developed ECNet (evolutionary context-
integrated neural network), a deep learning model that guides
protein engineering by predicting protein fitness from the
sequence. We constructed a sequence representation that incor-
porated the local evolutionary context specific to the protein to be
engineered. This representation explicitly encodes the residue
interdependencies of all residue pairs in the sequence, which
informs our prediction model to quantify the effects of mutations
—especially higher-order mutations—in the sequence. We further
incorporated global evolutionary context from an LM model
trained on large sequence databases to model the semantic
grammar within protein sequences as well as other structure and
stability relevant contexts. Finally, a recurrent neural network
model, trained on the fitness data of screened variants, is used for
the sequence-to-function modeling with both representations.
Through extensive benchmarking experiments, we showed that
ECNet outperforms existing methods on ~50 deep mutagenesis
datasets. Further experiments on combinatorial mutagenesis
datasets demonstrated that ECNet enables generalization from
low-order mutants to higher-order mutants. Moreover, ECNet
was successfully used to engineer TEM-1 pB-lactamase variants
with improved resistance to ampicillin.

Results

Residue co-evolution correlates protein functional fitness.
Mutations within the protein sequence can affect fitness in a non-
independent way, which is also known as genetic interactions or
epistasis. It was found that epistasis interactions, quantified by
deep mutational scanning (DMS) of proteins, can be used to infer
protein contacts and structures®®3Y. As structurally proximal
protein residues are often inferred from co-variation pairs from
sequence evolution historically31:32, we hypothesized that co-
evolution information can also be used to infer epistasis or fitness
of proteins.

To test this hypothesis, we investigated the relationship
between the co-evolution of residue pairs and the fitness of
double mutants. We collected a DMS study that measured the
fitness of double mutants of the human YAP65 WW domain33.
We also quantified the strength of pairwise residue dependencies
by fitting a direct coupling analysis model** to the homologous
sequences of the WW domain (see the “Methods” section). We
found that the strength of pairwise dependencies correlated with
the fitness of double mutants (Spearman correlation 0.35; Fig. 1a).
Similar to a previous study'4, we also used the change of
dependency strength (by contrasting the mutant sequence to the
wild-type sequence) to predict the fitness of protein variants in a
set of DMS studies3®>. We found that the predictions correlated
with experimental data with a Spearman correlation ranging from
0.1 to 0.5 (Fig. 1b). In addition, we observed a trend of increasing
correlation score if a protein has more homologous sequences,
presumably because abundant homologous sequences lead to a
more accurately fitted direct coupling analysis model. Overall,
these results suggested that there are signals in the evolution
information that we can leverage to predict protein fitness. This
motivated us to integrate evolutionary information of protein
sequences to empower a supervised model that predicts the
fitness of protein variants in directed evolution.

Sequence-to-function modeling. We built a deep learning
sequence-to-function model, ECNet, that learns the mapping
from protein sequences to their respective functional measure-
ments (Fig. lc, Supplementary Fig. 1) from data (e.g., fitness
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Fig. 1 The motivation and overview of our evolutionary context-integrated sequence modeling method for protein engineering. a Sequence co-evolution
data correlates with fitness measurements in deep mutational scanning studies. The scatter plot shows the relationship between the fitness measurement
of double mutants and the co-variation strength of residues where the mutations were introduced. Each data point represents a double mutant. The error
band indicates the 95% confidence interval of the regression line. b Sequence co-evolution data can be used to predict protein fitness. The bar plot shows
the Spearman correlation between experimentally measured fitness and strength changes of co-variation. Proteins were sorted by the number of
homologous sequences. ¢ An overview of ECNet, our evolutionary context-integrated deep learning framework for protein engineering. ECNet integrates
global and local evolutionary contexts to represent the protein sequence of interest. First, a language model is used to learn global semantic-rich global
sequence representations from the protein sequence databases such as UniProt or Pfam. Next, a direct coupling analysis model is used to capture the
dependencies between residues in protein sequences, which encodes the local evolutionary context. The global and local evolutionary representations are
then combined as sequence representations and used as the input of a deep learning model that predicts the fitness of proteins. Quantitative fitness data
measured by deep mutational scanning (DMS) are used to supervise the training of the deep learning model (MSA: multiple sequence alignment; Dim.
reduction: dimensionality reduction; LSTM: long short-term memory network; FC layers: fully-connected layers; Evo. contexts: evolutionary contexts; Evo.
representations: evolutionary representations; Global/Local rep: global/local representation).

measured by deep mutational scanning). We used the LSTM  alignment (MSA) of the homologous sequences, to uncover
neural network architecture and trained protein-specific models the underlying constraints or interdependencies that define the
using large-scale deep mutational scanning datasets (“Methods”).  family of homologous sequences. These constraints are the results
Our model is mainly empowered by two informative protein of the evolutionary process under natural selection and may
representations, with one accounting for residue interdependen- reveal clues on which mutations are more tolerable or favorable
cies of the specific protein of interest and the other capturing the than others. The generative model generates a sequence x =
general sequence semantics in the protein universe. Existing tools  (x;, ..., x;) with probability p(x) = exp[E(x)]/Z, where E(x) is the
predict the conservation effects of mutations by considering each  ‘energy function’ of sequence x in the generative model and Z is a
amino acid independently (e.g., PolyPhen-23¢ and CADD?’) normalization constant. We applied CCMpred34, which is based
while others exploit structure information (e.g., FoldX3® and on a Markov random field (MRF) specification to model the
OSPREY??). However, the functions of proteins are often driven  residue dependencies in protein sequences. The energy function
by the interdependencies between residues (e.g., epistasis) in the E(x) of sequence x is defined as the sum of all pairwise coupling
protein4®41, and not all the protein structures are solved. We thus  constraints e; and single-site constraints e;, where i and j are
explicitly modeled the pairwise interactions of all pairs of sites in position indices along the protein sequence,
a protein by extracting signals of evolutionary conservation from
its homologous sequences or sequence families. We used a E(x) = 2iei(x) + 2ig¢(x;, x;) 1)
generative graphical model, fitted on the multiple sequence
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When the MRF model is fit to data with proper regularizations,
the residue interactions in protein sequences are explained by the
direct coupling terms e;;. It has been shown that the magnitudes

of e; terms can accurately predict protein contacts*2 and 3D

structures®3. For a protein sequence with length L, we encoded its
i-th amino acid x; by a vector, in which elements were set to the
single-site term e;(x;) and pairwise coupling terms e;(x;, x;) for
j=1,...,L (Fig. 1c), and then dimensionality reduction techni-
ques were used to project it into low rank (“Methods”). Encoding
the protein sequence in this way directly incorporates the
protein’s evolutionary context, i.e., the effects of pairwise epistasis,
which can inform machine learning models to predict the fitness
of a sequence with single or higher-order combinatorial
mutations.

In addition to the evolutionary sequence contexts specific to
the protein of interest, global protein sequence contexts, i.e., those
encoding structures and stabilities, can also inform our prediction
model to predict the effects of mutations. For this purpose, we
integrated general protein sequence representations from unsu-
pervised protein contextual language models!>17-19, Using a
large corpus of protein sequences such as UniProt and Pfam, a
language model learns to predict the likelihood of a particular
amino acid appearing at a position given all other amino acids
surrounding it as context. During the training, the language
model gradually changes its internal dynamics (encoded as
hidden state vectors) to maximize the prediction accuracy. It was
found that a wide range of protein-relevant scientific tasks,
including secondary structure prediction, contact prediction, and
remote homology detection, can be improved by using the hidden
state vectors of a language model as input features to fine-tune a
supervised model for the specific task!®19. Here, we also used the
language model’s hidden state vectors as another type of protein
sequence representation for our prediction model to capture the
global protein sequence context (Fig. 1¢; “Methods”), which is a
complement to our local evolutionary context representation.

The local and global evolutionary representations are jointly
used to model the protein sequence of interest. A deep learning
model (recurrent neural network) then takes these sequence
representations as input and learns the sequence-to-function
relationship. Quantitative functional measurements (e.g., fitness
data measured by deep mutational scanning) are used to
supervise the training of the deep learning model (Supplementary
Fig. 1; “Methods”).

