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A B S T R A C T   

Identifying the geographic origin of a wine is of great importance, as origin fakery is commonplace in the wine 
industry. This study analyzed the mineral elements, volatile components, and metabolites in wine using 
inductively coupled plasma-mass spectrometry, headspace solid phase microextraction gas chromatogra
phy–mass spectrometry, and ultra-high-performance liquid chromatography-quadrupole-exactive orbitrap mass 
spectrometry. The most critical variables (5 mineral elements, 13 volatile components, and 51 metabolites) for 
wine origin classification were selected via principal component analysis and orthogonal partial least squares 
discriminant analysis. Subsequently, three algorithms—K-nearest neighbors, support vector machine, and 
random forest —were used to model single and fused datasets for origin identification. These results indicated 
that fused datasets, based on feature variables (mineral elements, volatile components, and metabolites), ach
ieved the best performance, with predictive rates of 100% for all three algorithms. This study demonstrates the 
effectiveness of a multi-source data fusion strategy for authenticity identification of Chinese wine.   

1. Introduction 

Wine, a fermented beverage made from fresh grapes or grape juice, 
undergoes total or partial fermentation and contains a specific alcohol 
level. Its complex composition includes water, ethanol, sugar, glycerol, 
organic acids, phenols, mineral elements, vitamins, and volatile com
pounds (Snopek et al., 2018). The quality of wine is affected by various 
factors, such as soil, climate, and water source, making its origin a 
crucial determinant of its characteristics (Marchionni et al., 2013). 
Many countries are renowned for producing high-quality wines. In 
China, societal development and increasing consumer demand, coupled 
with the growing popularity of wine culture, have led to a substantial 
expansion of the wine market. The trend of wine consumption and 
production in China is markedly positive. In 2022, China consumed 
approximately 880 million liters of wine (accounting for 4% of the 
global total) and produced 420 million liters (1.6% of the global total), 
ranking eighth and twelfth globally, respectively (OIV, 2022). High- 
quality wines, being of remarkable economic value, have unfortu
nately attracted some illegal traders who deceive consumers by 

falsifying geographical labels. This has resulted in the market being 
flooded with innumerable low-quality and overpriced wines. Therefore, 
verifying the geographical source of wines is increasingly crucial to 
protect high-value geographical indication products and prevent brand 
reputation damage and consumer interests. 

Analytical techniques to evaluate the authenticity of wine-producing 
areas are increasingly utilized. Mineral elements have been established 
as remarkable chemical indicators of the local geographical environ
ment (Gao et al., 2022; Plotka-Wasylka, Frankowski, Simeonov, Pol
kowska, & Namiesnik, 2018). When geochemical or soil data between 
regions are too similar, additional parameters such as the analysis of 
volatile compounds or metabolites can aid in further differentiation 
(Majchrzak, Wojnowski, & Plotka-Wasylka, 2018). Headspace solid- 
phase microextraction gas chromatography–mass spectrometry (HS- 
SPME-GC–MS) is mainly used for analyzing volatile components, 
allowing for the identification of chromatographic peaks and the 
acquisition of relative quantitative information without standard sam
ples (Liang, Xie, & Chan, 2004). Non-targeted metabonomics, a method 
that analyzes many metabolites produced under specific conditions, can 
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identify reliable markers indicative of different geographical origins 
(Cao, Du, Tang, Xi, & Chen, 2021). Insights from prior research indicate 
that single analytical technologies have some limitations in the accuracy 
of origin classification. To improve wine classification and certification, 
integrating data from various technologies to explore collaborative and 
complementary information can enhance the model's classification and 
prediction capabilities. Compared to relying on data from a single 
technology, merging data from complementary technologies provides 
accurate information about the samples, leading to improved inferences 
(classification with a low error rate and predictions with a low degree of 
uncertainty), feasible food sample differentiation, and enhanced 
authenticity discrimination. Mir-Cerdà et al. (2022) demonstrated that 
combining biogenic amine and mineral element data led to an increas
ingly comprehensive model and superior classification outcomes 
compared to the results obtained using a single type of data. Other 
studies have shown that fusing data in food certification can achieve 
high classification accuracy compared to single data types (Drivelos, 
Higgins, Kalivas, Haroutounian, & Georgiou, 2014; Longobardi, 
Casiello, Sacco, Tedone, & Sacco, 2011). However, reports on tracing 
wine origins through the combined analysis of mineral elements, vola
tile compounds, and metabolites are limited. 

