
Integrative Analysis of Many Weighted Co-Expression
Networks Using Tensor Computation
Wenyuan Li1, Chun-Chi Liu1, Tong Zhang2, Haifeng Li1, Michael S. Waterman1, Xianghong Jasmine

Zhou1*

1 Molecular and Computational Biology, Department of Biological Sciences, University of Southern California, Los Angeles, California, United States of America,

2 Department of Statistics, Rutgers University, New Brunswick, New Jersey, United States of America

Abstract

The rapid accumulation of biological networks poses new challenges and calls for powerful integrative analysis tools. Most
existing methods capable of simultaneously analyzing a large number of networks were primarily designed for unweighted
networks, and cannot easily be extended to weighted networks. However, it is known that transforming weighted into
unweighted networks by dichotomizing the edges of weighted networks with a threshold generally leads to information
loss. We have developed a novel, tensor-based computational framework for mining recurrent heavy subgraphs in a large
set of massive weighted networks. Specifically, we formulate the recurrent heavy subgraph identification problem as a
heavy 3D subtensor discovery problem with sparse constraints. We describe an effective approach to solving this problem
by designing a multi-stage, convex relaxation protocol, and a non-uniform edge sampling technique. We applied our
method to 130 co-expression networks, and identified 11,394 recurrent heavy subgraphs, grouped into 2,810 families. We
demonstrated that the identified subgraphs represent meaningful biological modules by validating against a large set of
compiled biological knowledge bases. We also showed that the likelihood for a heavy subgraph to be meaningful increases
significantly with its recurrence in multiple networks, highlighting the importance of the integrative approach to biological
network analysis. Moreover, our approach based on weighted graphs detects many patterns that would be overlooked
using unweighted graphs. In addition, we identified a large number of modules that occur predominately under specific
phenotypes. This analysis resulted in a genome-wide mapping of gene network modules onto the phenome. Finally, by
comparing module activities across many datasets, we discovered high-order dynamic cooperativeness in protein complex
networks and transcriptional regulatory networks.
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Introduction

The advancement of high-throughput technology has resulted

in the accumulation of a wealth of data on biological networks.

Co-expression networks, protein interaction networks, metabolic

networks, genetic interaction networks, and transcription regula-

tory networks are continuously being generated for a wide range of

organisms under various conditions. Thanks to this great

opportunity, network biology is rapidly emerging as a discipline

in its own right [1,2]. Thus far, most computational methods have

focused on the analysis of individual biological networks, but in

many cases a single network is insufficient to discover patterns with

multiple facets and subtle signals. There is an urgent need for

methods supporting the integrative analysis of multiple biological

networks. The analysis of multiple networks can be classified into

two categories: (1) those studying conservations and evolvements of

multiple networks between different species [3–8], and (2) those

identifying shared network modules or variations of modules

across multiple networks of the same species but under different

conditions [9–15]. The two types of problems face different

challenges. Cross-species network comparisons are typically

carried out on tens of networks, with the bottleneck being the

graph isomorphism problem caused by the possible many-to-many

ortholog mapping; while the network comparison within the same

species deal with hundreds of networks simultaneously, and their

principal challenge is the large search space. In this paper, we will

focus on the latter problem.

The analysis of multiple networks from the same species under

different conditions has recently been addressed by ourselves and

others with a series of heuristic data mining algorithms [9–14].

While useful, these methods still face two major limitations. (1)

The general strategy of their searching heuristics is a stepwise

reduction of the large search space, where each step involves one

or more arbitrary cutoffs in addition to the initial cutoff that

transforms continuous measurements (e.g. expression correlations)

into unweighted edges. The ad hoc nature of these cutoffs has been

a major criticism directed at this body of work [9–13]. (2) The

cited algorithms cannot be easily extended to weighted networks.

Most graph-based approaches to analyzing multiple networks are

restricted to unweighted networks, and weighted networks are
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often perceived as harder to analyze [16]. However, weighted

networks are obviously more informative than their unweighted

counterparts. Transforming weighted networks into unweighted

networks by dichotomizing weighted edges with a threshold

obviously leads to information loss [17], and if there is no

reasonable way to choose the threshold, this loss cannot be

controlled. This paper presents a new method of analyzing

multiple networks that overcomes both of these issues.

Generally speaking, a network of n vertices can be represented

as an n|n adjacency matrix A~(aij)n|n, where each element aij

is the weight of the edge between vertices i and j. A number of

numerical methods for matrix computation have been elegantly

applied to network analysis, for example graph clustering [18–21]

and pathway analysis [22,23]. In light of these successful

applications, we propose a tensor-based computational framework

capable of analyzing many weighted and unweighted massive

networks. Although tensor computation has been applied in the

fields of psychometrics [24,25], image processing and computer

vision [26,27], chemometrics [28], and social network analysis

[29,30], it has been explored only recently in large-scale data

mining [31–35] and bioinformatics [36,37].

Simply put, a tensor is a multi-dimensional array and a matrix is

a 2nd-order tensor. Given m networks with the same n vertices but

different topologies, we can represent the whole system as a 3rd-

order tensor A~(aijk)n|n|m (see an example in Figure 1). Each

element aijk is the weight of the edge between vertices i and j in the

kth network. By representing a set of networks in this fashion, we

gain access to a wealth of numerical methods – in particular

continuous optimization methods. In fact, reformulating discrete

problems as continuous optimization problems is a long-standing

tradition in graph theory. There have been many successful

examples, such as using a Hopfield neural network for the

traveling salesman problem [38] and applying the Motzkin–Straus

theorem to solve the clique-finding problem [39]. Moreover, when

a graph pattern mining problem is transformed into a continuous

optimization problem, it becomes easy to incorporate constraints

representing prior knowledge. Finally, advanced continuous

optimization techniques require very few ad hoc parameters, in

contrast with most heuristic graph algorithms.

