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Abstract: The cytotoxicity of docosahexaenoic acid (DHA) on normal cells is still unclear. This study
investigated the effects of DHA on the cytotoxicity and possible mechanism in the BRL-3A cell. The
cultured rat liver BRL-3A cell line was treated with 50, 100 and 200 µM DHA for 24 h. The cell
viability was increased in the 50 and 100 µM DHA treatments, but decreased in the 200 µM DHA
treatment. The 50, 100 and 200 µM DHA treatments increased the proportion of the apoptotic cells,
the levels of lactate dehydrogenase (LDH), alkaline phosphatase (AKP) and IL-6 in the supernatant,
and the ratio of the phosphonated p38MAPK to the p38MAPK (p-p38/p38) protein in the cells. The
expression of TGF beta-activated kinase 1 (TAK1), nuclear transcription factor-κB p65 (NF-κB p65)
and the inhibitor of NF-κB alpha (IκBα) mRNA, and the ratio of the phosphonated IκBα (p-IκBα)
to IκBα protein were increased in the 200 µM DHA treatment, while the ratio of phosphonated
extracellular regulated protein kinases (p-ERK) to ERK protein was decreased in the 200 µM DHA
treatment. These results indicate that DHA-treated (50, 100 and 200 µM) BRL-3A cells for 24 h
promotes cell apoptosis and inflammatory response, and the p38 MAPK, ERK and NF-κB signal
pathways were involved in mediating the apoptosis and inflammatory response.
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1. Introduction

Docosahexaenoic acid (DHA) is a kind of n-3 long-chain polyunsaturated fatty acid
(n-3 LC-PUFA) and is widely recognized to prevent metabolic disorders, such as coro-
nary heart disease, atherosclerosis and gestational diabetes mellitus, through reducing
the inflammatory response and oxidative stress [1–4]. The supplementation of DHA in
immune cells and adipocytes can reduce the inflammatory response in immune cells under
inflammatory stimulation [1]. DHA has cytotoxicity to various types of cancer cells (e.g.,
lung cancer cell). Thus, the supplementation of DHA in daily diet is a common nutritional
method to prevent the occurrence and development of metabolic disorders or chronic
diseases. The market value of the EPA and DHA ingredient exceeded US $2.3 billion in
2019, and is expected to grow at over 7.2% CAGR between 2020 and 2026 according to a
report of Global Market Insights, Inc. [5].

Although the consumption of DHA has continued to increase, the report about the
cytotoxicity of DHA on normal cells is limited and the safety of DHA is still unclear [1,6].
Notably, there is no report about the upper limit of tolerable intake of DHA [7]. Zajdel
et.al (2010) reported that DHA pre-treatment increased the sensitivity of non-cancer cells to
drug toxicity. The cell activity of rat pancreatic β cells (RINm5f) decreased after 100 µM
DHA treatment for 24 h [8]. The large amount of DHA intake has adverse effects on
immune function, antioxidant capacity and lipid or glucose metabolism [7]. Our previous
animal experiment showed that the maternal diet with fish oil (enriched DHA) increased
the levels of IL-1β and IL-6 in the plasma of piglets and caused liver injury pre-/post-
LPS challenge [9].
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NF-κB and MAPK (including p38, ERK and JNK) signal pathways regulate the im-
mune response, stimulating pro-inflammatory cytokine production to promote inflam-
mation [10]. DHA supplementation can not only reduce the inflammatory response by
inhibiting the phosphorylation of IκB α and JNK [1], but can also cause cytotoxicity by
inhibiting the activity of ERK phosphorylation in the 24-h exposure experiment. As men-
tioned above, we hypothesize that the DHA might have toxic effects on normal cells, which
might be mediated by the NF-κB and MAPK signal pathways. In this study, BRL-3A cells
from normal rat liver were used to study. The objective of this study was to investigate
the effect of different concentrations of DHA on the cytotoxicity and the possible mecha-
nism. It will provide reference for further study on the mechanism of DHA in regulating
liver inflammation.

