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Pulmonary arterial hypertension (PAH) is a rare but serious 
clinical condition characterized by a progressive increase of 
pulmonary arterial pressure and resistance leading to right 
ventricular and premature death.1) Although PAH clinically 
includes 9 different subgroups, it has a common final path-
ology, which is obstructive thickening/hypertrophy in the vas-
cular wall components, mainly affecting distal pulmonary 
arteries.2) Vascular proliferation and remodeling, in compar-
ison with vasoconstriction or thrombosis, is now recognized 
as a principal contributor to increased pulmonary resistance.3) 
The exact processes that initiate the pathological changes seen 
in PAH are largely unknown. Nonetheless, recent advances 
in cellular and molecular biology have improved our under-
standing of some of key mechanisms responsible for patho-
biology of PAH. The pathobiology of PAH is multifactorial, 
and involves various cellular mediators and pathways.

Endothelial cells are major regulators of vascular function, 
and pulmonary arterial endothelial cells (PAEC) have been 
perceived as the most likely cell type in which dysfunction in-
itiates PAH.4) Endothelial dysfunction leads to reduced pro-
duction of vasodilators and growth inhibitors such as nitric 
oxide (NO) and prostacyclin, and increased production of 
vasoconstrictors and promitogens such as thromboxane A2 
and endothelin-1. Vascular NO production is catalyzed by en-

dothelial NO synthase (eNOS) which is expressed constitu-
tively in most endothelial cells. Due to the wide availability and 
versatility of NO in many vascular beds, its role in PAH has 
been pursued in many studies. In the present issue of Kore-
an Circulation Journal, Koo et al.5) added to these studies by 
exploring the expression of NOS in the rat model of pulmo-
nary hypertension induced by monocrotaline (MCT) admi-
nistration, which is a commonly used technique to simulate 
PAH in animals. 

Koo et al.5) reported a significant increase in eNOS expres-
sion on day 28, and an increase in matrix metalloproteinase-2 
(MMP-2) on day 5 and 28 in the lung tissue of MCT-injected 
rats, all of which were abrogated by bosentan treatment. Le-
vels of eNOS expression during the development of pulmo-
nary hypertension have been reported at variable levels. Pul-
monary eNOS expression was observed as unchanged, decre-
ased or increased in experimental or human PAH.6-8) Never-
theless, there is growing consensus that pulmonary arterial 
wall in PAH has reduced levels of NO.9) Thus, an inconsis-
tency appears between expression of eNOS and tissue level of 
NO in the model of PAH. However, recent research has elu-
cidated a number of cellular and molecular processes which 
might account for the underlying disturbances observed in 
PAH,10)17) which could reconcile the conflicting data.

The discovery of the association of PAH with a mutation of 
bone morphogenetic protein receptor-2 (BMPR2) has increas-
ed knowledge on the pathobiology of PAH. Mutations in the 
BMPR2 gene have been found in nearly 70% of familial PAH, 
and up to 25% of idiopathic PAH.11) Bone morphogenetic 
protein (BMP), a member of the TGF-¥á superfamily, regula-
tes cell growth, differentiation, and apoptosis. Mutation or do-
wnregulation of BMPR2 increases susceptibility to apoptosis 
in endothelial cells, and promotes proliferation of pulmonary 
arterial vascular smooth muscle cells (PASMCs).12)13) Apart 
from genetic alteration, ultrastructural changes in the PAH mo-
del suggest that another mechanism plays a role. These chang-

Emerging Pathogenetic Mechanisms of Pulmonary Arterial  
Hypertension: Nitric Oxide and More
Young Dae Kim, MD
Department of Internal Medicine, Dong-A University College of Medicine, Busan, Korea