In this paper, we develop a tensor-based computational

framework to identify recurrent heavy subgraphs (RHSs) in multiple

weighted networks. A heavy subgraph (HS) is a subset of heavily

interconnected nodes in a single network. We define a RHS as a

HS that appears in a subset of multiple networks. The nodes of a

RHS are the same in each occurrence, but the edge weights may

vary between networks. Although the discovery of heavy

subgraphs in a single biological network can reveal functional

and transcriptional modules [40–42], such results often contain

false positives. Extending the search to a RHS is a promising way

to enhance signal noise separation. Intuitively, any set of genes

forming a RHS in multiple datasets generated under different

conditions is more likely to represent a functional and transcrip-

tional module than the genes in a single occurrence of a HS. We

will use co-expression networks as examples due to their wide

availability, but the tensor method described in this paper is

applicable to any type of genome-wide networks.

The concept of a RHS can be explained using the language of

tensors, as shown in Figure 1. Given m microarray datasets, we

model each dataset with a co-expression network. Each node

represents one gene, and each edge’s weight is the estimated co-

expression correlation of the two genes. We then ‘‘stack’’ the

collection of co-expression networks into a three-dimensional

array such that each slice represents the adjacency matrix of one

network. This array is a third-order tensor A~(aijk)n|n|m with

dimensions gene|gene|network. A RHS intuitively corresponds

to a heavy region of the tensor (a heavy subtensor). The RHS can

be found by reordering the tensor so that the heaviest subtensor

moves toward the top-left corner. The subtensor in the top-left

corner can then be expanded outwards from the left-top corner

until the RHS reaches its optimal size.

We applied our tensor algorithm to 130 weighted co-expression

networks derived from human microarray datasets. We identified

an atlas of functional and transcriptional modules and validated

them against a large set of biological knowledge bases including

Gene Ontology annotations, KEGG pathways, 191 Encode

genome-wide ChIP-seq profiles, and 109 Chip-chip datasets.

The likelihood for a heavy subgraph to be biologically meaningful

increases significantly with its recurrence, highlighting the

importance of the integrative approach. Moreover, our approach

based on weighted graphs detected many patterns that would have

been overlooked if we were analyzing unweighted graphs. In

addition, we identified many modules that occur predominately

under a specific type of phenotypes. Thus, we were able to create a

genome-wide mapping of gene network modules onto the

phenome. Finally, based on module activities across multiple

datasets, we used a high-order analysis approach to reveal the

dynamic cooperativeness in protein complex networks and

transcription regulatory networks.

Methods

Given m networks with the same n vertices but different

topologies, we can represent the whole system as a 3rd-order

tensor A~(aijk)n|n|m. Each element aijk is the non-negative

weight of the edge between vertices i and j in the kth network.

Please note that aiik~0 and aijk~ajik for any i,j,k, because we

assume each network is undirected and without self-loops. Any

recurrent heavy subgraph (RHS) can be described by two membership

vectors: (i) the gene membership vector x~(x1, . . . ,xn)T , where xi~1 if

gene i belongs to the RHS and xi~0 otherwise; and (ii) the network

membership vector y~(y1, . . . ,ym)T , where yj~1 if the RHS appears

Author Summary

To study complex cellular networks, we need to consider
their dynamic topologies under many different experi-
mental or physiological conditions. Integrative analysis
over large numbers of massive biological networks thus
emerges as a new challenge in data mining. Recently, we
and others have proposed several algorithms for recurrent
pattern mining across many (w100) biological networks
(with the main focus on unweighted networks). However,
thus far no algorithms have been specifically designed to
mine recurrent patterns across a large collection of
weighted massive networks. In this paper, we propose a
computational framework to identify recurrent heavy
subgraphs from many weighted large networks. By
applying our method to 130 co-expression networks, we
identified an atlas of modules that are highly likely to
represent functional modules, transcriptional modules,
and protein complexes. Many of these modules would
be overlooked with unweighted networks analysis. Fur-
thermore, many of the identified modules constituted
signatures of specific phenotypes. Finally, we demonstrat-
ed that our results facilitate the study of high-order
dynamic coordination in protein complex networks and
transcriptional regulatory networks.

Integrative Analysis of Many Weighted Networks
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in network j and yj~0 otherwise. The summed weight of all edges

in the RHS is

HA(x,y)~
1

2

Xn

i~1

Xn

j~1

Xm

k~1

aijkxixjyk ð1Þ

Note that only the weights of edges aijk with xi~xj~yk~1 are

counted in HA. Thus, HA(x,y) measures the ‘‘heaviness’’ of the

RHS defined by x and y. Discovering recurrent heavy subgraph

can be formulated by a discrete combinatorial optimization

problem: among all RHSs of fixed size (K1 member genes and K2 member

networks), we look for the heaviest. More specifically, this is an integer

programming problem of looking for the binary membership

vectors x and y that jointly maximize HA under the constraintsPn
i~1 xi~K1 and

Pm
j~1 yj~K2. However, there are several

major drawbacks to this discrete formulation. The first is parameter

dependence: as with K-heaviest/densest subgraph problems, the size

parameters K1 and K2 are hard for users to provide and control.

The second is high computational complexity: the task is proved to be

NP-hard (see Text S1) and therefore not solvable in reasonable

time even for small datasets. As our own interest is pattern mining

in a large set of massive networks, the discrete optimization

problem is infeasible.