2. Materials and Methods

Cell Culture. The normal rat liver BRL-3A cell line was purchased from the Y-J
biological Co., Ltd. (Shanghai, China). BRL-3A cell line was maintained in complete
medium, including 89% Dulbecco’s modified Eagle’s medium with 4.5 g/L D-glucose (item
no.11995065, Gibco, Thermo Fisher, MA, USA), 10% fetal bovine serum (item no.10091148,
Gibco, Thermo Fisher, MA, USA) and 1% penicillin/streptomycin (item no.15140122, Gibco,
Thermo Fisher, MA, USA). Cells were incubated in a humidified incubator (37 ◦C, 5% CO2).

Cell Treated with DHA. DHA was purchased from Cayman Chemical Company (item
no.90310, Ann Arbor, MI, USA). We made the DHA working solution as 2 mM and diluted
with culture medium gradually. The required concentrations of DHA were freshly diluted
with the culture medium before each experiment. The BRL-3A cells were seeded in a
standard plate at the density of 2× 105 cells/mL. The medium was removed after culturing
for 6 h and replaced by the same culture medium with the required concentrations of DHA.

Measurement of Cell Viability. The cells were maintained in the complete medium with
the required concentrations of DHA (0, 50, 100, 150, 200, 250 and 300 µM) for 24 h. The
cell viability of each well was determined by using CCK-8 assay kit (no. C0039, Beyotime
Biotechnology, Shanghai, China). The CCK-8 regent in the assay kit was added into the
wells of the control and treatment groups. The values of absorbance were measured at
450 nm by using a microplate reader (Synergy 2, BioTek, Winooski, VT, USA). The cell
viability of the 0µM DHA treatment was set as 100% and the cell viability of other DHA
treatments were calculated as (A450 treatment group)/(A450 control group) × 100%.

LDH determination. The cells were divided into groups as follows: the control group,
DHA-treated groups at concentrations of 50, 100, 150, 200, 250 and 300 µM for 24 h. The
level of LDH was determined by using LDH assay kit (no. C0016, Beyotime Biotechnology,
Shanghai, China).

Determination of Apoptotic Rates. The cells were divided into groups as follows: the
control group, DHA-treated groups at concentrations of 50, 100 and 200 µM for 24 h. The
PBS washed cells twice after treatment. Cells were collected and centrifuged at 500× g for
5 min. The Cellometer Mini counted the number of cells. The cell density was adjusted
to 5 × 104. Cells were stained with fluorescein isothiocyanate (annexin V-FITC) and
propidium iodide (PI). The proportion of apoptotic cells was detected by flow cytometry.
The fluorescence of apoptotic cells was observed by fluorescence microscope (Nikon,
ECLIPSE Ti-U).

Determination of the activities of aspartate aminotransferase (AST), alanine amino-
transferase (ALT) and alkaline phosphatase (AKP) in supernatant. The cells were divided
into groups as in the description above. The supernatant was collected from each well by
centrifuging for 5 min at 500× g after treatment. The activities of AST, ALT and AKP were
determined by kits (item no. C010-2, item no. C009-2, and item no. A059-2, respectively,
Jiancheng Bioengineering Institute, Nanjing, China).

Analysis of cytokines. The cells were divided into groups as in the description above.
The supernatant was collected after being DHA-treated for 24 h from each well by cen-
trifuging for 5 min at 500× g after treatment. The levels of IL-1β, IL-6 and IL-10 in the
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supernatant were determined by using rat-specific ELISA kits (Jiancheng Bioengineering
Institute, Nanjing, China).

RNA Extraction and qPCR Analysis. The cells were divided into groups as follows:
the control group, DHA-treated groups at concentrations of 50, 100 and 200 µM for 24 h.
Cells were harvested after treatment. Total RNA were extracted and analyzed as described
previously [11]. Primers for all target genes were referred to in the previous report (Table 1).
The internal control gene was β-actin and each sample was replicated three times.

Table 1. Primers used for all target genes.