Accurate prediction of functional fitness landscape of proteins.
To validate the ECNet, we performed multiple benchmarking
experiments to assess the ability of ECNet in predicting the
functional fitness from protein sequences.

We first compared our evolutionary context representation to
different representation schemes for protein sequences or
mutations. Yang et al.#* proposed to use a Doc2Vec model®>,
pre-trained on ~500k UniProt sequences, to map an arbitrary
sequence to a 64-dimensional real-valued vector. To directly test
the utility of sequence representations, we used our deep learning
model as the predictor for both our representation and the
Doc2Vec representation of Yang et al. We compared the two
approaches on the Envision dataset?®, composed of 12 DMS
studies that generated fitness values of single amino acid variants
of ten proteins (“Methods”). We found that ECNet consistently
outperformed the approach of Yang et al on all the 12 datasets,
with a relative improvement ranging from 16 to 60% in terms of
the achieved Spearman correlation (Fig. 2a). Since the Doc2Vec
representation was learned from the UniProt dataset, the
information it captured is mostly general protein properties but
not the dependencies in the sequence that determine functions. In

contrast, our evolutionary context representation explicitly
models the epistasis of residue pairs in the sequence, which
jointly influence the function in a non-independent way. This
fine-grained information informed the prediction model to learn
the sequence-function mapping more effectively and thus
improved the prediction performance. We also compared our
evolutionary context representation to the Envision model®,
which described a single amino acid substitution using 27
biological, structural, and physicochemical features. Compared to
this approach, ECNet, without using these features, still improved
the Spearman correlation for most of the proteins (Supplemen-
tary Fig. 2; Supplementary Table 1). As protein engineering
focuses on identifying variants with improved properties than the
wild type, we further evaluated the model performance using a
classification metric (AUROC score), in which variants with
higher function measurements than the wild-type sequence are
defined as positive samples, and the remaining variants as
negative samples. We observed similar improvements in AUROC
scores for 11/12 protein DMS datasets (Fig. 2b; Supplementary
Table 1). These results suggest that sequence contexts are more
informative than the descriptors of mutated amino acids, which is
critical in capturing the interdependencies between residues to
predict the functions.

Next, we compared ECNet to other sequence modeling
approaches for mutational effects prediction on a larger set
of DMS datasets previously curated!®. We first compared
it to three unsupervised methods, including EVmutation!4,
DeepSequence!®, and Autoregressive?®. These methods trained
generative models on homologous sequences and predicted the
mutation effects by calculating the log-ratio of sequence
probabilities of mutant and wild-type sequences. As expected,
ECNet, predicting the mutation effects using a supervised
predictor, outperformed these methods across almost all proteins
(Fig. 3a), compared to EVmutation (median difference in
Spearman correlation Ap =0.216), DeepSequence (median Ap =
0.196), Autoregressive (median Ap = 0.165). There were only two
proteins on which ECNet did not clearly outperform other
unsupervised methods. This is likely due to the relatively small
number of function measurements available that we can use to
train the supervised predictor (1777 and 985 measurements,
respectively; median: 2721 across all proteins). We expect that a
more regularized prediction model will achieve improved
prediction performance for proteins with a small set of function
measurements. We also compared ECNet to two supervised
methods. One is TAPE that uses the sequence representations
learned by the protein language model!? as input to train a neural
network that has the identical model architecture as ECNet. The
other is UniRep!”, which uses the output of its own language
model to train a top model based on ridge regression. We found
that ECNet, by combining global LM representations, local
evolutionary representations, and the raw sequence as input,
achieved higher correlations than TAPE (median Ap = 0.089) and
UniRep (median Ap = 0.109) that used LM representations alone
for nearly all proteins (Fig. 3b). We also performed an ablation
analysis to dissect the performance of each representation
component in our model’s input and found that a model using
joint representations outperformed a model using any individual
representation (Supplementary Fig. 3). Furthermore, we simu-
lated experiments where ECNet was trained on noisy training
data and tested on noise-free data. We found that ECNet was
robust against data noise (Supplementary Fig. 4). For example,
ECNet’s test correlation only decreased by 2% when the training
data was perturbed by 10%. In contrast, a simple sequence
representation such as one-hot encoding was impacted severely
by data noise. Overall, tested on a large set of DMS data, ECNet
significantly outperformed other sequence modeling methods,
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Fig. 2 Comparisons to other protein variant representation methods. a Comparison to the approach from Yang et al.#4 that represents protein sequences
with fixed-length vector representations by training a Doc2Vec model on the UniProt database. Spearman correlation was used as the evaluation metric.
Performances were evaluated using five-fold cross-validation. b Comparison to the Envision model3° that represents a variant with 27 biological, structural,
and physicochemical descriptors. AUROC (area under the receiver operating characteristics) was used as the evaluation metric to assess the ability of the
model in identifying variants with improved function compared to the wild type. Relative improvements achieved by ECNet over the Envision model were
shown in the bar plot. Performances were evaluated using ten trials of five-fold cross-validation. The bar plot represented the mean = SD of the data.

either unsupervised or supervised (Fig. 3c; one-sided rank-sum
test P < 107°), demonstrating its superior ability in predicting the
fitness landscape of protein variants.

In addition to evaluating ECNet’s performance of predicting
fitness across all variants as shown above, we further designed an
experiment to assess ECNet’s ability to prioritize high-performing
variants. To this end, we trained an ECNet model and applied it
to predict and rank all variants in the randomly split test set based
on their predicted fitness. We then calculated the fraction of the
true top 100 variants that were ranked in the top K predictions of
ECNet. This experiment simulated the process in directed
evolution where we want to identify and synthesize the most
promising variants for screening, given a sequencing budget of K
variants?’. On three DMS datasets of avGFP, GB1, and Pabl, we
found that ECNet achieved higher recall (Supplementary Fig. 5a)
and more efficiently discovered the variant with the highest
fitness (Supplementary Fig. 5b) than UniRep and EVmutation.
ECNet also achieved a 15-50x efficiency gain over a random
sampling approach (Supplementary Fig. 5c¢), which is a widely
used strategy in current directed evolution workflows. These
results suggest that ECNet is an effective method to retrieve high-
ranking variants for protein engineering and can potentially
improve the efficiency of directed evolution in the laboratory.

As a supervised model, the performance of ECNet can be
limited when the available DMS data is too scarce to train an
accurate predictor. To address this challenge, we further built an
unsupervised version of ECNet model that does not require any
DMS data for training but is able to produce reasonably accurate
predictions. Inspired by protein language models, we built
unsupervised ECNet by training it on homologous sequences of
the protein of interest using the language model objective. The
predicted probability of an amino acid at a position was used as
the proxy of fitness prediction (“Methods”). Tested on four DMS
studies covering ten viral protein strains, unsupervised ECNet
achieved an average Spearman correlation of 0.37 (Supplemen-
tary Fig. 6). This unsupervised variant of ECNet is particularly
useful when the target protein is novel and has very few available
DMS data. For example, we observed that unsupervised ECNet
achieved reasonably good performance (mean Spearman correla-
tion 0.36; Supplementary Fig. 7) on the DeepSequence dataset
without using any DMS data as the supervised signal. In addition,
using a small number of DMS data (e.g., 25% of available data of
each protein) to train a supervised ECNet model substantially
improved the prediction performance (mean Spearman correla-
tion 0.54; Supplementary Fig. 7), and using the full DMS data
further boosted the results (mean Spearman correlation 0.71;
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Supplementary Fig. 7). We thus expect that unsupervised ECNet
can select promising variants for screening in the first round of
directed evolution, after which the screening data can be used to
train a supervised ECNet for later rounds to improve the model
accuracy and prioritize improved variants.

