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Repetitive transcranial magnetic stimulation (rTMS) is a non-invasive brain stimulation
technique which is now being used in psychiatry clinics across the world as a
therapeutic tool for a variety of neural-circuit based disorders (e.g., major depression,
obsessive compulsive disorder, substance use disorders, post-traumatic stress disorder,
headache, pain). The higher volume of use and publication of multiple large-scale
clinical trials has provided researchers with a unique opportunity to retrospectively
evaluate factors influencing TMS treatment responses in large samples of patients.
While many studies have focused on TMS protocol parameters as moderators of
treatment efficacy, sex/gender is another critical, often overlooked factor influencing
TMS treatment outcome. Women, especially during periods of high estradiol, appear
to be particularly sensitive to the therapeutic effects of rTMS. This manuscript makes a
case for three potential biological explanations for these findings. Drawing on literature
from cranio-facial anatomy, neuroimaging, and neuroendocrine fields, we posit that
observed increases in response rates of women in clinical rTMS trials may be related
to: (1) Closer proximity of the brain to the scalp at the prefrontal cortex, leading
to larger TMS induced electric fields especially at the medial prefrontal cortex, (2)
Greater gray matter density and gyrification in the prefrontal cortex, and (3) High
levels of estradiol which facilitate cortical excitability. These biological explanations are
empirical ideas which have been evaluated in laboratory studies and lend themselves
to prospective evaluation in multisite clinical rTMS trials. The existing literature on this
topic and these three potential biological explanations all indicate that the TMS field
should routinely evaluate sex/gender (and associated biological metrics like scalp-to-
cortex distance, gray matter density, estradiol/progesterone levels) as a factor that may
influence treatment outcome.
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INTRODUCTION

Repetitive transcranial magnetic stimulation (rTMS) has seen
incredible growth as a therapeutic approach to neuropsychiatric
disease over the past 20 years. A variety of TMS pulse
protocols and TMS device companies have received clearance for
therapeutic use in multiple populations (e.g., major depressive
disorder, obsessive compulsive disorder, headache, smoking
cessation) on multiple continents. There is now widespread
therapeutic use of TMS across the globe which has provided
researchers a unique opportunity to retrospectively evaluate
factors influencing TMS treatment responses in large samples
of patients. While many studies have focused on TMS protocol
parameters as moderators of treatment efficacy (e.g., frequency,
interpulse intervals, sessions, inter session intervals), a recent
publication by Sackeim et al. (1) highlights another critical,
often overlooked factor influencing TMS treatment outcome–
sex/gender.

In this retrospective study, Sackeim et al. (1) evaluated
patient outcome data from 5,010 individuals that had received
TMS for treatment resistant depression (10 Hz to the left
dorsolateral prefrontal cortex). The response and remission rates
were comparable to previous studies (Intent to treat sample:
58% response, 28% remission; Completer sample: 83% response,
62% remission). They then evaluated the relative influence of
various patient level biometrics on TMS treatment outcome,
including: Baseline PHQ-score, age, gender, motor threshold,
stimulation intensity, total pulses per session, and the total
number of sessions. Among these variables, sex/gender had the
most powerful influence on treatment outcome. Specifically,
when controlling for various protocol and symptom parameters,
females were 1.34 times more likely to respond and 1.37
times more likely to achieve remission from major depression
relative to males.

While Sackeim et al. (1) have drawn renewed attention
to sex/gender as a significant moderator of rTMS treatment
outcome in depression, this phenomenon has been well validated
in robust meta-analyses in the depression literature. Notably,
in one such meta-analysis performed over a span of 16 years
(1997–2013) and 54, sham-controlled research studies, there
was a positive, linear relationship between percentage of
females enrolled in clinical trials and overall reduction in
depression severity (2). Despite consistent results demonstrating
the importance of incorporating sex and gender as biological
variables of interest when assessing TMS treatment outcome,
many influential studies in the field have not reported sex/gender
differences in their data (3–5). It is possible that some of
these groups do not report on this dimension of treatment
outcome due to a lack of statistically significant findings. We
argue, however, that previous evidence of improved response
rates among women as well as the biological bases for
these differences presented here warrant increased emphasis
on this factor.