Target Genes Sequence 5′-3′ Reference

β-actin F:5′-AGTGTGACGTTGACATCCGTAA-3′ [12]
R:5′-GGACAGTGAGGCCAGGATAGA-3′

IκBα F:5′-TGAAGTGTGGGGCTGATGTC-3′ [13]
R: 5′-AGGGCAACTCATCTTCCGTG-3′

NFκBP65 F: 5′-CATACGCTGACCCTAGCCTG-3′ [13]
R: 5′-TTTCTTCAATCCGGTGGCGA-3′

TAK1 F:5′-TCTGGATGTCCCTGAGATCGT-3′ [14]
R:5′-GCTCACCTGACCAGGTTCTG-3′

GPR120 F:5′-GCATAGGAGAAATCTCATGG-3′ [15]
R:5′-GAGTTGGCAAACGTGAAGGC-3′

TAK1 = transforming growth factor-β-activated kinase 1, GPR120 G = protein coupled receptor 120, NF-κB
p65 = nuclear factor-B p65, IκBα = inhibitor of NF-κB.

Western Blotting Analysis. BRL-3A cells were seeded in cell culture dishes
(100 mm × 20 mm, 430167, Corning Inc., New York, NY, USA) and each group was treated
as above. Cells were lysed on ice in RIPA buffer with 1 × cocktail protease inhibitor
for 50 min and collected supernatants after centrifuging for 25 min at 12,000× g. The
protein contents of each sample were detected by BCA protein assay kit according to
the manufacturer’s instructions (P0010, Beyotime Biotechnology, Shanghai, China). The
primary antibodies p38 (1:2000, sc-535, Santa Cruz, Dallas, TX, USA), p-p38 (1:200, sc-7973,
Santa Cruz, Dallas, TX, USA), ERK1/2 (1:1000, number 9102, Cell Signaling Technology,
Beverly, Danvers, MA, USA), p-ERK1/2 (1:2000, number 4370, Cell Signaling Technology,
Beverly, Danvers, MA, USA), JNK (1:200, sc-571, Santa Cruz, Dallas, TX, USA), p-JNK
(1:500, orb10951, Biorbyt Ltd., Cambridge, UK), IκBα (1:1000, number 4814, Cell Signaling
Technology, Beverly, Danvers, MA, USA), and p-IκBα (1:1000, number 9246, Cell Signaling
Technology, Beverly, Danvers, MA, USA) were used to determine the relative protein
expression levels according to our previously described by Luo et al. [16].

Statistical Analyses. All data distributed normally by Shapiro–Wilk test and were
analyzed by using the procedure of one-way ANOVA (IBM SPSS Statistics 20, Armonk,
NY, USA). The differences among the treatment were analyzed by using one-way ANOVA
multiple comparisons with LSD post-hoc test. Data were presented as means with standard
error (SEM). A p value less than 0.05 indicated statistical difference.

3. Results
3.1. Effects of DHA Treated for 24 h in BRL-3A on the Cell Viability and the Release of LDH

Compared with the control, the cell viability increased significantly with the increase
in DHA from 50 µM to 150 µM (129 ± 4.8% at 50 µm, 137 ± 5.2% at 100 µm and 132 ± 7.2%
at 150 µM), but the cell viability decreased significantly with the increase in DHA from
200 µM to 300 µM (68.4 ± 5.2% at 200 µM, 23.2 ± 0.8% at 250 µM and 13.8 ± 0.3% at
300 µM) (Figure 1a).

The release of LDH significantly increased with the increase in DHA from 50 µM to
150 µM, while the release of LDH significantly increased parallel to the increase in the DHA
from 200 µM to 300 µM (Figure 1b).
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Figure 1. The effect of different concentrations of DHA-treated BRL-3A for 24 h on the cell viability (a) and lactate
dehydrogenase release (b) (n = 5). Values are means with SEM, the SEM was presented with vertical bars; means with
different letters are significantly different from one another (p < 0.05) as determined by variance analysis followed by
multiple comparisons with LSD post-hoc test; ** statistically significant differences vs. control (p < 0.01); *** statistically
significant differences vs. control (p < 0.001).