Generalization to higher-order variants from low-order var-
iants data. Construction and screening of higher-order variants
can require a significant amount of experimental effort and time.
As a result, fitness measurements of single mutants were more
prevalent in existing DMS studies as compared to those of double
or higher-order mutants. It is thus highly desired in protein
engineering that a machine learning model trained on fitness data
of low-order variants can also accurately predict the fitness of
higher-order variants. As such, the model can fully leverage the
fitness data of screened low-order variants and prioritize higher-
order variants that are likely to exhibit improved properties for
the next round of directed evolution.

We thus assessed ECNet’s performance on predicting the
fitness of higher-order variants when only lower-order data were
used for model training. We collected the fitness measurements of
both single and double mutants of six proteins from previous
DMS studies3>48-52. We then trained our prediction model using
single mutant data only and tested its performance on double
mutants. ECNet achieved Spearman correlations ranging from
0.73 to 0.94 for the six proteins and outperformed the TAPE and
the EVmutation methods (Fig. 4a), suggesting its generalizability
to the prediction of higher-order variants from low-order variants
data. We also observed that the increased diversity of fitness
landscape in the training data improved the prediction perfor-
mance. For example, to predict the fitness of quadruple mutants
of the avGFP protein®3, we trained separate models using the
fitness data of single, double, triple, or all three orders of mutants.
The test results suggested that a model trained on higher-order
mutation data (from single to triple) achieved an increasing
prediction performance, and the union of all-order mutation data
further improved the prediction (Fig. 4b). To further assess
ECNet’s ability, we used orthogonal data containing sequences of
146 TEM-1 variants that are known to be inhibitor-resistant
(“Methods”). Sequences in this data contain two to ten (mean 3.3)
amino acid substitutions compared to the TEM-1 protein. Based
on these sequences, we generated ten times more random variants
by enumerating all mutation combinations restricted to the
positions where mutations were introduced in the 146 variants
(“Methods”). We then trained our model on fitness data of TEM-
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Fig. 3 Comparisons to other sequence modeling approaches for mutation effects prediction. a Comparisons to three unsupervised generative models,
EVmutation, DeepSequence, and Autoregressive. b Comparisons to two supervised models (UniRep and TAPE) that use a pre-trained protein language
model to learn protein sequence representations and fine-tunes a supervised predictor using functional measurements. ¢ Pairwise comparisons between
ECNet and other methods. Each data point represents the performance on the DMS data of a protein and the dot size is proportional to the number of
homologous sequences of the protein. Spearman correlation was used as the evaluation metric for all results in this figure. One-sided rank-sum test was

used to test the statistical significance.

1 single mutants data and used it to predict the fitness of the 146
TEM-1 variants as well as the randomly generated variants. We
found that ECNet distinguished the inhibitor-resistant variants
from the random variant background (Fig. 4c; mean predicted
fitness 0.79 vs. 0.48; one-sided rank-sum test P < 107°). This
orthogonal validation further demonstrates the generalizability of
ECNet, even trained on single mutants data, to the prediction for
higher-order mutants.

It was shown that mutations within the sequence can have
non-independent effects (epistasis) on fitness?>4, The double
mutant fitness f; may not always be equal to the sum of
constituent single mutant fitness f; + f;, where f's are the (log-
transformed) experimentally measured fitness of variants.
Epistasis (¢) is quantified as the difference between the
experimentally measured fitness and the expected fitness:
e=f;—(fi+f). To analyze whether ECNet captures the
interdependencies between mutations, we correlated the observed
epistasis ¢ with predicted epistasis €, which is defined as

€= f i~ (f i+ f ;) where f ’s are predicted fitness. Compared with
EVmutation that explicitly models epistasis using a generative
model, the epistasis predicted by ECNet better correlated with the
observed epistasis (Fig. 4d; one-sided rank-sum test P<107%).
The epistasis captured by ECNet was also more accurate or
comparable to that of TAPE (Fig. 4d). These results suggest that
ECNet captured the residue dependencies within sequences more
accurately, and thus resulted in the superior prediction
performances reported above.

Engineering of TEM-1 P-lactamase using ECNet. To experi-
mentally validate its utility in protein engineering, we applied
ECNet to prioritize new higher-order TEM-1 (-lactamase var-
iants that are likely to have improved fitness compared to the wild
type. We trained ECNet using DMS data reported in previous
studies®!”>. The datasets curated the fitness measurements of
nearly all point-mutation variants and 12% of possible con-
secutive double-mutation variants of TEM-1. We performed in
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Fig. 4 Accurate prediction of higher-order variants using a model trained on lower-order variants. a Prediction of the fitness of double mutants. For
supervised methods (ECNet and TAPE), the prediction models were trained using fitness measurements of single mutants. b Prediction of quadruple
mutants of avGFP using models trained on single, double, triple, and all three types of mutants. ¢ The predicted fitness values of inhibitor-resistant TEM-1
variants (n = 146) were significantly higher (one-sided rank-sum test P = 5.1 x 10~31) than those of randomly generated background variants (n =1460). d
Spearman correlation of experimentally measured epistasis and predicted epistasis for double-mutation variants of GB1 (n = 4455), RRM (n=2700),
TDP43 (n=5166), TEM-1 (n=841), WW (n=1680), and FOSJUN (n=3072). In comparison to EVmutation, the Spearman correlations achieved by
ECNet were significantly higher for all six proteins (one-sided rank-sum test P values: GB1: 6.7 x 10~72, RRM: 4.7 x 10-35, TDP43: 4.0 x10~7, TEM-1:
1.8 %1018, WW: 6.7 x10~17, FOSJUN: 1.0 x 10-80), In comparison to TAPE, ECNet was comparable for proteins RRM, TEM-1, and WW and achieved
significantly higher correlations for proteins GB1, TDP43, and FOSJUN (one-sided rank-sum test P values 2.4 x 1071, 4.2 x10-9, and 2.2 x 105,
respectively). In box plots, the midline represents the median, the lower and upper hinges of the boxes correspond to the 25th and 75th percentiles, and
the whiskers extend to 1.5 times the interquartile range from the hinges. The asterisk symbol * indicates P values <10—>.

silico mutagenesis for several function-related sites of TEM-
Icurated in the literature and their higher-order recombinations
(“Methods™). We then applied ECNet to predict the fitness for all
variants generated from the in silico mutagenesis. After removing
structurally unstable variants, we selected 37 variants that were
ranked at the top by either the standard ECNet model or an
ensemble version of ECNet, which averages predictions of mul-
tiple replicates of ECNet models (“Methods”). The 37 top-
performers were novel TEM-1 variants and did not overlap with
any variants in our training data or functional TEM-1 variants we
collected from the literature. Despite that the training data only
covered single and consecutive double mutants, these 37 variants
sampled a diverse combination of mutation sites and contained
higher-order mutants ranging from 2 to 6 mutations (Supple-
mentary Data 1).

We created those 37 variants and nine previously reported
TEM-1 mutants which had demonstrated strong resistance
against ampicillin to serve as positive controls®!>> (Supplemen-
tary Data 2). We plated the library containing these 37 variants
and positive controls on LB agar plates with ampicillin of various
concentrations (300, 1500, and 3000 ug/mL) to test their
resistance capacity against ampicillin. Further, PacBio sequencing
was performed to determine the relative abundance of these
variants before and after selection, as a proxy of their fitness
(Fig. 5a; “Methods”). The fitness of each mutant at a certain
ampicillin concentration was calculated based on the ratio of the

relative abundance of the mutant to wild-type TEM-1 in the
plate with the related concentration of ampicillin and the
relative abundance of the mutant to wild-type TEM-1 in the
plate without ampicillin (“Methods” and Supplementary Data 1).
We observed that most of the variants prioritized by ECNet
demonstrated improved fitness as compared to the wild type
(Fig. 5b). The improvements were observed at various concentra-
tions of ampicillin (300, 1500, and 3000 ug/mL) and were
reproducible across different replicates. Notably, ECNet has
identified variants that improved the wild-type fitness by up to
~8-fold, which was substantially higher than the best performers
we had in the training data (positive controls in Fig. 5b). We
also found that the ensemble model of ECNet achieved
robust predictions, with a mean hit rate (fraction of predicted
variants with fitness higher than the wild type) 0.52, 0.91, and
0.94 for concentrations 300, 1500, and 3000 pg/mL, respectively
(Fig. 5¢).