So, what is the biological basis for a higher response rate in
females? Three hypotheses:

(1) Bone-structure differences in males and females
influence the “realized” electric field.

One of the most important biological variables that influence
the TMS effects on the brain is the distance from the TMS coil
to the cortical target. As Maxwell described in the mid-1800s
(6), the strength of an electromagnetic field decays exponentially
with distance. The application of this 19th century principle to
21st century therapeutic brain stimulation has been elegantly
described by leaders in the TMS field (7). For a given TMS
pulse strength (% machine output), cortical regions closer to
the scalp (e.g., motor cortex), receive a stronger electric field
than brain regions that are farther from a scalp location (e.g.,
frontal pole). TMS is one of the few therapeutic techniques in
psychiatry in which the dosing procedure incorporates patient
specific calibrations. Specifically, for each patient, investigators
will typically identify the resting motor threshold for the hand or
the leg (e.g., the minimum amount of current required to induce
motor evoked potentials on 50% of the trials). This dosage will
then adjusted based on the specific cortical location that will be
stimulated (e.g., often 110–120% when stimulating the prefrontal
cortex). This fixed scaling procedure was originally created to
account for the known increase in distance from the scalp to the
cortex as the coil is moved more anterior and rostral from the
motor cortex (e.g., when stimulating the dorsolateral prefrontal
cortex or the medial prefrontal cortex).

While these scaling metrics may be acceptable on average,
they do not account for known differences in craniofacial
anatomy between men and women. This is a well-developed
body of literature which has been cultivated and harnessed by
multiple domains of science- including archeology (8), medical
forensics (9), and craniofacial reconstructive surgery (10). There
are several key features of bone structure that can be used to
reliably differentiate males and females including the shape of
the frontal bone and sinuses, the orientation of the orbits, size of
the zygomatic bone, tapering of the mandible, and prominence
of the inion (11). From the perspective of delivering TMS
to the prefrontal cortex, sex-specific patterns of frontal bone
topography are likely important for TMS dosing. In males, the
declination angle of the frontal bone (spanning the apex to the
nasion) is smaller, leading the forehead to appear more rounded.
By contrast, in females, the frontal bone is sharper, leading the
forehead to appear flatter (11). The shape of the brain within
the skull, however, doesn’t vary significantly between men and
women. This leads to a situation wherein the distance from the
prefrontal cortex to the external surface of the skull is greater for
males than females. This is particularly true in the rostral and
medial aspect of the prefrontal cortex- wherein the prominent
brow protrusion in males adds to the distance.

Current TMS-dosing strategies use the motor system as the
calibration point for treatment. Interestingly, scalp-to-cortex
distance and skull morphology at the motor cortex does not
differ by sex/gender (12, 13), leading men and women to present
equivalent resting motor thresholds on average (14). Uniform
corrections applied to overcome the increased scalp-to-cortex
distance at the prefrontal cortex (e.g., 110–120% of RMT), then,
are likely to have a differential influence on men and women.
Specifically, this effect may result in women receiving a higher
“realized” electric field at the cortex than men (especially at the
frontal pole)–which could account for a larger treatment effect.
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In our own work, in an analysis of 88 individuals (male,
n = 58; female, n = 30), we analyzed scalp-to-cortex distance and
resulting electrical field strength at various stimulation targets for
TMS in a sample of healthy controls and Alcohol Use Disorder
patients (FP1: left frontal pole, F3: left dorsolateral prefrontal
cortex; C3: left motor cortex). Sex/gender consistently emerged as
a significant covariate. Women in both groups had a significantly
shorter scalp-to-cortex distance than men at the frontal pole
(FP1; female: 15.88± 2.8 mm; male: 17.79± 3.18 mm; t87 = 2.938,
p = 0.004, Hedge’s g = 0.62) but not at the primary motor
cortex (C3; female: 14.02 ± 1.83 mm; male: 14.75 ± 2.52 mm;
t87 = 1.49, p = 0.138, Hedge’s g = 0.33). Given that TMS is
routinely delivered to the prefrontal cortex based on a dose
determined at the motor cortex, the smaller ratio of FP1/C3
distance in women relative to men led to a TMS electrical field
that was, on average 5–7 V/m stronger at the same stimulation
site (13). An example of this is illustrated in Figure 1. Notably,
the scalp-to-cortex distance at F3 (left DLPFC) was also shorter in
women than men, but the effect size was smaller than the frontal
pole (F3; female: 14.49 ± 2.26 mm; male: 15.04 ± 2.50 mm;
t87 = 1.054, p = 0.289, Hedge’s g = 0.23). [Note: AUD individuals
did not have a significantly reduced scalp-to-cortex distance at
any tested cortical location. Men and women from both groups
were therefore aggregated for this analysis].