3.2. Effects of DHA Treated for 24 h in BRL-3A on Lipid Profile

The levels of T-CHO and HDL-C in the BRL-3A cells from the 200 µM DHA treatment
were higher than those from the control and other treatment groups (p < 0.05) (Figure 2).

Figure 2. The effect of different concentrations of DHA-treated BRL-3A for 24 h on the lipid profile
(n = 3). Values are means with SEM, the SEM was presented with vertical bars; means with different
letters are significantly different from one another (p < 0.05) as determined by variance analysis
followed by multiple comparisons with LSD post-hoc test; * statistically significant differences vs.
control (p < 0.05).

3.3. Effects of DHA Treated for 24 h in BRL-3A on Cell Apoptosis

The proportion of apoptotic cells was significantly increased in the 50, 100 and 200 µM
DHA treatments in comparison to those in the control (p < 0.05) (Figure 3a).
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Figure 3. Effect of different concentrations DHA-treated BRL-3A for 24 h on the cell apoptosis. BRL-3A cells were stained
with annexin V-FITC and PI after treatment with different concentration DHA, (a) the proportion of apoptotic cells was
determined by flow cytometry (n = 3); values are means with SEM, the SEM was presented with vertical bars; means
with different letters are significantly different from one another (p < 0.05) as determined by variance analysis followed
by multiple comparisons with LSD post-hoc test; * statistically significant differences vs. control (p < 0.05); ** statistically
significant differences vs. control (p < 0.01); *** statistically significant differences vs. control (p < 0.001); (b) the fluorescence
of apoptotic cells was observed by fluorescence microscope (n = 3); (c) cells were treated as described in Section 2 and
analyzed by fluorescence microscope.
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3.4. Effects of DHA Treated for 24 h in BRL-3A on the Release of Liver Function Related Enzymes

The 50 µM DHA treatment significantly increased the levels of ALT, AST and AKP
in the supernatant, and the 100 µM DHA treatment significantly increased the levels of
ALT and AKP in the supernatant (Figure 4a–c, respectively). The 200 µM DHA treatment
significantly increased the level of AKP in the supernatant, but decreased the levels of AST
and ALT in the supernatant (Figure 4c).

Figure 4. The effects of DHA-treated BRL-3A for 24 h on the activity of AKP (a), ALT (b) and AST (c) in the supernatants
(n = 3). Values are means with SEM, the SEM was presented by vertical bars (n = 3); means with different letters are
significantly different from one another (p < 0.05) as determined by variance analysis followed by multiple comparisons
with LSD post-hoc test; * statistically significant differences vs. control (p < 0.05); ** statistically significant differences vs.
control (p < 0.01); *** statistically significant differences vs. control (p < 0.001).

3.5. Effects of DHA Treated for 24 h in BRL-3A on the Release of Cytokines

The level of IL-6 in the supernatant significantly increased in the 50, 100 and 200 µM
DHA treatments (Figure 5b), but the level of IL-10 in the supernatant significantly decreased
in the 200 µM DHA treatment (Figure 5c). There was significant tendency on the level
of IL-10 in the supernatant of the 100 µM DHA treatment in comparison to the control
(p = 0.06).

Figure 5. The effects of DHA-treated BRL-3A for 24 h on the contents of IL-1β (a), IL-6 (b) and IL-10 (c) in the supernatants
(n = 3). Values are means with SEM, the SEM was presented by vertical bars (n = 3); means with different letters are
significantly different from one another (p < 0.05) as determined by variance analysis followed by multiple comparisons
with LSD post-hoc test; * statistically significant differences vs. control (p < 0.05); ** statistically significant differences vs.
control (p < 0.01).