Despite being trained on the data of single mutants and
consecutive double mutants, ECNet prioritized novel and higher-
order TEM-1 mutants that showed improved resistance against
ampicillin. The validation results suggested that the evolutionary
contexts enable ECNet to discover higher-order mutants that
have not been observed in the training data. The results also
demonstrate the potential of ECNet to be integrated into the
existing protein engineering workflows to guide the discovery of
enhanced variants.
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Fig. 5 ECNet enables the rapid engineering of TEM-1. a The workflow of using ECNet to predict enhanced TEM-1 variants. The ECNet model was trained
on fitness data of single and consecutive double TEM-1 mutants and applied to prioritized higher-order mutants; top-ranked TEM-1 variants were

constructed and their fitness (resistance against ampicillin) was measured (DMS: deep mutational scanning; NGS: next-generation sequencing). b Fitness
values of predicted TEM-1 variants at different ampicillin concentrations. Results from six replicates are shown. Fitness values of variants prioritized by an
ensemble version of ECNet (averaged predictions of multiple replicates of ECNet models) are colored separately. Top-performing single or consecutive
double mutants in the training data are labeled as positive controls. The Black dashed line represents the fitness of wild-type TEM-1. ¢ Hit rate (fraction of
predicted variants with fitness higher than the wild type) of the ensemble ECNet model. Each point represents a replica (n = 6 replicates in total). The
midline of box plots represents the median, the lower and upper hinges of the boxes correspond to the 25th and 75th percentiles, and the whiskers extend

to 1.5 times the interquartile range from the hinges.

Discussion

A critical challenge in machine learning-guided protein engi-
neering is the development of a machine learning model that
accurately maps protein sequences to functions for unseen var-
iants. While models have been developed for the qualitative
classification of protein sequences into function classes, such as
those in the Critical Assessment of Functional Annotation
(CAFA) challenge!?, in protein engineering prediction models are
required to provide a more fine-grained characterization of pro-
tein functions, which distinguishes the quantitative function
levels of closely related sequences (e.g., single-site mutants of
wild-type protein with sequence similarity >99%). The function
prediction in protein engineering is also different from predicting
the deleteriousness®® or instability®® of variants—to assist protein
engineering, the machine learning model needs to prioritize
variants that are not only structurally stable and non-deleterious
but also with enhanced properties. Furthermore, as the protein
sequence space is tremendous in size, it is desired to have a
machine learning model that navigates the fitness landscape
effectively and can generalize from regions of low-order variants
to regions in the landscape where higher-order variants with
improved function may exist. All these factors render it uniquely
challenging to develop a machine learning model that can be used
to guide protein engineering strategies such as directed evolution
and rational design.

In this work, we have presented a high-performance method,
ECNet, that predicts protein function levels from sequence to
facilitate the process of protein engineering. Supervised machine
learning models have been explored recently to predict protein
sequence-function relationships?7-57-59, As in those studies, in
this work, we mainly focused on improving the protein function
by introducing point mutations, while introducing insertion/

deletion was also explored in other work®?. Our machine learning
model uniquely used a biologically-motivated sequence modeling
approach to learn the sequence-function relationship, leading to
superior performances in predicting the fitness of protein var-
iants. Benchmarked on a large set of deep mutational scanning
studies, ECNet outperformed multiple existing machine learning
models for protein engineering. Further, ECNet accurately cap-
tures the epistasis effects of mutations within protein sequences
and can be generalized to predict higher-order mutants’ functions
by learning from the data of lower orders. We applied ECNet to
engineer TEM-1 (-lactamase and experimentally validated that it
successfully identified variants with enhanced ampicillin resis-
tance with high hit rates.

ECNet’s prediction performance is impacted by the MSA
characteristics and DMS data properties. For example, ECNet
predicts better for proteins with more homologous sequences
(Supplementary Figs. 8 and 9a), for sites that are more conserved
within a protein (Supplementary Fig. 9b), and for proteins that
have a more complete DMS dataset (Supplementary Fig. 9c-d). In
our additional tests that used both a sequence site-wise strategy
and a per-site AA-wise train/test split strategy®! to assess ECNet’s
generalizability, we found that, despite the challenging setting,
ECNet still outperformed the DeepSequence when predicting for
new mutation sites (Supplementary Fig. 10). Further investigation
revealed that the exploration-exploitation trade-off of training
data also influenced the model performance (Supplementary Fig.
11). This implies that the design of more effective training data
should be taken into account when developing ML algorithms to
assist protein engineering, especially when the experimental test
budget is limited©2.

We expect ECNet to be a practical tool for ML-guided protein
engineering. In a round of directed evolution, the sequence-to-
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function model can be applied, potentially coupled with other
sequence design algorithms®3-%, to select the next set of variants
to screen. In addition, given its generalizability to higher-order
mutants from lower-order mutants, the model can fully leverage
the screening data of low-order mutants, including that of both
improved and unimproved variants, generalize to distant regions
in the fitness landscape where higher-order variants with
improved properties may exist, and prioritize promising higher-
order mutants to screen in the next round, in which the screened
data can be used to further improve the model, hereby forming an
iterative loop of directed evolution to discover improved variants.

Methods

Datasets. We collected multiple large-scale deep mutational scanning (DMS)
datasets and random mutagenesis datasets curated by previous publications.

Envision dataset. We first collected 12 DMS studies from Gray et al.3%, covering ten
proteins and 28,545 fitness measurements of single amino acid variants. The fitness
values were normalized such that wild-type-like variants having scores of one, and
variants that are more (less) active than the wild type having scores greater (less)
than one.

DeepSequence dataset. We also collected a set of DMS datasets compiled by
Riesselman et al.!>. We excluded a study of RNAs since it is out of the scope of this
study. The resulting set consists of 39 DMS studies across 33 proteins. Most of
these studies (37/39) provide the function values of single amino acid variants, and
two studies provide the functional measurements of higher-order mutants. The
functions measured in these studies include growth rate, enzyme function, protein
stability, and peptide binding.

Single and double mutants datasets. To test the ability of ECNet to predict epistasis,
we compiled multiple DMS studies that contain the fitness values of both single
and double amino acid variants. We obtained the DMS data of the GB1 domain,
WW domain, RRM domain, and FOS-JUN heterodimer from Rollins et al.30, and
the prion-like domain of TDP-43 from Bolognesi et al.>2. A set of fitness of TEM-1
consecutive double mutants was also obtained from Gonzalez et al.>!

Higher-order avGFP mutants dataset. We also collected a higher-order mutant
dataset®? to assess ECNet’s generalizability to predict the effect of even higher-
order variants. This study>? systematically assayed the local fitness landscape of the
green fluorescent protein from Aequorea victoria (avGFP) by measuring the
fluorescence of ~50k derivatives of avGFP, with each sequence containing 1-15
amino acid substitution mutations.

Inhibitor-resistant TEM-1 variants. We compiled a list of TEM-1 variants that have
been found to be inhibitor-resistant with supporting evidence in previous studies.
The list was downloaded from https://externalwebapps.lahey.org/studies/
TEMTable.aspx (see “Data availability” for accession). We excluded variants for
which mutation information was labeled as “Not yet released”. This resulted in
146 sequences that mostly contained two to five and up to ten mutations (average
3.3 mutations per sequence). To generate a list of random candidate variants for
enhanced TEM-1 variants prioritization, we enumerated all combinations of amino
acid mutations on all or a subset of the positions where mutations were introduced
in this 146-sequence list. In total, we obtained 18,937 randomly generated candi-
date variants for TEM-1 variants prioritization.