These data suggest that craniofacial differences in bone
structure lead, on average, to a higher electric field strength at
the prefrontal cortex (when the TMS dose is determined based
on the motor threshold). This may account for a higher response
rate in women–especially in TMS protocols targeting the medial
prefrontal cortex. It is not clear, however, that distance alone
would account for the observed sex/gender differences when
rTMS is delivered to the DLPFC or the motor cortex.

(2) Gray and white matter differences.
Another explanation may be differences in gray and white

matter integrity in men and women. Previous work has
demonstrated that the ability of TMS to propagate to downstream
targets (likely a key factor in improving treatment outcome)
is dependent on three features of brain structure: (1) Scalp-
to-cortex distance (discussed above), (2) Gray matter volume
(GMV) at the stimulation site, and (3) White matter fractional
anisotropy (FA) (15–17). Specifically, shorter scalp-to-cortex
distances, greater GMV and greater FA were associated with
elevated TMS-evoked activity in subcortical regions.

There are also known sex/gender differences in gray and
white matter among healthy controls that may influence TMS
response. After correcting for differences in total intracranial
volume, women have greater tissue volume within the frontal and
parietal cortices, relative to men (18–20). These increases have
regional specificity, with differences occurring in common TMS
targets (e.g., medial prefrontal, dorsolateral prefrontal cortex).
Women also have a higher gyrification index–a measurement of
cortical folding–in the frontal and parietal cortices leading to
an increase in gyral surface area (21). Given that the strength
of TMS is most intense at the gyral crown perpendicular to the
TMS coil (22), this may indicate that electrical fields (1) cover
more surface area and (2) more readily propagate to downstream
targets in women than men.

There are also sex/gender differences in white matter
microstructure, wherein women have lower fractional anisotropy
values throughout the brain, relative to men (23–26). Few,
however, have suggested that women have regionally specific
elevations in fractional anisotropy (27). It is possible then,
that broad reductions in white matter fractional anisotropy
may attenuate the benefits conferred by the favorable profile
of gray matter volume among women relative to men. It
will be important for the field of brain stimulation moving
forward to consider how these competing influences may impact
treatment outcome.

Taken together, both aforementioned hypotheses–craniofacial
anatomy and brain tissue volume–suggest that women would
likely have a higher brain response to an equivalent TMS
stimulation intensity than men, especially when TMS is
delivered to the prefrontal cortex. This is consistent with
the aforementioned meta-analysis of 54 randomized, sham
controlled studies of rTMS for Major Depressive Disorder
(MDD) (2). These findings, however, are not universal. One of
the first randomized, sham-controlled clinical trials evaluating
factors that influence response to rTMS in MDD patients, for
example, failed to find a difference in 4-week response rate
between men and women [301 individuals from 23 sites, 55%
female (28)].

It is therefore unlikely that the first two hypotheses alone
dictate gender differences in TMS treatment response. So what,
then, is contributing to the variance in these well powered
studies?