The purpose of this study is to comprehensively characterize the 
mineral elements, volatile components, and metabolites in wines from 
various regions of China. The potential chemical markers used for 
differentiating wines from different regions in China were identified by 
principal component analysis (PCA) and orthogonal partial least squares 
discriminant analysis (OPLS-DA). Finally, three algorithms, K-nearest 
neighbors (KNN), support vector machine (SVM) and random forest (RF) 
were applied to model both single and combined datasets to ascertain 
the origin of wine. This classification model has demonstrated strong 
potential for predicting the geographical origin of Chinese red wine, 
which may enhance the stability of the wine market. 

2. Materials and methods 

2.1. Chemicals and reagents 

Hydrochloric acid solution, hypomethyl blue indicator solution, and 
Ferrin solution in the basic physical and chemical experiment were 
purchased from Shanghai Amperexperiment Technology Co. (Shanghai, 
China). Sodium hydroxide solution, sodium hydroxide standard solu
tion, glucose standard solution, and phenol standard solution were 
purchased from Sinopharm Chemical Reagent Co. (Shanghai, China). All 
of these chemicals were analytical grade. 

Multi-element standard solutions (Ag, Al, As, Ba, Be, Ca, Cd, Co, Cr, 
Cu, Fe, K, Mg, Mn, Na, Ni, Pb, Se, Sb, Tl, V, and Zn) and single-element 
standard solutions (In and Rh) were obtained from Bailiwick Technol
ogy, Ltd. (Beijing, China). Sc, In, and Bi solutions were used as internal 
standards. Nitric acid (HNO3, w = 65%) was purchased from Merck 
(Darmstadt, Germany), and hydrogen peroxide (H2O2, w = 30%) was 
purchased from Sinopharm Chemical Reagent Co (Shanghai, China). All 
of these chemicals were analytical grade. 

To analyze volatile compounds, 3-octanol (purity ≥97.0%, analytical 
grade) and sodium chloride (analytical grade) were obtained from 
Sigma-Aldrich (St. Louis, MO, USA) and Sinopharm Chemical Reagent 
Co., Ltd., respectively. 

For metabolomic analysis, methanol, acetonitrile, and ammonia 
were obtained from Thermo Fisher Scientific (Waltham, MA, USA). 
Ammonium acetate, used as the mobile phase additive, was purchased 
from Sigma Aldrich. All of these chemicals and standards were high 
performance liquid chromatography (HPLC) grade. Ultrapure water was 
obtained using a Milli-Q water purification system (>18.2 MΩ, Milli
pore, Billerica, MA, USA). 

2.2. Red wine samples 

In this study, 90 bottles of Cabernet Sauvignon dry red wine from 
famous producing areas in China were collected and analyzed. All 
authentic wines were purchased directly from the manufacturers and 
were from three different production areas: Bohai Bay (BHW), the 
eastern foothills of the Helan Mountains in Ningxia (HLS), and the Huai 
Zhuo Basin (HZ). A total of thirty samples were collected from each 
region. Sample vintages spanning 2016 to 2021 were collected from 
original single-varietal wines to ensure geographical typicality, and all 
samples were stored in cold storage at 4 ◦C until analysis. 

2.3. Determination of physical and chemical indexes 

Physical and chemical parameters of wine samples - alcohol values, 
total sugar, total acid, and pH values - were determined with reference to 
the previous method (OIV, 1990; Machado de Castilhos, Cattelan, Conti- 
Silva, & Del Bianchi, 2013). 