To address these two drawbacks, we instead solved a continuous

optimization problem with the same objective by relaxing integer

constraints to continuous constraints. That is, we looked for non-

negative real vectors x and y that jointly maximize HA. This

optimization problem is formally expressed as follows:

maxx[Rn
z ,y[Rm

z
HA(x,y)

subject to
f (x)~1

g(y)~1

� ð2Þ

where Rz is a non-negative real space, and f (x) and g(y) are

vector norms. These equations define a tensor-based computa-

tional framework for the RHS identification problem. By solving

Eq. (2), users can easily identify the top-ranking networks (after

sorting the tensor by y) and top-ranking genes (after sorting each

network by x) contributing to the objective function. After

rearranging the networks in this manner, the heaviest RHS

occupies a corner of the 3D tensor. We then mask this RHS with

zeros and optimize Eq. (2) again to search for the next heaviest

RHS.

Two major components of the framework described in Eq. (2)

remain to be designed: (1) the vector norm constraints (f (x),g(y)),
and (2) a protocol for maximizing HA(x,y). We explain our design

choices below.

Vector norm constraints
The choice of vector norms has a significant impact on the

outcome of the optimization. The norm of a vector

x~(x1,x2, . . . ,xn)T is typically defined in the form

ExEp~
Pn

i~1 jxijp
� �1=p

, where p§0. The symbol ExEp, called

the ‘‘Lp-vector norm’’, refers to this formula for the given value of

p. In general, the L0 norm leads to sparse solutions where only a

Figure 1. Illustration of the tensor representation for multiple networks and a recurrent heavy subgraph. (A) Microarray datasets are
modeled as (B) a collection of co-expression networks; (C) These co-expression networks can be ‘‘stacked’’ together into (D) a third-order tensor such
that each slice represents the adjacency matrix of one network. The weights of edges in the co-expression networks and their corresponding tensor
elements are indicated by the color scale to the right of the figure. In (D), after reordering the tensor using the gene and network membership
vectors, it becomes clear that the subtensor in the top-left corner of the tensor (formed by genes A,B,C,D in networks 1,2,3) corresponds to a
recurrent heavy subgraph.
doi:10.1371/journal.pcbi.1001106.g001

Integrative Analysis of Many Weighted Networks
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few components of the membership vectors are significantly

different from zero [43]. The L? norm generally gives a ‘‘smooth’’

solution where the elements of the optimized vector are

approximately equal. Details of these vector norms refer to Text

S1.

A RHS is a subset of genes that are heavily connected to each

other in as many networks as possible. These requirements can be

encoded as follows. (1) A subset of values in each gene membership vector

should be significantly non-zero and close to each other, while the rest are close

to zero. To this end, we consider the mixed norm

L0,?(x)~aExE0z(1{a)ExE? (0vav1) for f (x). Since L0

favors sparse vectors and L? favors uniform vectors, a suitable

choice of a should yield vectors with a few similar, non-zero

elements and many elements that are close to zero. In practice,

we approximate L0,? with the mixed norm Lp,2(x)~
aExEpz(1{a)ExE2, where pv1. (2) As many network membership

values as possible should be non-zero and close to each other. As discussed

above, this is the typical outcome of optimization using the L?

norm. In practice, we approximate L? with Lq(y) where qw1 for

g(y). Therefore, the vector norms f (x) and g(y) are specified as

follows,

f (x)~aExEpz(1{a)ExE2, g(y)~EyEq, 0va,pv1, qw1 ð3Þ

We performed simulation studies to determine suitable values for

the parameters p, a, and q by applying our tensor method to

collections of random weighted networks. In subsets of these

networks, we randomly placed RHSs of varying size, occurrence,

and heaviness. We then tried different combinations of p, a, and q,

and adopted the combination (p~0:8, a~0:2, and q~10) that led

to the discovery of the most RHSs. More details on these

simulations are provided in Text S1.

Optimization by multi-stage convex relaxation
Since the vector norm f (x) is non-convex, our tensor

framework requires an optimization method that can deal with

non-convex constraints. While the global optimum of a convex

problem can be easily computed, the quality of the optimum

discovered for a non-convex problem depends heavily on the

numerical procedure. Standard numerical techniques such as

gradient descent converge to a local minimum of the solution

space, and different procedures often find different local minima.

Considering the fact that most sparse constraints are non-

convex, it is important to find a theoretically justified numerical

procedure.

To design the optimization protocol, we use our previously

developed framework known as Multi-Stage Convex Relaxation

(MSCR) [43,44]. MSCR has good numerical properties for non-

convex optimization problems [43,44]. In this context, concave

duality is used to construct a sequence of convex relaxations that

give increasingly accurate approximations to the original non-

convex problem. We approximate the sparse constraint function

f (x) by the convex function ~ffv(x)~vT h(x){f �h (v), where h(x) is a

specific convex function h(x)~xh (h§1) and f �h (v) is the concave

dual of the function f h(v) (defined as f (v)~f h(h(v))). In practice,

h~2 is an effective choice as the convex upperbound of f (x).
The vector v contains coefficients that will be automatically

generated during the optimization process. After each optimiza-

tion, the new coefficient vector v yields a convex function ~ffv(x)
that more closely approximates the original non-convex function

f (x).

The solution of our tensor formulation Eq. (2) is a stationary

point of the following regularized optimization problem:

½x̂x,ŷy�~ arg max
x[Rn ,y[Rm

1

2

X
i,j,k

aijkxixjyk{lf (x){mg(y)

" #
ð4Þ

where lw0 and mw0 are Lagrange multipliers. By exploiting the

concave duality of f (x), we can substitute ~ffv(x) for f (x).
Therefore, Eq. (4) can be rewritten as

½x̂x,ŷy,v̂v�~ arg max
x,v,y

1

2

X
i,j,k

aijkxixjyk{lvT h(x)zlf �h (v){mg(y)

" #
ð5Þ

We solve Eq. (5) by repeatedly applying the following two steps:

N First, optimize x and y while holding v fixed.

N Second, optimize v with x and y fixed. This problem has a

closed form solution (for details, see Text S1).