Young Dae Kim   59

es, featured by increased endoplasmic reticulum (ER), incre-
ased Golgi stacks, vacuolization, and accumulation of Weibel-
Palade bodies (exocytic vesicles),14) point to disruption of cy-
toplasmic membrane trafficking within cellular elements in 
the arterial lesion in PAH. Indeed, recent experiments have 
shown that MCT treatment induces similar enlargement of 
Golgi and ER along with loss of cell surface raft/carveolar pro-
tein caveolin-1 (cav-1) in PAEC.15) Cell fractionation and im-
munofluorescence techniques revealed the marked trapping 
of cav-1 and eNOS in Golgi and showed the trapping of BM-
PR2 and diverse Golgi tethers, SNAREs, and SNAPs.15) This 
suggests that molecular machinery of vesicular trafficking was 
disrupted, particularly at the stage of disassembly.17) Interest-
ingly, it has been demonstrated that not only are mutant BM-
PR2 proteins sequestrated in the Golgi, but they can also bind 
to wild type BMPR1 receptor exerting a dominant-negative 
functional effect.18) The sequestration of eNOS in an intracel-
lular compartment away from cell-surface carveolae would 
result in reduced NO in the pulmonary artery despite sus-
tained or even increased protein levels of eNOS. Moreover, 
intracellular generation of NO may further exacerbate trou-
bled trafficking by increasing S-nitrosylation of N-ethylma-
leimide sensitive factor (NSF), an ATPase required for disas-
sembly of cis-SNARE complexes.19) Thus, the “Golgi blockade 
hypothesis”17) may in part account for the discrepancy be-
tween NO level and eNOS expression, observed in PAH mo-
dels of Koo et al.5) and others.8) 

As mentioned, pathobiology of PAH is multifactorial, in-
volving multiple mediators and pathways. Reduced NO bio-
availability in PAH can also be induced by other mechanisms 
including competition for substrate L-arginine and presence 
of endogenous inhibitors of eNOS.20)21) In addition, pathways 
other than NO-related or BMPR-mediated have been postu-
lated as pathogenetic elements which can contribute to the de-
velopment of PAH.10)22) These include RhoA GTPase signal-
ing, angiopeptin-TIE2 signaling, serotonin, KV 1.5 channel 
expression, mitochondrial metabolism, and adventitial regu-
lation of extracellular matrix/fibrosis/inflammation.10)22) An 
intriguing feature of PAH is a metabolic shift from oxidative 
phosphorylation to glycolysis even in the presence of adequ-
ate oxygen, a behavior originally observed in cancers (“War-
burg phenotype”).23) As in cancers, there is O2-independent 
perpetuation of the metabolic/redox shift that normally oc-
cur in response to hypoxia, creating “pseudohypoxic environ-
ment” with normoxic hypoxia-inducible factor 1¥á (HIF-1¥á) 
activation in PAH.24) Activated HIF-1¥á turns on glycolytic 
genes and suppresses oxidative metabolism by increasing py-
ruvate dehydrogenase kinase (PDK) transcription. The con-
sequence of this metabolic shift includes decreased KV 1.5 
expression leading to membrane depolarization and eleva-
tion of cytosolic K+ and Ca2+. The resulting Ca2+ overload, lat-
er reinforced by activation of transient receptor potential (trp) 

channels,25) leads to Ca2+-calcineurin-dependent activation of 
proliferation transcription factor NFAT.26) In both PAH PAS-
MCs and cancer cell lines, this generates a proliferative, apop-
tosis-resistant phenotype.27)

Koo et al.5) have demonstrated the increased expression of 
both eNOS and MMP-2 in the MCT-induced PAH model, 
and suggested the causal role of eNOS for the activation of 
MMP-2. However, the causality may be debatable because 
eNOS upregulation (day 28, after MCT injection) occurs la-
ter than MMP-2 (day 5). In another experimental model, the 
earliest change in the subcellular structure could be found 
just 18-24 hours after single exposure of PAECs to MCT.28) 
Actually, the authors later mentioned a compensation mech-
anism as a possible explanation for the temporal sequence of 
gene expression.5) To date, data which could firmly support or 
negate these hypotheses have been lacking. For a disease as 
multifaceted as PAH, it would be inconceivable that one fac-
tor, for example, aberrant NO production or BMPR2 muta-
tion, would represent a “universal” cause. To obtain compre-
hensive insight into this condition, further investigations are 
needed. A better understanding of the underlying mecha-
nisms comprising pathobiology of PAH will provide a para-
digm shift, from which future therapeutic strategy can be for-
mulated. 
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