3.6. Effects of DHA Treated for 24 h in BRL-3A on MAPK and NF-κB Pathway

The relative expression levels of TAK1, NF-κB p65 and IκBα mRNA were higher
in the 200 µM DHA treatment than those in the control. The ratio of p-IκBα/IκBα was
significantly increased in the 50, 100 and 200 µM DHA treatments, and the ratio of p-
p38/p38 was increased parallel to the increase in DHA from 50 µM to 200 µM (p < 0.05)
(Figure 6a,b). However, the ratio of p-ERK/ERK protein in the BRL-3A cells from the
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200 µM DHA treatment was lower than that from the control and other treatment groups
(p < 0.05).

Figure 6. The effects of DHA-treated BRL-3A for 24 h on the expression of the target genes mRNA
(a) and proteins (b) related to MAPK and NF-κB pathways. Means with different letters are signifi-
cantly different from one another (p < 0.05) as determined by variance analysis followed by multiple
comparisons with LSD post-hoc test; * statistically significant differences vs. control (p < 0.05); ** sta-
tistically significant differences vs. control (p < 0.01); *** statistically significant differences vs. control
(p < 0.001).

4. Discussion

In this study, DHA treatment on rat liver BRL-3A cells for 24 h promotes cell apoptosis
and inflammatory response, and the p38 MAPK, ERK and NF-κB signal pathways were
involved in mediating the apoptosis and inflammatory response. DHA has cytotoxicity to
various types of cancer cells (e.g., lung cancer cell), and the cytotoxicity of DHA affected by
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both the dose and the treatment time [17–19]. So far, the reports about the cytotoxicity of
DHA on normal cells are limited. Zajdel et al. (2010) reported that the DHA pre-treatment
increased the sensitivity of non-cancer cells to drug toxicity [20]. In addition, the previous
study reported that the cell activity of rat pancreatic β cells (RINm5f) decreased after
100 µM DHA treatment for 24 h [21].

LDH is recognized as a marker for the cell membrane injury, cell death and liver
injury [22]. In this study, the release of LDH increased, but the cell viability decreased
with the increase in DHA concentration from 150 µM to 300 µM DHA in a dose-dependent
manner, and the proportion of apoptotic cells was increased in all the DHA treatment
groups. These results suggested that DHA may cause injury to BRL-3A cells.

The levels of AST and ALT are widely recognized to be the biomarkers of liver function
or liver injury [23]. AKP is another of the important biomarkers of the damage to liver cells,
and usually provides diagnostic information for liver function or chronic liver disease [24].
The increased secretion of AKP by liver cells is a sign of cholestatic hepatitis, and AKP is
highly expressed in patients with various cancers [25,26]. In our study, DHA might cause
injury to BRL-3A cells according to the change in the levels of ALT, AST and AKP in the
supernatant after different concentrations of DHA treatment. The results of flow cytometry
and fluorescence microscopy further confirmed that the treatment of DHA on BRL-3A cells
increases the cell apoptosis.

The levels of TG, T-CHO, LDL-C and HDL-C in the liver were used to evaluate the
protective effect of the liver. DHA can reduce the TG concentration in the liver, increase the
level of HDL-C in the liver and protect the liver from fatty liver, but the inconsistent studies
show that the treatment of DHA would increase liver fat and increase the susceptibility
of the liver to pathogen stimulation [27–29]. The cytoplasmic space of hepatocytes was
occupied by excessive lipids, which might affect the function of the hepatocytes and make
the hepatocytes vulnerable to lipopolysaccharides (LPS) [30]. In our study, the increase in
the TG, T-CHO and HDL-C in BRL-3A cells from the 200 µM DHA treatment indicated
that the treatment of 200 µM DHA might affect the protective ability of the BRL-3A cells.

Inflammatory cytokines play a major role during the process of liver inflammation,
especially from steatosis to steatohepatitis, or from inflammatory infiltration to liver in-
jury [31]. Previous studies reported that carbohydrates, therapeutic drugs and the hy-
poxia/reoxygenation model could increase the levels of IL-1 β and IL-6 in the supernatant
of BRL-3A cells [13,32,33]. Inflammation interferes with the expression of genes related
to lipid metabolism, leading to lipid accumulation [32]. In our study, the level of IL-6 in
the supernatant increased in all of the DHA treatment groups. As mentioned above, the
treatment of DHA may cause an inflammatory response in the BRL-3A cell.