The following box (see Box 1) presents our two-stage protocol to

solve the regularized form of Eq. (2). The procedure can be

regarded as a generalization of concave-convex programming

[45], which takes h(x)~x. By repeatedly refining the parameters

in v, we can obtain better and better convex relaxations leading to

a solution superior to that of the initial convex relaxation with

vj~1. The initial values of x and y could be uniform, randomly

chosen, or taken from prior knowledge. In practice, by choosing

an appropriate solver for Step 1, the complexity of MSCR is linear

with respect to the total number of edges in the tensor.

For a detailed description of the optimization algorithm and

procedure, see Text S1.

Obtaining multiple recurrent heavy subgraphs
The RHSs can be intuitively obtained by including those genes

and networks with large membership values. In practice, a pair of

gene and network membership vectors x̂x and ŷy, i.e., the solution of

Eq. (2), can result in multiple RHSs whose ‘‘heaviness’’ is greater

than a specified value (i.e., § a threshold). Here, the ‘‘heaviness’’ of a

RHS is defined as the average weight of all edges in the RHS.

In particular, the genes and networks are sorted in decreasing

order of their membership values in x̂x and ŷy. As illustrated by the

example in Figure 2A–C, the more top-ranking genes are included

in the RHS, the less networks the RHS recurs in; and vice versa.

Such overlapping structure is like a tower as shown in Figure 2D.

We refer to a group of overlapping RHSs that is obtained from the

same pair of x̂x and ŷy as a RHS family. To compress the redundant

information, we build the representative RHSs for a RHS family

Box 1. The Procedure of the Multi-Stage
Convex Relaxation Method.

Inputs: tensor A~(aijk)n|n|m, initial values x(0)[Rn and
y(0)[Rm.
Outputs: the gene membership vector x and network
membership vector y
Initialize v̂vj~1.
Repeat the following two steps (referred to as a stage)
until convergence:

N Step 1: let ½bxx,byy�~arg maxx[Rn
z,y[Rm

z

1

2

X
aijkxixjyk{lv̂vT h(x){mg(y)

� �
.

N Step 2: let bvv~+uf h(u)ju~h(x).

Integrative Analysis of Many Weighted Networks
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as following: (1) if a RHS family contains multiple RHSs, the

representatives are its two ‘‘extreme’’ RHSs: the RHS with the

minimal number of genes (e.g., §5) and as maximal recurrence as

possible, and the RHS with the minimal number of networks

(e.g., §5) and as maximal number of genes as possible; (2) if a

RHS family has only one RHS, it is the representative RHS.

After discovering the representative RHSs in this manner, we

can mask their edges in the networks where they recur with zero

weights and optimize Eq. (2) again to search for the next heaviest

RHS. The source code of the algorithm is available at our

Supplementary Website http://zhoulab.usc.edu/tensor/. This

software is implemented by ANSI C and can be readily compiled

and used in both Windows and Unix platforms.

Non-uniform sampling for fast computation
Even though the MSCR method is efficient, its computation

time can still be long for large sets of networks with many edges. In

such cases, edge sampling can provide an efficient approximation

to many graph problems [46,47]. From the perspective of matrix

or tensor computation, such sampling methods can be also viewed

as matrix/tensor sparsification [48]. As RHS patterns predomi-

nately contain edges with large weights, we designed a non-

uniform sampling method that preferentially selects edges with

large weights. Specifically, each edge aijk is sampled with

probability pijk:

pijk~

1, if aijk§~aa

p
aijk

~aa

� �b

, if aijkv~aa

8<: ð6Þ

where ~aa [ (0,1), b [ ½1,?) and p [ (0,~aab� are constants that control

the number of sampled edges. Note that Eq. (6) always samples

edges with weights §~aa. It selects an edge of weight aijkv~aa with

probability pijk proportional to the bth power of the weight. We

choose ~aa~0:6, b~4, and p~0:1 as a reasonable tradeoff between

computational efficiency and the quality of the sampled tensor.

To correct the bias caused by this sampling method, the weight

of each edge is corrected by its relative probability: âaijk~aijk=pijk.

The expected weight of the sampled network, E(âaijk), is therefore

equal to the weight of the original network. However, in practice,

when the adjusted edge weight âaijkw~aa (but the original edge

weight aijkv~aa), we enforced it to be âaijk~~aa for avoiding too large

edge weights. The overall edge sampling procedure adopts the

simple random-sampling based single-pass sparsification proce-

dure introduced in [48]. Details of the edge sampling procedure is

provided in Text S1. After edge sampling, the procedure described

above will use the corrected tensor ÂA~(âaijk)n|n|m instead of the

original tensor A.

Data description and experimental setting
We selected every microarray dataset from NCBI’s Gene

Expression Omnibus that met the following criteria: all samples

were of human origin; the dataset had at least 20 samples to

guarantee robust estimates of the expression correlations; and the

platform was either GPL91 (corresponding to Affymetrix HG-

U95A), GPL96 (Affymetrix HG-U133A), GPL570 (HG-U133_

Plus_2), or GPL571 (HG-U133A_2). We averaged expression

values for probe that map to the same gene within a dataset. The

130 datasets that met these criteria on 28 January 2008 were used

for the analysis described herein. Details are available at http://

zhoulab.usc.edu/tensor/).