(3) Effects of estrogen and progesterone on cortical
excitability.

The variance in observed data may be related to the
impact that fluctuations in estradiol and progesterone have
on cortical excitability (29–31). Briefly, in women of child-
bearing age, the menstrual cycle is often divided into 3
predictable phases: menses, follicular, luteal; and guided by
two predominant hormones: estradiol and progesterone. During
menses, both hormones are low. During the follicular phase,
estradiol rises. During the luteal phase, both estradiol and
progesterone are high (32). An extensive amount of clinical and
preclinical literature has demonstrated phase-dependent effects
on cognition, behavioral flexibility, emotion regulation, and
reward sensitivity. Although a review of this literature is beyond
the scope of this manuscript, one theme that emerges is that
higher levels of estradiol (late follicular phase) are associated with
enhanced performance on cognitive tasks, that are not present
when progesterone rises (luteal phase). Preclinical studies have
demonstrated that estradiol facilitates cortical excitability, likely
through glutamatergic mechanisms (33), while progesterone
metabolites dampen cortical excitability (34), likely through
gamma-aminobutyric acid (GABA).

In a series of two papers Smith et al. tested this hypothesis
using TMS (29, 30). In both studies they evaluated cortical
excitatory tone and inhibitory tone though paired pulse
techniques with interpulse intervals from 2 to 10 ms. This large
spectrum of interpulse intervals allowed them to evaluate both
paired pulse facilitation (glutamate mediated) and paired pulse
inhibition (GABA mediated). Cortical excitability was evaluated

Frontiers in Psychiatry | www.frontiersin.org 3 April 2022 | Volume 13 | Article 869070

https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org/
https://www.frontiersin.org/journals/psychiatry#articles


fpsyt-13-869070 April 25, 2022 Time: 14:59 # 4

Hanlon and McCalley Sex and Gender as Relevant TMS Biometrics

FIGURE 1 | Differences in cranio-facial anatomy in men and women (A) and the impact of these anatomical differences on the TMS induced electrical field at the
cortical surface (B). The frontal bone of men typically has a lower declination angle (slope) and a more prominent brow ridge extending to the lateral prefrontal cortex
than women. This results in a larger distance from the scalp to cortex in men relative to women (A). A representative male and female from a previous study are
plotted here with the subdural space from the top of the frontal bone to the level of the nasion shaded (red). Previous data from our laboratory has demonstrated that
the scalp-to-cortex distance ratios at the Frontal Pole (FP1) relative to the Motor Cortex (C3) are significantly greater in men (13). The importance of this ratio is
underscored by the sensitivity of the TMS induced electric field to small changes in distance (B). Here we have rendered the TMS induced electric field (110% resting
motor threshold) for four individuals in the study–two males (left) and two females (right). In as much as the motor threshold continues to be used as a dosing metric
for other cortical areas, it would be prudent to incorporate these ratios into dosing protocols.

when the women were in the early follicular phase, late follicular
phase, and the luteal phase. Cortical facilitation was highest when
estradiol was high and progesterone was low (late follicular)
(30). Cortical facilitation was the lowest when estradiol and
progesterone were both high (luteal). These complementary
effects of estradiol and progesterone were quickly corroborated
by several other groups (31, 35). Importantly, the attenuated
excitability in the luteal phase (likely progesterone mediated)
was comparable in magnitude to the effect of GABA agonists
and glutamate antagonists on cortical excitability (36, 37). This
momentum in the motor physiology field, however, did not carry
over to the psychiatric research field. In one of the few studies
to evaluate the effect of hormone levels on TMS to the DLPFC,
Chung et al. (38) demonstrated that in periods of high estrogen,
a single session of 10 Hz DLPFC TMS resulted in higher TMS-
induced excitability (measured by EEG) than low estrogen or in
men (39). There is still a lot of research to be done, however,
as the contributions of estradiol and progesterone to potential
therapeutic effects of rTMS have not been widely investigated.