The NF-κB signal pathway is activated by the p-IκBα protein, which makes it en-
ter from the cytoplasm to the nucleus and enhance the production of pro-inflammatory
cytokines, such as IL-1β and IL-6. The MAPK signal pathway family mainly includes
the ERK, JNK and p38 pathways [34,35]. The activation of p38 MAPK can promote the
secretion of IL-6 and activate the NF-κB pathway [10]. ERK1/2 participate in the regulation
of cell survival, and the continuous activation of ERK is conducive to cell survival [36,37].
The activation of ERK1/2 can inhibit the activity of NF-κB in hepatocytes, thus regulating
the inflammatory response of hepatocytes and facilitating their survival [30]. In addition,
continuous ERK activation can promote the production of IL-10, which can inhibit NF-κB
from entering the nucleus, thus alleviating the inflammatory response [38]. In our study, the
level of IL-10 was decreased in the 200 µM DHA treatment, and the relative expression of
TAK1, NF-κB p65 and IκBα mRNA was increased in the 200 µM DHA treatment; the ratio
of p-IκBα/IκBα was increased in the 50, 100 and 200 µM DHA treatments, and the ratio of
p-p38/p38 was increased with the increase in DHA concentration from 50 to 200 µM. In
addition, the ratio of the p-ERK/ERK protein was decreased in the 200 µM DHA treatment.
These results indicate that DHA exhibits cytotoxicity by activating p38 MAPK and NF-κB
signal pathways and induces cell death by inhibiting the ERK activation signal pathway.
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Further studies need to prove the mechanism of DHA cytotoxicity and direct the clinic use
of DHA for human health.

5. Conclusions

In conclusion, DHA-treated (50, 100 and 200 µM) rat liver BRL-3A cells for 24 h
promote cell apoptosis and the inflammatory response, and the p38 MAPK, ERK and NF-
κB signal pathways are involved in mediating the apoptosis and inflammatory response
(Figure 7).

Figure 7. Schematic mechanisms illustrating the DHA-treated BRL-3A for 24 h on the mechanism of
inflammatory response regulation.
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20. Zajdel, A.; Wilczok, A.; Latocha, M.; Dzierżewicz, Z. Effect of Polyunsaturated Fatty Acids on Doxorubicin Cytotoxicity in Glioma
Cells in vitro. Adv. Clin. Exp. Med. 2010, 19, 481–487.

21. Azevedo-Martins, A.K.; Monteiro, A.P.; Lima, C.L.; Lenzen, S.; Curi, R. Fatty acid-induced toxicity and neutral lipid accumulation
in insulin-producing RINm5F cells. Toxicol. Vitr. 2006, 20, 1106–1113. [CrossRef]

22. Fotakis, G.; Timbrell, J.A. In vitro cytotoxicity assays: Comparison of LDH, neutral red, MTT and protein assay in hepatoma cell
lines following exposure to cadmium chloride. Toxicol. Lett. 2006, 160, 171–177. [CrossRef]

23. Ding, R.-B.; Tian, K.; Cao, Y.-W.; Bao, J.-L.; Wang, M.; He, C.; Huanxing, S.; Su, H.; Wan, J.-B. Protective Effect ofPanax
notoginsengSaponins on Acute Ethanol-Induced Liver Injury Is Associated with Ameliorating Hepatic Lipid Accumulation and
Reducing Ethanol-Mediated Oxidative Stress. J. Agric. Food Chem. 2015, 63, 2413–2422. [CrossRef] [PubMed]

24. Fernandez, N.J.; Kidney, B.A. Alkaline phosphatase: Beyond the liver. Veter- Clin. Pathol. 2007, 36, 223–233. [CrossRef] [PubMed]
25. Wallace, B.H.; Lott, J.A.; Griffiths, J.; Kirkpatrick, R.B. Isoforms of Alkaline Phosphatase Determined by Isoelectric Focusing in