Homologous sequences and fitness data of viral proteins. We used the homologous
sequences of each viral protein collected in Hie et al.? as the training data of the
unsupervised ECNet, including 44,851 unique influenza A hemagglutinin (HA)
amino acid sequences observed in animal hosts, 57,730 unique HIV-1 Env protein
sequences, and 4172 unique Spike and homologous protein sequences. We used the
fitness data collected in Hie et al.2 to validate the unsupervised ECNet. The fitness
data includes replication fitness of HA H1 WSN33 mutants from Doud and
Bloom®®, replication fitness of six HA H3 strains (Bei89, Bk78, Bris07, HK68,
Mos99, and NDako16) from Wu et al.%’, replication fitness of HIV Env BF520 and
BG505 mutants from Haddox et al.%, and Ky binding affinities between SARS-
CoV-2 mutants and ACE2 from Starr et al.®%.

Inference of evolutionary couplings from multiple sequence alignments. We
first searched homologous protein sequences of a given protein using HHblits
available in the hh-suite’. We used the wild-type sequence of the given protein as
the query sequence and searched against the uniclust-30 database (version uni-
clust30_2018_08) for three iterations. We used a maximum pairwise sequence
identity of 99% and a coverage cutoff of 50%. Other parameters were set as default.
The search results were formatted to the A3M multiple sequence alignment (MSA)
format.

To identify the co-evolutionary residue pairs in a protein, we used a statistical
model to exploit the evolutionary sequence conservation and model all pairwise
interdependencies of residues. The model identifies the evolutionary couplings by
learning a generative model of the MSA of homologous sequences using a Markov
random field. Given the MSA of homologous sequences, the couplings are learned
by maximizing the likelihood of observed sequences in the MSA, which is defined
as

N L
Lie) = %H H [exp (e,- (=) + j:§¢iezj(x?,x;‘)>] (2)

n=li=1

where the single-site constraints e; and the pairwise coupling constraints e; are
parameters of the model, x;" is the i-th amino acid in the n-th sequence, Z is the
normalization constant, N is the number of homologous sequences and L is the
number of columns in the MSA (number of amino acids in the query sequence).
The direct optimization of this likelihood is computationally intractable due to the
computation of the normalization constant that increases exponentially—20*
sequences need to be considered. It was thus adopted to maximize the site-factored
pseudo-likelihood of the MSA, which has a running time complexity O(NL?) where
N is the number of sequences in the MSA. We refer the interested readers to
previous studies?»7172 for the details of the optimization. In this work, we used
CCMPred?4, a GPU-based algorithm maximizing the pseudo-likelihood (plus
regularization terms), to optimize the generative model. The evolutionary
couplings are learned as parameters of the Markov random field.

Local evolutionary context representation with evolutionary couplings. By
fitting the graphical model to the MSA of homologous sequences of a protein, we
obtained the coupling matrix e;; that quantifies the co-constraints of all possible 202
amino acid combinations between positions i and j in the sequence. In particular,
the term e;;(x;, x;) is the pairwise emission potential of the Markov random field for
amino acid x; occurring at position i while amino acid x; occurring at position j.
We used the site preference vector e; and the coupling matrix e; to construct a data
representation that encodes the co-evolution information of a protein.

Specifically, the i-th amino acid x; in the protein was represented by an (L+1)-
long ‘local evolutionary representation’:

vi = [e(xy), €51 (x;, 1), €5 (x5 %), - €1 (0, )] (3)

The full representation of a protein sequence was thus obtained by stacking
local evolutionary representations for all positions, resulting in an L by (L+1)
matrix. As we have shown, the pairwise potentials in the matrix e; correlated with
the fitness measured in DMS experiments (Fig. 1a, b). We thus expect that using
the local evolutionary representations derived from e; and e;; as a data
representation of amino acids will inform the sequence-to-function prediction
model to better capture the residue dependencies and the sequence-to-function
relationship.

The length of the local evolutionary representation is roughly equal to the
length of the protein sequence, which may raise an overfitting issue when the
protein length is long while the number of functional measurements used as
training data is low. Therefore, we used a dimensionality reduction approach to
transform the (L+1)-long vector into a fixed-length d-dimensional vector (d <L),
where d is independent of the length of the protein sequence. This is done by
applying a linear layer in the neural network to reduce the dimensionality of local
evolutionary representations v;. Hereinafter, we will refer to the transformed vector
v; as local evolutionary representation unless otherwise specified.

Pre-trained protein sequence representation model. Very recently, self-
supervised models have provided powerful protein sequence representations that
facilitate scientific advances, including protein engineering, structure prediction,
and remote homology detection. These language models!>17-19, without using
labeled data, are trained on natural sequences from large protein databases such as
Pfam?8 and UniProt?” to predict the next amino acid character given all previous
amino acid characters in the protein sequence or predict randomly masked amino
acids using the rest as given context. During the model training, these models
progressively adapt their parameters to maximize the prediction accuracy, resulting
in a representation of protein sequences that capture intrinsic semantics in protein
sequences and interdependencies among amino acids.

In this work, we integrated the amino acid representations produced by a
transformer model in TAPE, one of the most powerful self-supervised sequence
representation models!®. The representations capture the global evolutionary
context from the massive protein sequence data the model was trained on, which is
complementary to our evolutionary representations that capture the local
evolutionary context specific to the target protein. The TAPE model applied a
Transformer architecture’? and was trained on Pfam data to predict a masked
amino acid using the remaining ones as input. We downloaded the pre-trained
weights of the TAPE model from https://github.com/songlab-cal/tape. For an input
sequence, TAPE generates a 768-dimensional vector representation for each amino
acid. We refer to the reprojected TAPE representations as global evolutionary
representations.
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Sequence-to-function neural network model

Model architecture. We built a deep learning model for the sequence-to-function
prediction. The model receives as input features (amino acid characters and evo-
lutionary representations) of the protein sequences and produces the predicted
functional measurements of proteins as output. The backbone of our model is a
bidirectional long short-term memory network (BiLSTM)7# integrated with a two-
layer fully-connected neural network. Hyperparameters of the model were decided
through a grid search in an independent experiment (see “Training details”).
Amino acids in the input sequences were one-hot encoded and passed through a
20-dimensional embedding layer. The amino acid embeddings were then con-
catenated with the evolutionary representations position-wisely before being input
to the LSTM module. We used a single-layer LSTM with a hidden dimension d; as
the default setting in this work. One hidden state vector was produced by the LSTM
for every amino acid in the sequence. To integrate the TAPE representations into
our model, we reprojected them to d,,-dimensional vectors using a linear fully-
connected layer, which were then concatenated with the hidden state vector pro-
duced by the LSTM model for each amino acid. We summarized these con-
catenated vectors into a single vector using a weighted averaging approach, where
the averaging weights were learned from the data by using a self-attention layer’>.
This vector was then passed to a top module to predict the functional measure-
ments. The top module is a two-layer fully-connected neural network with tanh
activation. The hidden dimensions of the two layers were set to d;, and 1,
respectively. To facilitate the model training, we added a batch normalization
layer”> before the fully-connected layers. We also applied a dropout’® layer after
the first fully-connected layer to prevent overfitting. To improve the model’s
robustness and prediction accuracy, we used an ensemble approach to output the
prediction, in which three replicas of ECNet models were trained using the same
hyperparameters and training data, and their output scores were averaged as the
final prediction.

Training details. We cast the task of predicting the functional values of proteins as a
regression problem, and the objective was to minimize the difference between the
predicted and experimentally measured functional values. We trained our deep
learning model using the Adam optimizer’” with default parameters. Mean squared
error (squared L, norm) was used as the loss function. To select the hyperpara-
meters of ECNet, we performed a small-scale grid search using the training data of
a protein, such that 7/8 of the training data was used to train a model with a
specific set of hyperparameters, and the remaining 1/8 data was used as the vali-
dation set to select the hyperparameters. The test set was not used for hyper-
parameter selection. We tested the LSTM’s dimension of d; = 32, 64, and 128, the
top layer dimension of d;, = 32, 64, and 128, the reprojected embedding dimension
of d, =128 and 256. In general, we found that d; =128, d, =128, and d, =128
are reasonably good defaults and can be used for a new protein. Nevertheless, a
careful grid search of hyperparameters for the new protein would further improve
the model performance. Unless otherwise specified, the batch size was set to 128
and the maximum number of training epochs was set to 2000 with an early stop if
the performance has not been improved for 1000 epochs. Model training was
performed on an Nvidia TITAN X GPU. The time required to train a single model
depends on the training data size of each protein, ranging from 0.5 to 6 h. For the
ensemble model with three replicas, the required time thus ranges from 2 to 20 h.