Assuming that the effects of these hormones on motor cortex
excitability generalize to the prefrontal cortex, dynamic levels of
estradiol and progesterone within and between women across
the lifecycle may be a significant source of within and between
subject variability. In practice, a traditional clinical course of
TMS typically last longer than a 28 day menstrual cycle, which
would mean that data would like be collected from a single
subject across the full spectrum of estradiol and progesterone
fluctuation. Moving forward, however, there is momentum

toward accelerated TMS design, wherein a full course of TMS
(30–36 sessions) is delivered to patients with depression in as
little as only 3–5 days (40, 41). For these accelerated TMS
designs, it stands to reason that the effects of TMS might be
magnified if delivered to women during periods of high estrogen
and low progesterone. Women taking various forms of estrogen
supplementation (e.g., high estrogen birth control pills, hormone
replacement therapy) may also have greater TMS-induced effects
on the brain and behavior than individuals with fluctuating
hormone levels or post-menopausal women. Post-menopausal
women may need a higher dose of TMS (e.g., intensity/session,
number of sessions required to produce cortical change) than
they would have earlier in life (independent of any age-related
changes in brain volume).

To the best of our knowledge, there have been no rigorous
TMS studies to investigate the influence of testosterone (which
can be converted to estradiol in men and women via aromatase)
on cortical excitability. Future research may consider a more
comprehensive approach to assessing the relative contributions of
estradiol, progesterone, and testosterone on cortical excitability
and treatment outcome in both men and women.

DISCUSSION

There is now a large body of research suggesting that sex/gender
may be an important factor involved in TMS treatment response.
While the majority of the studies evaluating factors that influence
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therapeutic outcome focus on aspects of the TMS dose and
measures of disease severity, there is strong reason to believe
that sex/gender may be a potent and transdiagnostic biomarker
influencing the effects of TMS on the brain and behavior.
Sex/gender is further a factor that applies to healthy controls and
patient population.

We have chosen to group the words sex and gender in
this perspective for a variety of reasons. Gender is typically
used to describe the characteristics of women and men that
are socially constructed, while sex is typically used to describe
characteristics that are biologically determined (42). Most clinical
trials do not specify if the recorded data was biologic sex or
self-reported gender. The three potential explanations discussed
above, however, are all biological in nature and more tightly
related to sex. So, while the higher response rates observed in
women in clinical trials may refer to sex or gender, the three
potential explanations put forth here are all related to sex as a
biological measure. Additionally, it is important to note that the
hormones cited in point #3 are present in both sexes, and should
probably be considered on a continuum rather than limiting the
impact to individuals that are male or female.

PRACTICAL SUGGESTIONS MOVING
FORWARD

This manuscript highlights the importance of sex/gender as a
meaningful biologic variable in therapeutic brain stimulation.
There are fundamental differences in craniofacial anatomy
and brain tissue density in men and women, which may
lead to a larger “realized” TMS dose in women if scalp-to-
cortex distance is not considered. We recommend that future
studies recruit an even gender distribution in to all arms and
take the scalp-to-cortex distance at the target location into
account when tailoring the treatment to the individual. While
the TMS induced electric field can be modeled with existing
software, the field would be well-served by software that is more

broadly accessible to individuals without extensive computer
programming experience.

Furthermore, naturally fluctuating levels of estradiol and
progesterone may also influence treatment outcomes. From a
clinical perspective, these data would suggest that women in
periods of high estrogen and low progesterone are likely to
have the largest neuroplastic response to TMS–a feature that
clinicians should consider, especially during accelerated theta
burst protocols wherein the full stimulation course is delivered
within a few days. Moving forward, clinical TMS trials should
systematically evaluate sex/gender as a contribution to the main
effects of the study and report the results of the analysis regardless
of statistical significance. We recommend future investment
by government funding agencies into prospective evaluation of
estradiol, progesterone, and testosterone on cortical excitability
and therapeutic rTMS outcomes.
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