Patients with Chronic Liver Disorders. Clin. Chem. Lab. Med. 1996, 34, 711–720. [CrossRef]
26. Sharma, U.; Pal, D.; Prasad, R. Alkaline Phosphatase: An Overview. Indian J. Clin. Biochem. 2014, 29, 269–278. [CrossRef]

[PubMed]
27. Nanji, A.A.; Zhao, S.; Sadrzadeh, S.M.H.; Dannenberg, A.J.; Tahan, S.R.; Waxman, D.J. Markedly Enhanced Cytochrome P450 2E1

Induction and Lipid Peroxidation Is Associated with Severe Liver Injury in Fish Oil-Ethanol-Fed Rats. Alcohol. Clin. Exp. Res.
1994, 18, 1280–1285. [CrossRef] [PubMed]

28. Nanji, A.A.; Zakim, D.; Rahemtulla, A.; Daly, T.; Miao, L.; Zhao, S.; Khwaja, S.; Tahan, S.R.; Dannenberg, A.J. Dietary saturated
fatty acids down-regulate cyclooxygenase-2 and tumor necrosis factor alfa and reverse fibrosis in alcohol-induced liver disease in
the rat. Hepatology 1997, 26, 1538–1545. [CrossRef]

https://www.gminsights.com
http://doi.org/10.1016/j.cell.2010.07.041
http://www.ncbi.nlm.nih.gov/pubmed/20813258
http://doi.org/10.1016/j.tiv.2008.02.012
http://doi.org/10.3390/ani10091455
http://doi.org/10.1074/jbc.M909695199
http://doi.org/10.1155/2019/6765803
http://doi.org/10.1155/2015/631326
http://www.ncbi.nlm.nih.gov/pubmed/26770978
http://doi.org/10.1016/j.intimp.2016.03.032
http://www.ncbi.nlm.nih.gov/pubmed/27064547
http://doi.org/10.1016/j.lfs.2019.04.058
http://doi.org/10.1016/j.tice.2013.07.005
http://www.ncbi.nlm.nih.gov/pubmed/23993698
http://doi.org/10.1016/j.repbio.2018.09.002
http://doi.org/10.1016/j.chemphyslip.2008.02.009
http://doi.org/10.1016/j.clnu.2019.08.031
http://doi.org/10.1016/j.freeradbiomed.2005.04.023
http://doi.org/10.1016/j.tiv.2006.02.007
http://doi.org/10.1016/j.toxlet.2005.07.001
http://doi.org/10.1021/jf502990n
http://www.ncbi.nlm.nih.gov/pubmed/25665731
http://doi.org/10.1111/j.1939-165X.2007.tb00216.x
http://www.ncbi.nlm.nih.gov/pubmed/17806069
http://doi.org/10.1515/cclm.1996.34.9.711
http://doi.org/10.1007/s12291-013-0408-y
http://www.ncbi.nlm.nih.gov/pubmed/24966474
http://doi.org/10.1111/j.1530-0277.1994.tb00119.x
http://www.ncbi.nlm.nih.gov/pubmed/7847620
http://doi.org/10.1002/hep.510260622


Toxics 2021, 9, 112 11 of 11

29. Donohue, T.M.; Curry-McCoy, T.V.; Nanji, A.A.; Kharbanda, K.K.; Osna, N.A.; Radio, S.J.; Todero, S.L.; White, R.L.; Casey, C.A.
Lysosomal Leakage and Lack of Adaptation of Hepatoprotective Enzyme Contribute to Enhanced Susceptibility to Ethanol-
Induced Liver Injury in Female Rats. Alcohol. Clin. Exp. Res. 2007, 31, 1944–1952. [CrossRef]

30. Yang, S.; Lin, H.; Diehl, A.M. Fatty liver vulnerability to endotoxin-induced damage despite NF-κB induction and inhibited
caspase 3 activation. Am. J. Physiol. Gastrointest. Liver Physiol. 2001, 281, G382–G392. [CrossRef] [PubMed]

