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Identification of key biomarkers 
for STAD using filter feature 
selection approaches
Yangyang Wang1*, Jihan Wang2, Ya Hu3, Jingbo Shangguan4, Qiying Song4, Jing Xu4, 
Hanping Wang5, Mengju Xue4, Liping Wang6 & Yuanyuan Zhang6*

Gastric cancer (GC) is the fifth most common cancer and the third leading cause of cancer death 
worldwide. Discovery of diagnostic biomarkers prompts the early detection of GC. In this study, we 
used limma method combined with joint mutual information (JMI), a machine learning algorithm, 
to identify a signature of 11 genes that performed well in distinguishing tumor and normal samples 
in a stomach adenocarcinoma cohort. Other two GC datasets were used to validate the classifying 
performances. Several of the candidate genes were correlated with GC tumor progression and 
survival. Overall, we highlight the application of feature selection approaches in the analysis of 
high-dimensional biological data, which will improve study accuracies and reduce workloads for the 
researchers when identifying potential tumor biomarkers.

Stomach cancer, or gastric cancer (GC), is the fifth most diagnosed cancer and the third leading cause of cancer 
death worldwide. The most common type of GC is stomach adenocarcinoma (STAD), which accounts for almost 
90% of all GC  cases1. Because the symptoms of GC can be mistaken for less serious problems like indigestion or 
heartburn, it is frequently misdiagnosed until the advanced stages. The outcome of GC treatment is generally 
poor, with a 5-year survival rate of nearly 30%2.

The non-invasive and low-cost advantages of diagnostic biomarkers prompt the researches of molecular 
biomarkers for the early detection of gastric cancer. However, the challenges in identifying promising biomark-
ers with exceptional discriminative performance are  increasing3. As high-throughput technologies and machine 
learning methods advance, feature selection approaches for classification are being applied to cancer genomic 
 studies4. The Cancer Genome Atlas (TCGA, https:// www. cancer. gov/ tcga) database, which includes 33 cancer 
types and over 20,000 primary cancer samples as well as massive gene expression data, has become one of the 
most widely used databases for cancer  research5–7. In addition, the Genotype-Tissue Expression (GTEx, http:// 
commo nfund. nih. gov/ GTEx) database establishes a reference resource of gene expression from ‘normal’ or 
disease-free tissues, which balances the sample size between tumor and normal groups and enlarges the samples 
when performing machine learning  methods8,9. In general, there are tens of thousands of genes and far fewer 
samples than the number of genes in high-throughput sequencing data, forcing researchers to obtain appropriate 
biomarkers using machine learning heuristic algorithms. Feature selection has been used as a promising method 
to discover subsets of molecular markers that identify target classes of clinical  cases10. The advantages of feature 
selection applied to high-throughput sequencing data are mainly manifested in two aspects: (1) the reduction of 
complexity through the elimination of relatively unimportant or redundant features, and (2) the improvement 
of classification accuracy and efficiency.

More efficient and robust feature selection methods are required to identify a small set of genes in order to 
improve classification performances. In this study, we combined two filter feature selection methods, limma 
and JMI algorithms, to identify key gene signatures for GC tumor and normal tissue discrimination. Specifi-
cally, we recruited the STAD cohort from the TCGA database as a test dataset, and two other GC datasets from 
NCBI-GEO DataSets were chosen as validation datasets. The expression alterations of the selected genes and 
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clustering performance based on the selected genes were investigated. Besides, the biological application of the 
candidate genes were also analyzed.

Materials and methods
Data acquisition. As the testing dataset, STAD expression profiling was extracted from the total RSEM 
expected_count dataset (https:// toil- xena- hub. s3. us- east-1. amazo naws. com/ downl oad/ TCGA- GTEx- TAR-
GET- gene- exp- counts. deseq2- norma lized. log2. gz), which combines the cohort of TCGA, TARGET, and GTEx 
samples and can be downloaded from the UCSC xena website. The STAD dataset included 413 tumor samples 
(all from the TCGA database) and 210 normal samples (36 from the TCGA and 174 from the GTEx). For 
biological, the TCGA-STAD cohort’s survival dataset (https:// gdc- hub. s3. us- east-1. amazo naws. com/ downl oad/ 
TCGA- STAD. survi val. tsv) and phenotype dataset (https:// gdc- hub. s3. us- east-1. amazo naws. com/ downl oad/ 
TCGA- STAD. GDC_ pheno type. tsv. gz) were also acquired. Table 1 summarizes the clinicopathological charac-
teristics of the 413 STAD tumor samples.