Auxiliary classification objective. While the prediction of functional measurements
is a regression problem by definition, the skewed distribution of the training data
may lead to a biased predictor. For example, in the Envision dataset®%, only 18% of
TEM-1 variants are more active than the wild-type sequence (positive effects) while
the remaining are less active than the wild-type sequence (negative effects). In this
case, a model optimized using a regression objective (e.g., minimizing the mean
squared error) tends to fit the negative effects more but be less sensitive to the error
from the prediction of positive effects. However, the main goal of machine
learning-guided protein engineering is to identify the variants with an enhanced
property than the wild-type sequence. Hence, it is critical to mitigating this type of
bias in the prediction model. We addressed this issue by introducing an auxiliary
classification objective. We binned the functional measurements using their 10-
quantiles as breakpoints, i.e., grouping the measurements into 10 bins with equal
size. In the model training, we encouraged the model to accurately predict not only
the absolute functional measurement but also which bin the measurement is in.
Jointly, the classification objective forces the model to treat each bin of functional
measurements equally and the regression objective forces the model to predict the
measurements as close to the observed values as possible. In the implementation,
we added a second top module into the deep learning model, which also receives
the summarized LSTM hidden state vector as input and its output is ten numbers
indicating the predicted probability that the measurement should fall in each of the
bins. The overall loss function is L = L, + aL_ where L, is the loss of the regression
objective, L, is the cross-entropy loss of a ten-class classification, and « is a constant
used to balance the scales of the two losses, which was set as « = 0.1 in this work.
We used this hybrid loss when training the model for prioritizing novel TEM-1
variants and used the regression loss for other benchmarking experiments.

Unsupervised ECNet based on language model training. While the vanilla
ECNet is a supervised model and requires function or fitness data to train the

predictor, we also developed an unsupervised extension of ECNet that does not
need any direct fitness measurements as training data but is still able to produce
reasonably accurate predictions. This unsupervised model is useful when the fitness
data of a protein is unavailable or not sufficient to train an accurate supervised
predictor. The predictions of the unsupervised ECNet can be used as an approx-
imation of fitness and guide the selection of variants to screen in the first round of
directed evolution, after which the experimental screening data can be used to train
a more accurate, supervised ECNet model.

The main idea of the unsupervised ECNet is to train a model that learns the
evolutionary preferences from the homologous sequences of the protein of interest.
Those homologous sequences are the results of long-course evolution and might
reveal evolutionary preferences about which mutations are more viable or tolerable
than others. This approach is motivated by the recent advances of deep learning for
human languages, in which algorithms called language models are developed to
learn intrinsic semantics and grammar constraints of natural languages like English
from large text corpora.

The model architecture of the unsupervised ECNet is also based on a
bidirectional LSTM (BiLSTM), as in the supervised ECNet, but with a different
training objective. Here, we use an objective similar to that used in Hie et al.2> to
train a protein language model. Precisely, we are given a protein sequence
X = (x,...,x7),%; € X,i € [L], where X is the alphabet of all possible amino acids.
Let X; denote a point-mutation at position i and the mutated sequences as
X(%;) = (%1, s X;_ s Xj, X115 -, X, ). The language model aims to predict the
probability of an amino acid appearing at a position considering its surrounding
context, i.e., p(x; 1y 5)> Where Xy = (X1, - Xi_y; Xipy, -y %) Tepresents the
sequence context. The context is encoded using a latent real-valued vector
z; = f (xyp ) Where f, X! - RP is an embedding function that maps
discrete sequences into a D-dimensional continuous space. Here the embedding
function was instantiated by a bidirectional LSTM neural network and the outputs
of the final LSTM layers were concatenated to form the embedding vector, i.e.,

3 X )BLSTM, (¢, (X g vy x1))] (4)

where g, is the output of preceding layers that proceed the input in the forward
direction, LSTM; is the final layer of the forward-directed LSTM, and g, and
LSTM, are defined similarly but for the reverse direction. The embedding vector z;
is transformed into a probability through a learner transformation and a softmax
function, i.e.,

z; = [LSTM(g(xy ...

Pl ) = plx;1z;) = softmax(Wz; + b) (5)

where W and b are learned parameters. We used a two-layer BiLSTM with 256
units in this work.

We demonstrated the utility of the unsupervised ECNet on viral proteins. We
trained three unsupervised ECNet models for influenza HA, HIV Env, and SARS-
CoV-2 Spike proteins using the unsupervised ECNet model. One epoch in the
training consisted of the prediction of every token at all positions and in all
sequences in the training set. The output probability p(x;|x;) ;) is used as the
predicted score and to correlate with the fitness score of a mutant. If a variant has
multiple mutations, the product of the probabilities of the individual point
mutations was used as the predicted score of unsupervised ECNet.

Baseline methods. We compared ECNet against several existing baseline methods,
including supervised and unsupervised models.

Yang et al. (Doc2Vec). Yang et al** proposed a learned protein embedding to
represent a protein sequence in a 64-dimensional vector using a Doc2Vec model*>
trained on the UniProt database. The representation vector is used as the input feature
to fit a Gaussian process-based regressor to predict the functional measurement.
Following a previous work!7, we also used the four best-performing models as chosen
in Yang et al.#4, including the original model (k =3, w=7), the scrambled model
(k= 3, w=75), the random model (k= 3, w=7), and the uniform model (k =4,
w = 1). The pre-trained models were downloaded from http://cheme.caltech.edu/
kkyang/models/ and protein representation vectors were generated using the code
available at https://github.com/fhalab/embeddings_reproduction. The best perfor-
mance across the four models was reported as the final performance of the
Doc2Vec model.

Envision. Envision is a supervised method proposed in Gray et al.3> that predicts
the functional measurements of protein variants. Each variant was annotated with
27 biological, structural, and physicochemical features, which were used as input to
train a gradient boosting regression model using large-scale mutagenesis data. We
downloaded the source code of Envision from https://github.com/FowlerLab/
Envision2017.

EVmutation. EVmutation is an unsupervised statistical model proposed by Hopf
et al.14, It explicitly models the co-variations between all pairs of residues in the
protein by fitting a pairwise undirected graphical model to the multiple sequence
alignment (MSA) of all homologous sequences of the protein of interest. The
model then quantifies the effect of single or high-order substitution mutations

10 | (2021)12:5743 | https://doi.org/10.1038/s41467-021-25976-8 | www.nature.com/naturecommunications


http://cheme.caltech.edu/kkyang/models/
http://cheme.caltech.edu/kkyang/models/
https://github.com/fhalab/embeddings_reproduction
https://github.com/FowlerLab/Envision2017
https://github.com/FowlerLab/Envision2017
www.nature.com/naturecommunications

ARTICLE

using the log-ratio of sequence probabilities between the mutant and wild-type
sequences. In this work, we used the workflow implemented in EVcouplings
(https://github.com/debbiemarkslab/EVcouplings) to generate the predictions of
EVmutation.

DeepSequence. Similar to EVmutation, DeepSequence!® is also a generative model
that predicts the effects of mutations in an unsupervised manner. However, unlike
EVmutation explicitly modeling pairwise dependencies, DeepSequence uses a
latent model, fitted on the MSA of homologous sequences of a protein, to capture
higher-order dependencies of residues in the protein. The effects of mutations are
also predicted by the log-ratio of mutant likelihood to wild-type likelihood.

Autoregressive model. Generative models of protein sequences such as EVmutation
and DeepSequence are dependent on the alignment of homologous sequences,
which may introduce artifacts and lose important information caused by indels in
the alignment. A generative autoregressive model was proposed by Riesselman

et al.%0 to predict the mutation effects in protein sequence, without the requirement
of multiple sequence alignment.