31. Agina, O.A.; Shaari, M.R.; Isa, N.M.M.; Ajat, M.; Zamri-Saad, M.; Hamzah, H. Clinical Pathology, Immunopathology and
Advanced Vaccine Technology in Bovine Theileriosis: A Review. Pathogens 2020, 9, 697. [CrossRef]

32. Zhao, X.J.; Yang, Y.Z.; Zheng, Y.J.; Wang, S.C.; Gu, H.M.; Pan, Y.; Wang, S.J.; Xu, H.J.; Kong, L.D. Magnesium isoglycyrrhizinate
blocks fructose-induced hepatic NF-kappaB/NLRP3 inflammasome activation and lipid metabolism disorder. Eur. J. Pharmacol.
2017, 809, 141–150. [CrossRef]

33. Li, C.; Lan, M.; Lv, J.; Zhang, Y.; Gao, X.; Gao, X.; Dong, L.; Luo, G.; Zhang, H.; Sun, J. Screening of the Hepatotoxic Components
in Fructus Gardeniae and Their Effects on Rat Liver BRL-3A Cells. Molecules 2019, 24, 3920. [CrossRef] [PubMed]

34. Cobb, M.; Goldsmith, E. How MAP kinase are regulated. J. Biol. Chem. 1995, 270, 14843–14846. [CrossRef]
35. Cano, E.; Mahadevan, L.C. Parallel signal processing among mammalian MAPKs. Trends Biochem. Sci. 1995, 20, 117–122.

[CrossRef]
36. Junttila, M.R.; Li, S.; Westermarck, J. Phosphatase-mediated crosstalk between MAPK signaling pathways in the regulation of cell

survival. FASEB J. 2007, 22, 954–965. [CrossRef] [PubMed]
37. Krueger, J.S.; Keshamouni, V.G.; Atanaskova, N.; Reddy, K.B. Temporal and quantitative regulation of mitogen-activated protein

kinase (MAPK) modulates cell motility and invasion. Oncogene 2001, 20, 4209–4218. [CrossRef]
38. Loscher, C.E.; Draper, E.; Leavy, O.; Kelleher, D.; Mills, K.H.; Roche, H.M. Conjugated linoleic acid suppresses NF-kappa B

activation and IL-12 production in dendritic cells through ERK-mediated IL-10 induction. J. Immunol. 2005, 175, 4990–4998.
[CrossRef] [PubMed]

http://doi.org/10.1111/j.1530-0277.2007.00512.x
http://doi.org/10.1152/ajpgi.2001.281.2.G382
http://www.ncbi.nlm.nih.gov/pubmed/11447019
http://doi.org/10.3390/pathogens9090697
http://doi.org/10.1016/j.ejphar.2017.05.032
http://doi.org/10.3390/molecules24213920
http://www.ncbi.nlm.nih.gov/pubmed/31671698
http://doi.org/10.1074/jbc.270.25.14843
http://doi.org/10.1016/S0968-0004(00)88978-1
http://doi.org/10.1096/fj.06-7859rev
http://www.ncbi.nlm.nih.gov/pubmed/18039929
http://doi.org/10.1038/sj.onc.1204541
http://doi.org/10.4049/jimmunol.175.8.4990
http://www.ncbi.nlm.nih.gov/pubmed/16210601

	Introduction 
	Materials and Methods 
	Results 
	Effects of DHA Treated for 24 h in BRL-3A on the Cell Viability and the Release of LDH 
	Effects of DHA Treated for 24 h in BRL-3A on Lipid Profile 
	Effects of DHA Treated for 24 h in BRL-3A on Cell Apoptosis 
	Effects of DHA Treated for 24 h in BRL-3A on the Release of Liver Function Related Enzymes 
	Effects of DHA Treated for 24 h in BRL-3A on the Release of Cytokines 
	Effects of DHA Treated for 24 h in BRL-3A on MAPK and NF-B Pathway 

	Discussion 
	Conclusions 
	References