2.4. Mineral element determination 

For mineral element analysis, pretreatment of wine samples was 
carried out according to the previous method with some modifications 
(Sun et al., 2023). Firstly, 15 mL of wine was placed in a 50 mL 
centrifuge tube, to which 5 mL of 68% HNO3 was added. The sample was 
soaked overnight; the next day, the centrifuge tube was placed on a 
graphite ablator (SH230, Jinan Haineng Instrument co., Ltd., Shandong, 
China) and heated to ablution at 120 ◦C. After 1 h, the tube was removed 
and cooled, 2 mL of 30% H2O2 was added, and the tube was completely 
ablated; after 1 h, the cap was opened and the liquid was heated up to 1 
mL. Ultrapure water was added to bring the volume of the sample to 50 
mL, which was used as the original digestion solution. 

The As, Ba, Cd, Co, Cr, Cu, Ni, Pb, Sb, Tl, V, and Zn contents of the 
wine digestion solution were determined using inductively coupled 
plasma MS (NexION 350×, PerkinElmer, Waltham, MA, USA). The in
strument parameters were as follows: radiofrequency power, 1100 W; 
plasma gas flow rate, 15 L/min; carrier gas flow rate: 0.94 L/min; 
auxiliary gas flow rate: 1.2 L/min; and lens voltage: 6.0 V; sampling flow 
rate: 0.8 mL/min. Using 2% HNO3 as the medium, the elemental stan
dard solution was diluted by step by step and a standard curve was 
plotted (linear range: 1.0, 2.0, 5.0, 10.0, 20.0, 50.0, 100.0, 250.0, and 
500.0 μg/L). Sc, In, and Bi standard solutions were used as internal 
standard solution (10 μg/L), added through internal standard tubes. 

2.5. Volatile compound determination 

Volatile compounds in wine samples were semi-quantitatively 
analyzed using headspace solid-phase micro-extraction and gas chro
matography–mass spectrometry techniques (HS-SPME-GC–MS). More
over, 8 mL of wine sample and 10 μL of 3-octanol were placed in a 20-mL 
headspace vial containing 2 g NaCl; the headspace vial was capped 
tightly, vortexed and oscillated for 3 s, and immediately preheated for 
15 min at 40 ◦C in a water bath, followed by insertion of an extraction 
needle (50/30 μm, SUPELCO Company, USA) to adsorb volatile com
ponents for 40 min. The samples were manually injected into the 
apparatus to resolve the samples for 6 min at 240 ◦C in a gasification 
chamber (Wang et al., 2023). 

Volatile compounds were analyzed using a Gas Chromatography- 
Mass Spectrometer (5977 A/7890B, Agilent Technologies, Santa Clara, 
CA, USA) equipped with a strong polarity column (HP-INNOWAX, 60 m 
× 0.25 mm × 0.25 μm, Agilent Technologies, USA). The GC conditions 
were as follows: the carrier gas was high-purity helium (≥99.999%), the 
flow rate was 2 mL/min, and the sample was injected without a shunt. 
The heating procedure was as follows: the starting temperature was 
40 ◦C and was increased to 80 ◦C at 3 ◦C/min, maintained at 3 ◦C/min 
for 6 min, and then increased to 240 ◦C at 5 ◦C/min. The MS conditions 
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were as follows: ion source temperature of 230 ◦C; quadrupole tem
perature of 150 ◦C; transmission line temperature of 250 ◦C; electron 
energy of 70 eV; and mass scanning range from m/z 29 to 300. 

Volatile compounds were identified based on comparison with the 
NIST14 spectral library. Semi-quantitative analysis was used to quantify 
all volatile components, and the relative content of volatile components 
was calculated based on the ratio of the peak area of each compound to 
the peak area of the internal standard (3-octanol) (Wang et al., 2023). 

2.6. Untargeted metabolomics determination 

For metabolite analysis, pretreatment of wine samples was carried 
out according to the previous method with some modifications (PAN, 
GU, LV, et al., 2022). Add 0.5 mL of sample to pre-cooled methanol/ 
acetonitrile/water solution (2:2:1, v/v) vortex to mix, and cryogenically 
sonicate for 30 min. The sample was placed at − 20 ◦C for 10 min. And a 
low-temperature high-speed centrifuge (5430R, Eppendorf AG, German) 
was used to centrifuged the sample at 140,00g 4 ◦C for 20 min. The 
supernatant was dried under vacuum, after which 100 μL of acetonitrile 
water solution (acetonitrile:water = 1:1,v/v) was added to re-dissolve 
the sample, followed by vortexing and centrifugation at 14,000g 4 ◦C 
for 15 min. The supernatant was collected for analysis. 