Gene feature selection using the hybrid methods of limma and JMI. Following the collection of 
gene expression profiles from a total of 623 samples (including 413 STAD tumors and 210 normal samples), 
we applied feature selection approaches to identify the gene biomarkers that are most relevant for classifying 
between tumor and normal groups. As shown in Fig. 1, the gene selection procedures mainly consist of two 
steps: gene filtering based on the limma package in R, and gene selection automatically using the joint mutual 
information (JMI) algorithm on condition of Python 3.8. We combined the filter and wrapper feature selection 
methods to obtain the gene subset with the highest classification efficacy and the least amount of redundancy.

Screening genes with the limma package: The limma  package11 is based on R platform and aims to perform 
gene expression data analysis using linear models and differential expression functions, which can be used to 
perform comparisons between different groups. In the current research, we used the lmFit function in limma 
package to make model between tumor and normal groups, and the makeContrasts function was applied to build 
the contrast matrix. During the analysis, the value of logFC (fold change, FC) was required for gene filtering. 
The selection criterion for differentially expressed genes (DEGs) in this study was log|FC|> 1 and adj.P < 0.05 
between tumor and normal groups.

JMI algorithm for removing redundancy and selecting the optimal gene subset: As the procedure for selecting 
DEGs based on the limma package did not take into account the interrelations among gene features, the obtained 
DEGs in the previous step may not optimal due to gene redundancy. As a result, removing redundancy genes 
from the selected total DEGs was necessary to improve not only the classification precision but also performance 
efficiency. In recent years, the feature selection method based on information theory, which aims to select the 

Table 1.  Clinical characteristics of STAD cases.

Group Number

Age (year)

 < 65 (year) 167

 ≥ 65 (year) 214

Not reported 3

No information 29

Gender

Female 133

Male 251

No information 29

Race

Asian 84

Black 12

White 241

Not reported 47

No information 29

Tumor stage

Stage I 51

Stage II 120

Stage III 162

Stage IV 37

Not reported 14

No information 29

OS (overall survival) status

Alive 225

Dead 159

No information 29

OS (overall survival) time (days)
Alive 724.42 ± 585.39

Dead 439.06 ± 374.52

Total number 413

https://toil-xena-hub.s3.us-east-1.amazonaws.com/download/TCGA-GTEx-TARGET-gene-exp-counts.deseq2-normalized.log2.gz
https://toil-xena-hub.s3.us-east-1.amazonaws.com/download/TCGA-GTEx-TARGET-gene-exp-counts.deseq2-normalized.log2.gz
https://gdc-hub.s3.us-east-1.amazonaws.com/download/TCGA-STAD.survival.tsv
https://gdc-hub.s3.us-east-1.amazonaws.com/download/TCGA-STAD.survival.tsv
https://gdc-hub.s3.us-east-1.amazonaws.com/download/TCGA-STAD.GDC_phenotype.tsv.gz
https://gdc-hub.s3.us-east-1.amazonaws.com/download/TCGA-STAD.GDC_phenotype.tsv.gz
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most relevant features from all features in order to reduce complexity of high-dimensional classification prob-
lems, has become the mainstream  method12. The information gain (IG) method considers only the correlation 
between each sub-feature and the target classification separately, without taking into account the relationship 
between features. According to the principle of maximum dependency, maximum correlation and minimum 
redundancy based on mutual information, Peng et al. proposed the minimum redundancy Maximum relevance 
(mRMR)  framework13, which has been applied for feature selection in many fields, including biological data. 
Equation 1 depicts the expression of the mRMR algorithm. Furthermore, the JMI  algorithm14,15 provided a 
more comprehensive and widely used feature selection framework by taking mutual information between subset 
features and unselected features into account under IG-based classification conditions. The JMI algorithm was 
expressed as Eq. 2. Instead of focusing on the direct relationship in the mRMR framework, the JMI algorithm 
considers all mutual information between features, including the indirect correlation.In view of these, we used 
the JMI algorithm for feature selection based on the DEGs obtained from limma.

In the above two equations, F, S and C represent the total features, the selected features and the classification, 
respectively; while fs and fi mean the features belonging to S and F\S. I

(

fi , fs
)

 is the mutual information between 
fs and fi , and I

(

fi , fs;C
)

 is the mutual information between fs, fi and C. For the equation of I
(

fi , fs
)

 , the larger the 
value of I, the stronger the correlation between fs and fi.