TAPE. We used TAPE', a language model (LM) trained on Pfam sequences to
generate global context representations of protein sequences. We extracted the
hidden state vectors, one for each amino acid in the sequence, from the TAPE
model. We used the same top module as in our model (i.e., self-attention layer and
fully-connected layers) to take the representations as input and predict the func-
tional measurements.

UniRep. UniRep!” first trains an unsupervised protein language model on
UniRef50 sequences. The model is then fine-tuned using homologous sequences of
a studied protein (called evotuneing). The model is used to generate a vector
representation for each protein sequence. These representations are used as the
input of a top supervised model such as ridge or LASSO regression to predict the
fitness of mutants.

CSCS. CSCS?’ is an unsupervised model that is specifically designed to predict viral
escapes. It also trains a language model on viral protein sequences and computes
two scores to quantify the effect of a mutation, one is the grammaticality of the
mutation, defined as the model predicted probability of an amino acid a position in
the sequence, and the other is the semantic change of the mutation, defined as the
L; distance between the embeddings of the mutated sequence and the wild-type
sequence. In our experiment, we used the grammaticality of a mutant to correlate
its fitness, as this was shown to outperform the prediction based on semantic
changes in the CSCS study.

Benchmarking experiments. To assess ECNet’s performance, we compared
ECNet to other baselines using the original benchmark datasets that these methods
were tested on in their publications. We ensured that the training and test sets are
not overlapped in our experiments.

Benchmarks on the Envision dataset. We compared ECNet to the gradient boosting
regression algorithm (denoted as ‘Envision’) proposed in the Envision dataset
paper?>. For each protein, we used 80% of the DMS data to train ECNet or other
methods and the remaining 20% data to evaluate the model’s performance.
Spearman correlation was used as the evaluation metric. We used grid search to
optimize the hyperparameters of ECNet. Note that Envision used 27 biological,
structural, and physicochemical features to build the prediction model while our
model only used the protein sequence to predict the functional measurements. To
test the model’s ability to identify variants that are more active than the wild-type
sequence, we also converted the task into a classification problem, in which protein
sequences with a function score greater than the wild-type sequence (with a
function score 1) were labeled as positive samples, and the remaining sequences as
negative samples. We used the AUROC score as the metric for this classification
evaluation. We also compared ECNet to the Yang et al. (Doc2Vec) model on this
dataset.

Benchmarks on the DeepSequence dataset. We compared ECNet to EVmutation,
DeepSequence, and the Autoregressive model on the DeepSequence dataset that
these methods have been tested on. The predictions made by these unsupervised
approaches were collected from previous studies!>46, For ECNet, we performed
five-fold cross-validation on this dataset and reported the average performance
over all the five folds. Hyperparameters of ECNet were optimized using an inner-
loop cross-validation. We used Spearman correlation as the evaluation metric. We
also compared ECNet to supervised models that used global context representa-
tions (TAPE) or locally-fine-tuned global context representations (UniRep) on this
dataset.

Evaluation of variants prioritization. We designed a simulation experiment of
variants prioritization to assess how accurate and efficient ECNet is in retrieving
high-performing variants*’. We collected three large DMS datasets of proteins

avGFP%3, GB18, and Pab1%’, each with the fitness data of single and high-order
mutants. We trained the model using 90% of the data (randomly sampled) and
asked the model to predict the fitness for the remaining 10% data. For comparison,
we ran One-hot encoder, Evmutation, and UniRep to predict the same test var-
iants. We also included the ideal model, which used the ground-truth ranking of
fitness values to rank variants, and the null model, which ranked variants with a
random order, as references for the evaluation. For each protein, we repeated the
experiments ten times. We calculated the recall as the evaluation metric, which is
defined as the fraction of true top 100 variants the model recovered in its list of top
K predictions. This value of K can be interpreted as the sequencing budget in actual
experiments of directed evolution. We also used the maximum fitness (normalized
by rank) observed in the top K predictions as an additional metric to assess
ECNet’s ability in identifying the variants with the highest possible fitness. To
demonstrate the efficiency of ECNet’s prioritization, we computed its efficiency
gain over random sampling as a function of budget K, which was quantified as the
ratio between the recall of ECNet and the recall of the null model.

Benchmarks of unsupervised ECNet. We trained unsupervised ECNet models using
the language model objective on the homologous sequences of three viral proteins,
including influenza HA, HIV Env, and SARS-CoV-2 Spike, respectively. Hyper-
parameters of ECNet were optimized using an inner-loop cross-validation. The
trained ECNet models were evaluated using fitness datasets for mutants of several
proteins, including HA H1 WSN33, six HA H3 strains, BG505 and BF520 HIV
Env, and SARS-CoV-2 Spike. The performance was evaluated using Spearman
correlation between the output probability of a mutation given by unsupervised
ECNet and the fitness score of that mutation. As our training objective followed
that of CSCS, a protein language model developed to predict the escape of viral
mutations, we compared our model to CSCS and validated that our model achieved
a comparable performance as CSCS. For reference, we also trained a supervised
ECNet on the viral proteins using five-fold cross-validation and found that the
supervised model substantially improved the performance.

Effects of training data size. To investigate the effects of training data size, we
randomly withheld 10% of data of each DMS study in the DeepSequence dataset as
the test set. For the remaining 90% data, we trained two separate ECNet models by
using all of them as training data (denoted as 100%) or randomly sampling 1/4 of
them as training data (denoted as 25%). We also trained an unsupervised ECNet
model without using any DMS data (denoted as 0%). The three models were all
evaluated on the same test set.

Comparison to randomly generated TEM-1 variants. We trained an ECNet model
and used it to predict the fitness of 146 TEM-1 inhibitor-resistant variants and a set
of randomly generated variants. For every of the 146 TEM-1 inhibitor-resistant
variants, we generate ten random variants that have the same mutated sites as the
inhibitor-resistant variant but the alternative amino acid at each position is re-
sampled uniformly from the 20-amino acid set. We ensured that the generated
random variants do not overlap with any of the 146 variants.

Prioritized high-order TEM-1 variants using ECNet. We trained an ECNet
model using DMS data of low-order TEM-1 variants and used the model to
prioritize new high-order variants that were likely to have enhanced fitness. We
sourced the training data from Firnberg et al.>> and Gonzalez et al.>!, which
measured fitness values of 98.2% (2536/2583) of all possible point mutants and
12.0% (12,374/102,855) of all possible consecutive double mutants, respectively. In
both studies, the fitness of TEM-1 was defined as its resistance to ampicillin (Amp).
We randomly sampled 95% of the combined datasets to form the training set and
used the remains as the validation set. We used the default hyperparameters
mentioned above for ECNet. The model was trained for 2000 epochs with early
stopping if its performance on the validation set did not improve for 1000 epochs.
We used the trained model to predict the fitness of variants beyond single and
consecutive double mutants and to identify new variants with improved fitness (as
compared to the wild type). To reduce the exponential search space (20%%
sequences) of possible sequences, we focused on a restricted subspace where the
mutations only occur on plausible function-related sites of TEM-1 documented in
the literature. The detailed steps are as below. (1) We compiled a list of inhibitor-
resistant TEM-1 variants supported by evidence in previous studies (see
“Datasets”). The list contains 146 TEM-1 variants, each with 2-11 mutations with
respect to TEM-1 wild-type sequence, covering 72 positions and 99 unique amino
acid (AA) changes. (2) Based on each of the 146 variants, we generated new
variants by considering all subset combinations of mutated positions of this varjant
and enumerating all AA changes that have appeared in these positions in the list.
(3) From the newly generated sequences, we removed sequences that are identical
to sequences in the 146-variant list, resulting in 18,937 sequences that form our
restricted search space. We call these sequences “candidate variants”. (4) We
applied the trained ECNet model to predict the fitness for each of the candidate
variants. Variants predicted to have lower fitness than the wild-type fitness were
removed. (5) We used FoldX38 to compute the change of structure stability for each
variant. The PDB structure of wild-type TEM-1 was used as the template (PDB ID:
1XPB) and refined by the ‘RepairPDB’ function of FoldX. The ‘BuildModel’
procedure of FoldX was applied to mutate residues and compute the change of
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stability. Variants with a large change of stability (JAAG| > 3 kcal/mol) were
removed. (6) The remaining variants are sorted based on their predicted fitness,
and we refer to those variants as prioritized variants.