Red wine extracts were analyzed using an Agilent 1290 Infinity 
HPLC system with a Waters ACQUITY UPLC BEH Amide column (100 
mm × 2.1 mm, 1.7 μm; Agilent Technologies, USA). The mobile phases 
used were (A) water containing 25 mM ammonium acetate and 25 mM 
aqueous ammonia and (B) acetonitrile. The column temperature was 
25 ◦C, flow rate was 0.3 mL/min, and injection volume was 2 μL. The 
gradient elution was as follows: 0–1.5 min, 98% B; 1.5–12 min, linear 
change from 98% to 2% B; 12–14 min, 2% B; 14–14.1 min, linear change 
from 2% to 98% B; 14.1–17 min, 98% B. 

A Q Exactive mass spectrometer (HF-X, Thermo Fisher Scientific, 
USA) was used for MS analysis, and positive and negative electrospray 
ionization (ESI+/ESI− ) modes were used for detection. The parameters 
of the ESI source and MS were as follows: Atomization gas auxiliary 
heating gas 1 (Gas1): 60, auxiliary heating gas 2 (Gas2): 60, CUR:30 psi, 
ion source temperature: 600 ◦C; and spray voltage (ion spray voltage 
floating) ±5500 V (positive and negative modes). The detection range of 
the first-stage mass-charge ratio was 80–1200 Da, resolution was 
60,000, and scanning accumulation time was 100 ms. The second stage 
involved a segmented acquisition method with a scanning range of 
70–1200 Da, a secondary resolution of 30,000, a scanning cumulative 
time of 50 ms, and a dynamic exclusion time of 4 s. 

The raw data were converted into mzXML (Mass Spectrometry Data 
eXtensible Markup Language) format using ProteoWizard (http:// 
proteowizard.sourceforge.net/). Peak alignment, retention time 
correction, and peak area extraction were performed using XCMS 
(eXtensible Computational Mass Spectrometry). Initially, the data 
extracted by XCMS were subjected to metabolite structure identification 
and data preprocessing. The quality of the experimental data was 
evaluated, and the data were analyzed. 

2.7. Statistical analyses 

The distribution trend of red wine samples from different production 
regions was visualized using SIMCA-P 14.1 software (Sartorius, 
Göttingen, Germany) using principal component analysis (PCA) and an 
orthogonal partial least squares discriminant analysis (OPLS-DA) model. 
Significant differences were analyzed using multiple comparison tests 
with SPSS version 23.0 software (SPSS, Inc., Chicago, IL, USA). Origin 
2018 software was used to plot heat maps (OriginLab, Northampton, 
MA, USA). 

Three machine learning algorithms, K-nearest neighbors (KNN), 
support vector machine (SVM), and random forest (RF), were imple
mented using SPSSPRO software. To objectively evaluate whether the 
models were useful for geographic identification, red wine samples were 

randomly divided into a training set (70%) and test set (30%). Model 
performance was evaluated in terms of various metrics, such as accu
racy, precision, recall, and F1 score. 

3. Results and discussion 

3.1. Physicochemical index analysis 

The results of physicochemical indexes of wines from different ori
gins, including alcohol content, total sugar, total acid, and pH values, 
are shown in Supplementary Table S1. A one-way ANOVA analysis 
revealed that alcohol content in wine samples from the three origins 
ranged from 13.07 to 14.61%, total sugar content varied from 3.01 to 
3.98 g/L, total acid content spanned from 3.73 to 5.67 g/L, and pH 
values were between 3.55 and 3.86. Upon examining the chemical 
composition of wine samples from the three appellations, it was deter
mined that there were no significant differences in total sugar and total 
acid contents among Cabernet Sauvignon wines from these regions. 
However, significant differences were noted in alcohol content between 
the BHW and HLS appellations, and variations in pH were observed 
across all three areas. The analysis of physicochemical parameters alone 
proved insufficient for distinguishing wines from different origins, 
necessitating further analysis. 