We applied our methods to these 130 microarray datasets. Each

microarray dataset is modeled as a co-expression network wherein

each node represents a unique gene and each edge weight

represents the strength of co-expression of two genes. To

determine the weights, we first compute the expression correlation

between two genes as the leave-one-out Pearson correlation

coefficient estimate [49]. The resulting correlation estimate is

conservative and sensitive to similarities in the expression patterns,

yet robust to single experimental outliers. To make the correlation

estimates comparable across datasets, we then applied Fisher’s z

transform [50]. Given a correlation estimate r, Fisher’s transfor-

mation score is calculated as z~0:5 ln
1zr

1{r

	 

. Because we

observed the distributions of z-scores to vary from dataset to

dataset, we standardized the z-scores to enforce zero mean and

unit variance in each dataset [11]. Then, the ‘‘normalized’’

correlations r’ are obtained by inverting the z-score. Finally, the

absolute value of r’ is used as the edge weight of co-expression

networks. Details is provided in Text S1. In the other applications

Figure 2. Illustration of an RHS family and its tower-like structure in x̂x and ŷy. (A) Ten networks of 10 genes {A,B,C,D,E,F,G,H,I,J}, where the
edge weight is associated with the color scale shown in (C); (B) The optimal membership vectors x̂x and ŷy obtained by performing MSCR. Their
significant components are ranked as follows: xA§xB§xC§xD§xE§xF w0, and y1§y2§y3§y4§y5§y6§y7; (C) The tensor of networks and
genes arranged in decreasing order of the elements in x̂x and ŷy. Three RHSs are discovered: the first RHS recurs in networks {1,2,3,4,5,6,7} with member
genes {A,B,C}; the second recurs in networks {1,2,3,4,5} with member genes {A,B,C,D,E}; and the third recurs in networks {1,2,3} with member genes
{A,B,C,D,E,F,G}; (D) A more intuitive illustration of three three overlapping RHSs, which form a tower-like structure.
doi:10.1371/journal.pcbi.1001106.g002

Integrative Analysis of Many Weighted Networks
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where networks contain negative edge weights, their edge weights

can be transformed to be non-negative through translation, scaling

or other transformation methods.

Results

Recurrent heavy subgraphs are likely to represent
functional modules, protein complexes, and
transcriptional modules

After applying our method to 130 microarray datasets generated

under various experimental conditions, we identified 11,394 RHSs.

Each RHS contains §5 member genes, appears in §5 networks,

and has a ‘‘heaviness’’ (defined as the average weight of its edges in

networks where the RHS appears) §0.4. The average size of these

patterns is 8.5 genes, and the average recurrence is 10.1 networks.

The identified RHSs can be organized into 2,810 families with

4,327 representative RHSs, which we refer to in the following

analysis. To assess the statistical significance of the identified RHSs,

we applied our method to 130 random networks (each of which is

generated from one of the 130 weighted networks by the edge

randomization method) to identify RHSs with §5 genes, §5
networks and ‘‘heaviness’’ §0:4. We repeated this process 100

times. None of RHSs were identified in any of the 100 times. When

the minimum recurrence is 4 and other criteria remain unchanged,

only 3 RHSs were found (Detail is provided in Text S1). To assess

the biological significance of the identified RHSs, we evaluate

the extent to which these RHSs represent functional modules,

transcriptional regulatory modules, and protein complexes.

Functional module analysis. We evaluated the functional

homogeneity of genes in an RHS using Gene Ontology and KEGG

pathway information. For each RHS, we tested its enrichment for

specific Gene Ontology (GO) biological process terms [51]. To

ensure the specificity of GO terms, we filtered out those general

terms associated with w500 genes. If the member genes of an RHS

are found to be significantly enriched in a GO term with a

q-valuev0:05 (the q-value is the hypergeometric p-value after a

False Discovery Rate multiple testing correction), we declare this

RHS as functionally homogeneous. We found that 39.9% of the

representative RHSs were functionally homogenous in this sense. In

an ensemble of randomly generated RHSs having the same size

distribution as our RHSs, only 1.2% of them were functionally

homogenous. The functionally homogenous RHSs cover a wide

range of biological processes: translational elongation, mitosis, cell

cycle, RNA splicing, ribosome biogenesis, histone modification,

chromosome localization, spindle checkpoint, posttranscriptional

regulation, protein folding, etc. As shown in Figure 3A, not only

RHSs with higher heaviness, but also those with high recurrences,

are more likely to be functionally homogenous. For example, 40%/

71%/90%/98% of patterns with 5/10/20/30 recurrences are

functionally homogenous, as opposed to 4.30% of patterns with a

single occurrence. This strong dependence highlights the

importance of pursuing integrative analysis of multiple networks.

Similar results were achieved by using the KEGG database

(http://www.genome.jp/kegg/) [52] to assess the association

between RHS modules and known biological pathways. If the

member genes of an RHS are significantly enriched in a pathway

with a q-valuev0:05, we declare the RHS to be pathway

homogeneous. 38.6% of RHSs were pathway homogenous,

compared to only 0.7% of randomly generated patterns

(Figure 3B). Similarly, 39%/64%/78%/92% of patterns with 5/

10/20/30 recurrences are functionally homogenous respectively,

as opposed to 5.26% of patterns with a single occurrence.

It is important to note that our approach based on weighted

networks discovers many patterns that would be overlooked if

were using unweighted networks. For example, suppose we

applied a commonly used expression correlation cutoff of 0.6 to

Figure 3. Evaluation of the functional, transcriptional, and protein complex homogeneity of RHSs with different recurrences and
heaviness. Four types of databases are used: (A) Gene Ontology (GO) and (B) KEGG pathway databases for functional enrichment, (C) ENCODE
database for transcriptional enrichment, and (D) CORUM database for protein complex enrichment. It can be seen that the percentage of potential
functional, transcriptional, and protein complex modules increases with the heaviness and recurrence of the RHSs.
doi:10.1371/journal.pcbi.1001106.g003
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dichotomize the edges, and a subnetwork density threshold of 0.6.

In this case, 55.9% of our discovered RHSs are not discovered. To

further avoid parameter biases in the comparison, we assess the

functional homogeneity of the top-ranking K modules from both

weighted and unweighted network analysis. The modules can be

ranked by either their recurrences or their heaviness. In both

ranking preferences, the weighted graph approach identifies a

significantly higher percentage (up to 20%) of functionally

homogenous modules than the unweighted graph approach

(Figure 4), demonstrating the power and importance of weighted

graph analysis.