To generate prioritized variants for experimental validations, we built two
versions of ECNet models, a base version (ECNet-base) and an ensemble version
(ECNet-ensemble). In ECNet-base, we trained three independent predictors using
the default neural network architecture of ECNet, but each with a different loss
objective, namely regression loss, classification loss, and regression loss with an
auxiliary classification loss, respectively. The intersection of variants prioritized by
the three predictors formed the final prioritized variants of ECNet-base. The use of
three loss objectives here follows the intuition that the regression loss encourages
the model to approximate the fitness of all variants and the classification loss
focuses the model on identifying variants with fitness higher than the wild type.
Combining the three predicted lists can prioritize more reliable predictions. We
selected the top 28 variants in the intersected list for experimental validations. In
ECNet-ensemble, we followed the same procedure as in ECNet-base but trained
five replicates of predictive models for each loss objective. The predicted fitness of a
variant was averaged over the five replicates. From the prioritized list by ECNet-
ensemble, we selected 9 variants that were ranked at the top but different from
what have been selected from the list predicted by ECNet-base.

In total, we used ECNet to identify 37 TEM-1 variants that were likely to
demonstrate improved fitness as compared to the wild type. These variants
contained two to six mutations (average 3.02 mutations per sequence), covering 22
positions in the TEM-1 sequence.

Experimental validation of prioritized TEM-1 variants

Materials and general methods. Molecular biology reagents and chemicals were
purchased from Fisher Scientific, Sigma-Aldrich, GOLDBIO, or New England
Biolabs, Inc., unless specified otherwise. Escherichia coli DH5a (New England
Biolabs, MA) was cultured in Luria-Bertani broth. DNA sequencing was per-
formed at ACGT (Wheeling, IL). Primers were ordered from Integrated DNA
Technologies (Coralville, IA) and listed in Supplementary Data 2. Plasmid
pSkunk3-BLA was purchased from Addgene (plasmid 61531). PacBio Barcoded
Universal Primers (Part Number: 101-629-100) was purchased from Pacific Bios-
ciences (Menlo Park, CA).

TEM-1 mutant creation. TEM-1 mutants were constructed by overlapping PCR
using primers (Supplementary Data 2) carrying targeted single or multiple muta-
tion sites. Briefly, DNA fragments were PCR amplified by primers carrying targeted
single or multiple mutation sites using pSkunk3-BLA plasmid as template and then
gel purified. The purified DNA fragments were further fused by overlapping PCR
to provide DNA fragments with complete TEM-1 gene fragments flanked by
restriction enzyme (BamHI and Spel) digestion sites. After gel purification, the
fused DNA fragments and pSkunk3-BLA plasmid were digested by BamHI and
Spel. The digested TEM-1 gene with mutations and pSkunk3-BLA plasmid was gel
purified and ligated by T4 DNA ligase and then transformed into Escherichia coli
DH5a competent cells. The single colonies from the transformation plates were
picked and cultured overnight at 37 °C. The mutation sites of mutants were con-
firmed by DNA sequencing using primers listed in Supplementary Data 2. In some
cases, the constructed TEM-1 plasmids were used as PCR templates for creating
other variants.

Ampicillin resistance assay of TEM-1 mutants. The plasmids harboring the genes
encoding wild-type TEM-1, positive controls, and ECNet’s predicted variants were
mixed with equal concentrations and transformed into Escherichia coli DH5a
competent cells (six replicates). After incubation at 37 °C overnight, the colonies
from each of the transformation plates were immersed by ice-cold LB medium
which was further scratched and pooled, yielding 10 ml cell suspension in LB
medium. Inoculated 0.5 mL of the cell suspension into 50 mL LB medium sup-
plemented with streptomycin (50 pug/ml) to allow the ODgg of cultures to reach 0.5
with shaking at 37 °C. The cells were then washed twice by 1 volume of ice-cold 1X
PBS and then resuspended in 1 volume of ice-cold 1X PBS. Finally, 100 pL cells
were spread onto each of the freshly prepared LB agar plates with different con-
centrations of ampicillin (0, 300, 1500, and 3000 pg/ml), streptomycin (50 ug/ml),
and IPTG (0.3 mM). The plates were incubated at 37 °C overnight. The colonies
from each plate were then pooled and miniprepped to provide a plasmid mixture
for each plate. The concentrations of the plasmids were determined by Qubit™ 4
Fluorometer (Invitrogen). PCR amplification of the targeted region with the same
amount of total plasmids from each plate as templates by using target-specific
primers tailed with a universal sequence (Supplementary Data 2) and Phusion Hot
Start II High-Fidelity PCR Master Mix (Thermofisher, F-565S) was performed
according to the manufacturer’s instructions. The amplicons were then PCR bar-
coded by PacBio Barcoded Universal Primers using Phusion Hot Start II High-
Fidelity PCR Master Mix. After gel purification, the barcoded amplicons were
pooled with equal concentrations which were further used for SMRTbell library
construction with the SMRTbell Express Template Prep Kit 2.0. PacBio sequencing
with Sequel II System was then performed at the Roy J. Carver Biotechnology
Center at University of Illinois at Urbana-Champaign. About two million reads
with a mean read length of 949 bp were obtained from the sequencing. The reads
were error corrected with circular consensus and demultiplexed. Further

bioinformatic analysis revealed read numbers of individual mutants from the
corresponded plates with various concentrations of ampicillin. The fitness of each
mutant at a certain ampicillin concentration was determined based on the ratio of
the relative abundance of the mutant to wild-type TEM-1 in the plate with the
related concentration of ampicillin and the relative abundance of the variant to
wild-type TEM-1 in the plate without ampicillin.

Fitness calculation. The PacBio read data was processed using the TADA workflow
(https://github.com/h3abionet/TADA). The fitness of a TEM-1 variant is deter-
mined by the ratio between the relative abundance of variants under the selection
of a specific concentration and without selection. More precisely, for the fitness
value f (MT) of a variant MT at concentration ¢ (¢ = 300, 1500, or 3000 ug/mL) is
calculated as

fo(MT) = [N (MT)/N (WT)]/[No(MT)/No(WT)], ()

where WT is the wild type and N(:) is the read count of a mutant under con-
centration c.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability

The following datasets generated or curated in previous publications were used: Envision
dataset (https://doi.org/10.1016/j.cels.2017.11.003); DeepSequence dataset (https://doi.org/
10.1038/541592-018-0138-4); single and double mutants fitness (https://doi.org/10.1038/
$41588-019-0432-9, https://doi.org/10.1016/j.jmb.2019.03.020, https://doi.org/10.1038/
$41467-019-12101-z); TEM-1 single-mutation and double-mutation mutants fitness data
(https://doi.org/10.1093/molbev/msu081, https://doi.org/10.1016/j.jmb.2019.03.020);
high-order avGFP fitness (https://doi.org/10.1038/nature17995); inhibitor-resistant TEM-
1 variants (downloaded from https://externalwebapps.lahey.org/studies/ TEMTable.aspx
and deposited at https://doi.org/10.6084/m9.figshare.16516608.v1); homologous
sequences and fitness data of viral proteins (https://doi.org/10.1126/science.abd7331);
PDB structure of TEM-1 (PDB ID: 1XPB). The fitness data of TEM-1 validation
experiment is available in Supplementary Data 1.

Code availability

The source code of ECNet is available at https://github.com/luoyunan/ECNet and on
Zenodo® https://doi.org/10.5281/zenodo.5294461. ECNet was built on Python 3.7,
PyTorch 1.4.0, Numpy 1.18.5, Scipy 1.4.1, Numba 0.45.1, Bio Python 1.78, SciKit-Learn
0.24.1, Pandas 1.2.3, msgpack-python 0.5.6, and TAPE 0.4.
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