In this study, we used both the two filter algorithms of limma and JMI as the hybrid method, to obtain key 
biomarkers for classifying tumor and normal tissues in gastric cancer. By this way, we could use as few gene 
features as possible to achieve better classification performances.
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Figure 1.  Design and workflow of the study. STAD stomach adenocarcinoma; TCGA  The Cancer Genome 
Atlas, GTEx Genotype-Tissue Expression, DEGs differentially expressed genes, JMI joint mutual information, 
GEO Gene Expression Omnibus, t-SNE t-distributed stochastic neighbor embedding, ROC receiver operator 
characteristic.
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Validation of the selected gene signatures with GEO datasets. After running the limma and JMI 
algorithms sequentially, we will obtain the candidate gene features for classifying tumor and normal samples in 
STAD cohort. We then validated the candidate genes in other two gastric cancer cohorts, including GSE33335 
(https:// www. ncbi. nlm. nih. gov/ geo/ query/ acc. cgi? acc= GSE33 335)16,17  and GSE103236 (https:// www. ncbi. nlm. 
nih. gov/ geo/ query/ acc. cgi? acc= GSE10 3236)18,19  from the NCBI-Gene Expression Omnibus (GEO) DataSets. 
The GSE33335 dataset contains gene expression profiling of 25 pairs of gastric tissues: gastric cancer tissues vs. 
matched adjacent noncancerous tissues. The GSE103236 dataset contains gene expression profiling of gastric 
adenocarcinoma (10 samples) and normal adjacent tissues (9 samples).

Bioinformatic and biological analysis. T-SNE and heatmap analysis: The algorithms of t-distributed 
stochastic neighbor embedding (t-SNE)20 and bi-clustering analysis were performed in R using the "Rtsne" and 
“pheatmap” packages, respectively, to illustrate the distribution of GC tumor and normal samples based on the 
previously selected genes.

ROC analysis of candidate genes: To evaluate the diagnostic performance of candidate genes, we examined the 
specificity, sensitivity, and area under the curve (AUC) values obtained by using receiver operator characteristic 
(ROC) analysis in MedCalc software.

Identifying candidate genes associated with tumor stage and patient survival: The phenotype information 
including tumor stage and the survival information for STAD patients were derived from the TCGA database. 
Tumors are classified into four stages based on their stage status: I, II, III, and IV. We considered these genes 
to be stage-related biomarkers after discovering that changes in average gene expression were consistent with 
tumor stage progression. We used the R package "Survminer" to analyze and visualize the Kaplan–Meier curves 
of candidate genes based on their expression profiling for survival analysis.

Results
A set of 11 genes was identified as biomarkers to differentiate STAD tumor samples from nor-
mal samples. The original STAD dataset contains 60,499 gene identifiers profiles. After data preprocessing, 
we obtained expression profiles of 58,581 unique genes for each of the 623 samples. The “limma” algorithm 
was then used to initially selected the DEGs that differed between STAD tumor and normal samples. A total 
of 8,863 DEGs were screened using the criterion of log|FC|> 1 and adj.P < 0.05 between the two groups. The 
JMI algorithm was then used to obtain the optimal combination of gene features with maximum classification 
performance and minimum redundancy. Finally, a set of 11 genes were identified as candidate biomarkers for 
differentiating between tumor and normal groups among the 8863 DEGs, including STX12, PHF14, ECT2, 
PRIM2, CENPL, CTHRC1, INHBA, RNFT2, CLSPN, ESM1, and COL10A1. Only STX12 was down-regulated 
in tumors, while the other ten DEGs were all significantly up-regulated in tumors compared to the normal sam-
ples, as shown in Fig. 2.

Performances of the 11 candidate genes in classifying tumor and normal groups. In this study, 
we performed t-SNE and bi-clustering heatmap to show the classification of STAD tumor and normal samples 
based on the DEGs profiling. Firstly, the t-SNE and heatmap visualization based on the 8,863 DEGs obtained 
from limma algorithm revealed a relatively distinct distribution between the two groups (Figs. 3A, S1). Further, 
after using the JMI method, we observed a more desirable discrimination model based on profiling of the 11 
selected genes, with only four (4/413) tumor samples distributed concordantly into the normal group in both 
t-SNE and heatmap analysis (Fig.  3B,C). The results indicated that the combination of limma approach and 
JMI algorithm improved the accuracy and efficiency in classifying different groups. Finally, the ROC analysis 

Figure 2.  Relative expression levels of the 11 candidate genes in STAD tumor and normal samples. The data 
was obtained from the UCSC Xena website, and the boxplot displayed value ranges for each gene in two groups.