Transcriptional module analysis. Since genes in a RHS

are strongly co-expressed in multiple datasets generated under

different conditions, they are likely to represent a transcription

module. To evaluate this possibility, we used the 191 ChIP-seq

profiles generated by the Encyclopedia of DNA Elements

(ENCODE) consortium [53]. This dataset includes the genome-

wide binding of 40 transcription factors (TF), 9 histone

modification marks, and 3 other markers (DNase, FAIRE, and

DNA methylation) on 25 different cell lines. For a detailed

description of the signal extraction procedure, see Text S1. These

data provide a set of potential targets of regulatory factors that

may or may not be active under a specific condition. However, if

the member genes of a RHS are highly enriched in the targets for

any regulatory factor, then that factor is likely to actively regulate

the RHS under the given experimental conditions. In this case we

consider the RHS module to be ‘‘transcriptional homogenous’’. If

we require an enrichment q-valuev0:05, then 56.4% of the 4,327

RHSs with §5 genes and §5 recurrences are transcription

homogenous (compared to only 1.4% randomly produced RHSs).

The percentage of transcription homogenous modules increases

rapidly with heaviness and recurrence (Figure 3C). The five most

frequently enriched regulators are c-Myc (enriched in 37.0% of

RHSs), Pol2 (38.2%), DNase (33.8%), TAF II (22.0%), and E2F4

(20.9%). These results are not surprising. c-Myc and E2F4 play

important roles in cancer cells, and a large portion of our

microarray data collection is related to cancer. Pol2, DNase, and

TAF II are important for gene transcription in general.

Remarkably, among the 4,327 modules, 2,108 (48.7%) are

enriched in at least two factors, 1,926 (44.5%) in at least three

factors; and 1,807 (41.8%) in at least four factors. These

remarkable statistics highlight the combinatorial nature of

transcriptional regulation. Figure 5 shows an example.

In addition, we collected 109 ChIP-chip experiments from

published papers. Each experiment contains a set of targeting

genes for a specific TF. After manually merging those TFs with

synonymous names, this dataset involves 60 distinct TFs. Based on

the above criteria, 24.8% of the 4,327 RHSs are enriched of at

least one of these TFs (compared to 1.1% of randomly generated

RHSs). Comparison between weighted and unweighted network

analysis again showed that many transcription modules would be

overlooked if using unweighted networks (details see Text S1).

Protein complex analysis. We applied our method to the

Comprehensive Resource of Mammalian protein complexes

(CORUM) database (http://mips.helmholtz-muenchen.de/

genre/proj/corum/) [54] (September 2009 version). 27.8% of

RHSs are significantly enriched with a q-valuev0:05 in genes

belonging to a protein complex compared to only 0.16% of

randomly generated patterns. The protein complexes are diverse

and have a variety of functions. For example, a series of modules

covered different parts of large complexes such as ribosome (both

the small 40 s unit and the large 60 s unit), proteasome (the 20 s

core unit and the 19 s regulatory unit), and splicesome. In

addition, our modules represent a large number of small

complexes; for example, multiple complexes involved in the cell

cycle (e.g. MCM complex, CDC2 complex, and MCC complex), the

CCT micro-complex that serve as the chaperon for the folding of

cytoskeleton proteins, the respiratory chain complex that is central

to energy metabolism, and the SMN complex that plays an

essential role in the assembly of snRNPs. Figure 6 illustrates two

examples.

Discovery of phenotype-specific modules
Our microarray data collection covers a wide range of

phenotypic conditions, especially most of all, many different types

of cancers (cancers accounts for 46% of the datasets). If an RHS is

activated repeatedly only under one type of phenotypic condition,

then it is likely to contribute specifically to the molecular basis of

Figure 4. Comparison between weighted and unweighted network analysis. The weighted networks were transformed to unweighted
networks by dichotomizing edges with an expression correlation cutoff of 0.6. The proposed tensor method was then applied to both weighted and
unweighted networks. We compared rates of functional homogeneity detected in the top K~200,400, � � � ,2000 modules, ranked by (A) recurrences
or (B) average heaviness in their datasets of occurrence. Weighted graph analysis consistently outperforms unweighted graph analysis.
doi:10.1371/journal.pcbi.1001106.g004
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the phenotype. It is known that phenotypes are determined not

only by genes, but also by the underlying structure of genetic

networks. While traditional genetic studies have sought to associate

single genes with a particular phenotypic trait, identifying

phenotype-specific network modules has been a challenge of

network biology. Below we show that a large number of the RHSs

identified by our method are indeed phenotype-specific.

First, we determined the phenotypic context of a microarray

dataset by mapping the Medical Subject Headings (MeSH) of its

PubMed record to UMLS concepts. We used the MetaMap

Transfer tool provided by the UMLS [55] for this purpose. UMLS

is the largest available compendium of biomedical vocabularies,

spanning approximately one million interrelated concepts. It

includes diseases, treatments, and phenotypic concepts at several

levels of resolution (molecules, cells, tissues, and whole organisms).

We annotated each microarray dataset with matching UMLS

concepts and all of their ancestor concepts. For each RHS, we

evaluated phenotype specificity by computing the hypergeometric

enrichment of specific UMLS concepts present in those datasets

where the RHS occurs. If the q-valuev0:05, we consider the RHS

module is significantly phenotype-specific. 5.62% of RHSs show

phenotype-specific activation patterns, compared to 0.14% of

randomly generated RHSs. The most frequently enriched

phenotype concepts are related to cancer. For example, the most

prevalent concepts are ‘‘Leukemia, Myelocytic, Acute’’ (enriched

in 1.8% of modules) and ‘‘Neoplasms, Neuroepithelial’’ (1.3%).

Among non-cancer concepts, the most frequent are ‘‘Respiratory

Tract Diseases’’ (enriched in 0.2% of modules), ‘‘Bone Marrow

Figure 5. An 8-gene module is enriched in the binding of multiple regulatory factors. These regulatory factors are Pol2 (q-value = 1.73E-3),
H3K36me3 (q-value = 5.54E-3), E2F4 (q-value = 1.65E-4), and cFos (q-value = 2.68E-2). The module is active in 8 datasets, and its member genes are
involved in DNA replication, q-value = 2.15E-2).
doi:10.1371/journal.pcbi.1001106.g005

Figure 6. Two modules are enriched in protein complexes. The module in (A) is enriched in the U2 snRNP 17S protein complex (q-value = 9.9E-5)
and the module in (B) is enriched in the F1F0 ATPase protein complex (q-value = 1.8E-6). The members of the protein complexes are colored in yellow.
The width of an edge is proportional to the average correlation of its genes in the datasets where the module occurs.
doi:10.1371/journal.pcbi.1001106.g006
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Diseases’’ (0.2%) and ‘‘Lung diseases’’ (0.1%). Below we illustrate

two examples of phenotype-specific modules.

Figure 7A shows a 7-gene module (CCNB1, POLE2, CDC2,

PTTG1, RNASEH2A, CDKN3, MCM4) that is active in 21 datasets.

Twelve of the 21 datasets are related to cancer, and three relate

to the study of Glioma (GDS1975, GDS1815, GDS1962)

(q-value = 0.075). Interestingly, four out of the seven genes are

known to be associated with Glioma. CCNB1 and CDC2 play

important roles in the proliferation of Glioma cells [56], the

expression of PTTG1 is correlated with poor prognosis in Glioma

patients [57], and aberrant splicing of CDKN3 increases prolifer-

ation and migration in Glioma cells [58]. This knowledge confirms

our prediction of the module’s strong association with Glioma.

This module is enriched in genes from the cell cycle pathway

(CCNB1, CDC2, PTTG1, and MCM4; q-value = 1.08E-3).

Figure 7B shows a 5-gene module(COL3A1, COL1A2, COL5A2,

VCAN, THY1) that is active in 22 datasets. Four of these datasets

study expression in muscle tissue (GDS914, GDS563, GDS268,

GDS2055) (q-value = 0.03). This module contains 3 genes

(COL3A1, COL1A2, COL5A2) annotated with fibrillar collagen

(q-value = 8.41E-4), a major component of muscle (especially

cardiac skeleton). Furthermore, COL1A2 and VCAN are targeted

by neuron-restrictive silencer factor (NRSF). Notably, [59] has

reported that the NRSF maintains normal cardiac structure and

function and regulates the fetal cardiac gene program. In addition,

VCAN plays a role in conditions such as wound healing and tissue

remodeling in the infracted heart [60]. Four out of five genes in

the module are associated with muscle, providing strong evidence

for phenotype specificity.

High-order cooperativity and regulation in protein
complex networks and transcription regulatory networks

The discovery of RHS modules spanning a variety of

experimental or disease conditions enabled us to investigate

high-order coordination among those modules. We applied our

previously proposed second-order analysis to study cooperativity

among the protein complexes[49]. We define the first-order

expression analysis as the extraction of patterns from one

microarray data set, and the second-order expression analysis as

a study of the correlated occurrences of those patterns (e.g. heavy

subgraph recurrence) across multiple data sets. Here, for each

identified RHS, we constructed a vector of length n storing its

heaviness factors in the n data sets. This vector is a profile of the

module’s first-order average expression correlations, and can be

interpreted as the activity profile of the module in different

datasets. To quantify the cooperativity between two modules, we

calculated the correlation between their first-order expression

correlation profiles. It is defined as the second-order expression

correlation of the two modules.

Figure 8 shows a cooperativity map of all protein complexes

represented by the RHSs that have high (w0:7) second-order

correlations with at least one other protein complexes. The most

striking feature of this map is a large and very heavily

interconnected subnetwork of 32 complexes, all involved in

the cell cycle. Within this subnetwork, 17 complexes (includ-

ing CDC2_Complex, CCNB2_CDC2_Complex, CDK4_Complex,

Chromosomal_Passenger_Complex, and Emerin_Complex_24)

form a tight core wherein each complex has strong second-order

correlations (§0.95) with all others in the core. This structure

highlights the strict transcription regulation of cell cycle processes.

Two other prominent dense subnetworks contain protein

complexes involved in the respiratory chain and those in

translation (e.g. the ribosomal complex, the NOP56 associated

pre-RNA complex, and the TRBP complex associated with

miRNA dicing). Another loosely coupled subnetwork contains

protein complexes mainly involved in transcription and post-

transcriptional modification, including the participating members

of CDC5L complex (pre-mRNA splicing), CF IIAm complex (pre-

mRNA cleavage), SNF2h-cohesion-NuRD complex (chromatin

remodeling), DA complex (transcription activation), and the large

drosha complex (primary miRNA processing), revealing the tight

coupling between transcription and post-transcriptional processes.

Numerous protein complexes (e.g. CEN complex, FIB-associated

complex, and CCT complex) connect these dominant subnetworks

or supercomplexes into an integrated network. Thus, our

approach not only provides a comprehensive catalogue of modules

Figure 7. Examples of phenotype-specific modules associated with (A) Glioma and (B) muscle. The width of an edge is proportional to
the average correlation of its genes in the datasets where the module occurs.
doi:10.1371/journal.pcbi.1001106.g007
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that are likely to represent protein complexes, but also the very

first systematic view of how protein complexes dynamically

coordinate to carry out major cellular functions. That is, by

integrating data generated under a variety of conditions, we have

gained a glimpse into the activity organization chart of the

proteome.