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE33335
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE103236
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE103236
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revealed generally excellent results when the selected genes were used as diagnostic biomarkers. Specifically, the 
AUCs of the ten up-regulated genes in tumors ranged from 0.983 to 0.990, whereas the diagnostic performance 
of the down-regulated gene STX12 in tumors was less than optimal, with AUC = 0.615, as shown in Fig. S2A.

Validation of the 11 selected gene signatures in two GEO datasets. As described in the method, 
we chose two datasets of gastric cancer from the GEO databases to confirm the expression pattern and classifying 
performance of the previously selected 11 genes. In the GSE33335 dataset, we found a consistent expression pat-
tern, in which the expression of ten of the 11 genes increased while the expression of STX12 decreased in tumor 
compared to normal tissues (P < 0.001 in two-tailed paired-sample t test, Fig. S3A). In the GSE103236 dataset, 
the expression profiling contains about 45,000 gene IDs, while the expression information of gene RNFT2 was 
not included in the total gene expression profiling. Therefore, we analyzed the remaining ten candidate genes in 
this dataset. In general, the expression patterns of these ten genes were almost identical to the previous results, 
with the exception that CLSPN expression was slightly lower in tumor tissues than in normal tissues, but this 
difference was not statistically significant (P = 0.81). Similarly, STX12 expression was significantly reduced while 
the expression of the other eight genes increased in tumor tissues (P < 0.05 in two-tailed t test, Fig. S3B). We then 
investigated the classifying abilities of the selected gene signatures in the two datasets. As shown in Fig. 4, t-SNE 
visualizations and heatmaps based on the gene signatures produced satisfactory discrimination clusters between 
tumor and normal groups. The AUCs of these 11 genes ranged from 0.806 to 0.979 in the GSE33335 dataset. The 
performance of gene CLSPN in the GSE103236 dataset was poor, with AUC = 0.528; and AUCs of the other nine 
genes ranged from 0.789 to 1.000. Taken together, these findings support the promising application of feature 
selection approaches in the processing of high-throughput biological data.

Figure 3.  Classification of STAD tumor and normal groups. (A, B) T-SNE plots displayed the distribution of 
tumor and normal samples based on the 8,863 DEGs and the 11 candidate genes, respectively. (C) Bi-clustering 
heatmap of the 11 candidate genes and all 623 samples. DEGs: differentially expressed genes.
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Figure 4.  Classification between gastric tumor and normal tissues. (A) T-SNE plots displayed the distribution 
of tumor and normal samples based on the 11 candidate genes in the GSE33335 dataset. (B) T-SNE plots 
displayed the distribution of tumor and normal samples based on the ten candidate genes in the GSE103236 
dataset. (C) Bi-clustering heatmap of the 11 candidate genes and 50 samples in the GSE33335 dataset. (D) 
Bi-clustering heatmap of the ten candidate genes and 19 samples in the GSE103236 dataset.
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Identifying gene biomarkers associated with stage and survival in STAD tumors. Next, we 
investigated whether the expression profiles of the candidate genes could reflect tumor progression or predict the 
prognosis. Table S1 summarized the relative gene expression of the 11 candidate genes in four subgroups accord-
ing to tumor stage. Specifically, in the ten up-regulated genes, we discovered that the relative expression levels of 
two genes, ECT2 and RNFT2, gradually increased with the progression of stage status, as shown in Fig. 5. The 
average values of ECT2 in four subgroups were 12.10, 12.16, 12.27, 12.40, respectively; and the average values 
of RNFT2 in four subgroups were 8.36, 8.57, 8.58. 8.59, respectively. Despite the fact that gene expression levels 
were only moderately or slightly different among the four subgroups, the results demonstrated that these two 
genes may have the potential to reflect tumor progression to some extent.

The overall survival (OS) Kaplan–Meier plot also revealed significantly different prognostic outcomes based 
on gene expression level. Higher levels of genes including COL10A1, CTHRC1, and INHBA were associated 
with poor survival probabilities in STAD patients (P < 0.01, Fig. 6).

Discussion
While the development and generation of high-throughput technologies and omics data have improved our 
understanding complex biological characteristics such as tumors, brains, and developmental systems, they have 
also created significant technical challenges during the analysis. Typically, researchers identify differentially 
expressed/abundant molecules (genes, proteins, or metabolites) between tumor and control groups as prelimi-
nary results for biomarker analysis. We must accept the fact that hundreds or even thousands of DEGs between 
two groups were always detected in the high-dimensional gene expression datasets. As a result, in addition to 
traditional methods, more approaches are required to efficiently and accurately select the key gene signatures 
that could classify the disease between normal  samples21,22. In this study, we combined two approaches, limma 
and JMI algorithms, and finally identified a set of 11 genes with powerful discrimination effects between STAD 
tumor and normal tissues. Remarkably, additional independent validation with two GC datasets confirmed the 
expressed alterations as well as the classifying performance of the chosen gene sets.