The same principle can be applied to uncover the cooperativity

among the transcription modules, thereby reconstructing tran-

scriptional networks. The RHS discovery resulted in an atlas of

transcription modules activated under different conditions. Each

transcription module can be regulated by one or more

transcription factors. Intuitively, if two transcription modules form

or do not form two co-expression clusters always under the same

set of conditions (that is, in the same data sets), it in fact suggests

that their respective transcription factors are active or inactive

simultaneously. The cooperativity between two sets of transcrip-

tion factors can again be quantified using second-order expression

correlation, since the the activity of a transcription factor can be

assessed by the tightness of co-expression among the genes it

regulates, i.e., the first-order profiles of the corresponding RHS

module. We focus on the 57 transcription factors with enriched

targets in our modules. Among these TFs, we identified 25 TF

pairs, each of which regulate two distinct modules with second-

order correlations greater than 0.7. We traced the potential

sources of cooperativity in these pairs using genome-wide TF

binding data and protein-protein interaction data [61]. Given two

modules controlled respectively by transcription factors TF1 and

TF2, which for simplicity are assumed to be individuals instead of

sets of transcription factors, there are at least three types of possible

direct causes of cooperativity between TF1 and TF2 (Figure 9A):

the expressions of TF1 and TF2 are activated by a common

transcription factor TF3 (a type I transcription network), or TF1

activates the expression of TF2 (a type II transcription network), or

TF1 and TF2 interact at the protein level (a type III transcription

network). In the special case where a module pair shares the

majority of common genes, the cooperativity between TF1 and

TF2 is known to be combinatorial control. Note that these three

types of transcription networks are certainly only a few of the

many possibilities.

We identified 33 transcription networks, among which 10

networks are of Type I, 19 are of Type II, and 4 are of Type III.

These transcription networks interconnect to form a partial cellular

regulatory network (Figure 9). Four networks are involved in the cell

cycle: the Type I network involving SREBP1 and TAF1/E2F4, the

two Type II networks involving STAT1 and E2F4 as well as SP1 and

NFYA, and the Type III network involving ELF1 and SP1. The roles

of these networks are supported by the independent evidence of

cooperative roles of those transcription factors reported in the

literature [62–65]. Other transcription networks participate in

translational elongation, rRNA processing, RNA splicing, DNA

replication, DNA packaging, electron transport, etc. Notably, our

reconstructed transcriptional regulatory network includes 35

modules that represent protein complexes, which provides a

mechanistic explanation for the correlated activities of those protein

complexes, as shown in Figure 8. For example, cooperativity

between the chromosome passenger complex CPC and the MCM

complex (see Figure 9B) can be attributed to the Type II networks

between their regulators E2F4 and NFY. This is consistent with

previous evidences on the synergistic activities between the two

transcription factors [66]. Strikingly, the protein complexes in the

Figure 8. The protein complex cooperativity network. Nodes represent protein complexes, and edges represent high (w0:7) second-order
correlation between pairs. The second-order correlation quantifies the cooperativity of activities of the two RHSs modules across different datasets.
The darker the color of the edges, the stronger the second-order correlation.
doi:10.1371/journal.pcbi.1001106.g008
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ribosome that participate in the translational elongation are

regulated by a network of intertwined transcription networks. This

highlights the regulatory complexity of the translation process, an

impressive feat given that the TFs used in this study represent only a

very small fraction of the TF repertoire.

Discussion

We have developed a novel tensor-based approach to identify

recurrent heavy subgraphs in many massive weighted networks.

This is the first method suitable for pattern discovery in large

databases of many weighted biological networks. We applied the

method to 130 co-expression networks, and identified a large

number of functional and transcriptional modules. We show that

the likelihood for a heavy subgraph to be meaningful increases

significantly with its recurrence in multiple networks, highlighting

the importance of the integrative approach for network analysis.

By analyzing databases of networks derived from a wide range of

experimental conditions, we can also study the high-order

dynamic coordination of modules, a task that can be hardly

addressed using only a single network. In addition, the phenotype

information associated with gene expression datasets provides

opportunities to perform systematic genotype-phenotype mapping

[14,67]. Among our identified modules, many have been shown to

be phenotype-specific. While weighted networks are often

perceived as harder to analyze than their unweighted counter-

parts, we show that many patterns are overlooked if using the

unweighted networks. Although currently unweighted networks

(protein-protein interaction network, genetic interaction network,

and metabolic network, etc.) still dominate biological studies,

rapidly evolving genomics technology will soon be able to provide

quantitative assessments of those interactions, thus resulting in

accumulated weighted networks. Our method is well positioned to

respond to the emerging challenges of network biology.

Figure 9. Reconstruction of transcriptional regulatory networks. (A) Three types of possible transcription networks that could explain a
second-order correlation between two transcriptional modules. Given two modules controlled by two transcription factors, TF1 and TF2, respectively,
the coactivation of the two modules implies cooperativity between TF1 and TF2. This relationship may be caused by a type I network in which the
activities of TF1 and TF2 are controlled by common transcription factor(s) TF3; or a type II network, in which the activity of TF2 is controlled by TF1 or
vice versa; or a type III network, in which TF1 and TF2 interact at the protein level. (B) A regulatory network reconstructed on the basis of the derived
transcription networks. Green circles denote transcription factors, yellow boxes are transcription modules defined by RHSs (detailed information on
these RHSs provided in Text S1), blue ovals denote protein complexes represented by the RHSs, and blue boxes highlight the biological processes in
which the modules are involved.
doi:10.1371/journal.pcbi.1001106.g009
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Supporting Information

Text S1 The supplementary text to give the detailed supple-

mentary information of the methods and results.

Found at: doi:10.1371/journal.pcbi.1001106.s001 (1.25 MB PDF)
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