Some candidate genes have been linked to gastric cancer. COL10A1, a member of the collagen family and the 
main matrix component, is high expressed in gastric cancer compared to the normal tissues and an independ-
ent predictor of poor overall  survival23. On the mechanism, COL10A1 was confirmed to be a potential inducer 

Figure 5.  Relative expression levels of ECT2 and RNFT2 in tumor subgroups at virous stages. The violin 
boxplots depicted value ranges of the two genes, with the dot in each plot representing the average value.

Figure 6.  Kaplan–Meier survival curves based on COL10A1, CTHRC1, and INHBA expression levels. The 
cut-off values classified gene expression as high (high) or low (low). The horizontal axis represents survival time 
(days), and the vertical axis represents overall survival rate.
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of epithelial-to-mesenchymal transition (EMT) and could regulate the migration and invasion of GC  cells24. 
CTHRC1 is known to be involved in tissue remodeling processes and closely associated with carcinogenesis 
and metastasis in solid  tumors25. CTHRC1 has been shown to prompt gastric cancer metastasis via HIF-1α/
CXCR4 signaling  pathway25, and to be a common diagnostic and prognostic biomarker in six different human 
cancer subtypes, including  STAD26. Highly expression of INHBA and activation of TGF-β signaling pathways 
were observed in GC tissues, and INHBA gene silencing inhibited the GC progression by inactivating the TGF-β 
signaling  pathway27. INHBA may also be an optimally reliable biomarker for diagnosing GC and lymph-node 
(LN)  metastasis28. Consistent with the above reports, we discovered that the expressions of COL1A1, CTHRC1, 
and INHBA were significantly up-regulated in tumor tissues in the TCGA-STAD cohort and two GEO gastric 
cancer datasets. Furthermore, high expression levels of the three DEGs were associated with significantly poor 
survival probabilities in tumor patients (P < 0.01). Besides, we also discovered that the average expressions of 
two genes, ECT2 and RNFT2, increased concordantly with the tumor stage progression. Recent studies reported 
that upregulation of ECT2 predicted adverse clinical outcomes and increased 5-fluorouracil (5-Fu) resistance in 
GC  patients29, and was associated with transcriptional program of cancer stem cells (CSCs)30. So far, studies on 
the roles of RNFT2 in cancer research is relatively rare. A recent study demonstrated that tissue RNFT2 expres-
sion levels are associated with peritoneal recurrence and poor prognosis in  GC31. Taken together, our results 
and other related findings suggest that the five upregulated genes mentioned above could be potential targets 
for GC research.

In contrast to the upregulated DEGs, we discovered that STX12 expression was significantly and consistently 
lower in tumor compared to normal tissues in all three GC cohorts. STX12 is a SNARE protein that mediates 
vesicle fusion at endosomes and functions as a new component of the α-granule biogenesis  machinery32. STX12 
was upregulated through the ROS/STAT3/NFE2L1 axis in hepatoma cells, and it was a key downstream effector 
of NFE2L1 in modulating hepatoma cell  invasiveness33. So far, there has been no report on the roles of STX12 
in gastric cancer, which may necessitate further studies.

Conclusion
In conclusion, our study identified a small set of genes (11 candidate genes including STX12, PHF14, ECT2, 
PRIM2, CENPL, CTHRC1, INHBA, RNFT2, CLSPN, ESM1, and COL10A1) that could be used to distinguish 
gastric cancer from normal tissues in TCGA cohort by using the combination feature selection methods of limma 
and JMI. Meanwhile, the classification performance of the candidate genes was further validated in other two gas-
tric cancer cohorts in GEO datasets. Moreover, we explored that several candidate genes involved in gastric cancer 
progression and prognosis. We highlighted the application of machine learning, particularly feature selection 
approaches, in the analysis of high-dimensional biological data for discovering valuable biomarkers, which will 
improve accuracies and reduce workloads for the researchers when identifying potential biomarkers of tumors.

Data availability
The datasets analysed during the current study are available in the FigShare repository, https:// figsh are. com/ artic 
les/ datas et/ Gene_ expre ssion_ data_ in_ gastr ic_ cancer/ 19733 347.
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