3.2. Mineral element fingerprinting 

Various mineral elements were analyzed to explore the feasibility of 
tracing wine from different production areas. Supplementary Table S2 
shows the average concentrations of the 12 mineral elements in 
Cabernet Sauvignon wines from BHW, HLS, and HZ. Multiple compar
ative analyses showed that the contents of nine elements, Ba, Cd, Co, Cu, 
Ni, Sb, Tl, V, and Zn, differed significantly among wines from the three 
production areas (p < 0.05), whereas the contents of three elements, As, 
Cr, and Pb did not (p > 0.05). As shown in Supplementary Table S2, the 
levels of Ba, Cd, Co, Cu, Ni, Sb, Tl, and V were significantly higher in 
BHW wines than in HZ wines. This is likely because of the higher tem
peratures in BHW, which result in greater evaporative losses and greater 
water absorption by the grapes, thus increasing the concentration of 
trace elements in the grapes (Greenough, Mallory-Greenough, & Fryer, 
2005). Wines from HZ showed a significantly higher Zn content than did 
wines from other producing areas, with HLS showing the lowest Zn 
content. This may be because the average content of elemental Zn in the 
soils of HZ was higher than that of the other two areas (Guo et al., 2023; 
Liang et al., 2015; Zhou et al., 2022). Wine samples from different 
production areas had different distributions of mineral elements. Addi
tionally, the standard deviations of several elements were large, indi
cating wide variations in different wine samples from the same 
production area. Although the analysis of variance results showed that 
the mineral contents of the three wine regions differed, this method 
could not differentiate the wine regions; further modeling is needed to 
discriminate the mineral contents of the wine samples. 

Fig. 1A shows a heat map of the differential distribution of 12 min
eral elements in the wine samples. Specifically, As, Ba, Tl, and Zn were 
present at high concentrations in most red wine samples, whereas the 
other elements were present at low concentrations. Unexpectedly, 
minerals other than Pb and Sb were present at high concentrations in a 
small percentage of BHW red wine samples. This may be related to the 
climate of the year in which the sample is located, or caused by a variety 
of stainless steel, brass, wood and plastic containers in the winery 
(Hopfer, Nelson, Collins, Heymann, & Ebeler, 2015). 

A wine region identification model was developed using PCA and 
OPLS-DA to explore the applicability of mineral elements in wine region 
traceability. PCA, as an unsupervised identification method, can 
downscale complex data to provide accurate classification. Two prin
cipal components were extracted with R2X and Q2 values of 0.651 and 
0.447, respectively, which together accounted for 65.1% and 44.7% of 
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the total explainable and predictable variance, respectively. As shown in 
Fig. 1B, wine samples from the BHW, HLS, and HZ appellations were 
difficult to differentiate, and the Q2 parameter was <0.5, indicating that 
the model was poorly adapted and predictive of the geographic trace
ability of the wines. To overcome this issue, supervised models such as 
OPLS-DA have been developed to further construct the classification 
model. 

Compared to the PCA model, a better OPLS-DA model was fitted with 
the main parameters R2X = 0.851, R2Y = 0.63, Q2 = 0.586, indicating 
that the model had a strong interpretation and prediction ability. As 
shown in Fig. 1C, wine samples from different geographical sources 
achieved relatively good separation, and only a few samples were mixed 
and difficult to identify. To avoid overfitting, the OPLS-DA model was 
tested using 200 substitution tests. As shown in Fig. 1D, the intersection 
point of the Q2 regression line and vertical axis was <0, indicating that 
the model was not overfitted and that model validation was effective. To 
screen the characteristic mineral elements with an important influence 
on the differences in production areas, further variable importance in 
projection (VIP) analysis was performed, and the distribution of VIP 

values of important mineral elements based on OPLS-DA was deter
mined. A variable with a VIP value >1.0 was considered as a key 
component for classification. As shown in Fig. 1E, five variables with the 
highest identification potential (VIP > 1, p < 0.05) were identified (Cd, 
Co, Tl, V, and Zn), among which Co, Tl, and Zn (VIP > 1.2) were the most 
important discriminants. Geana et al. (2013) successfully distinguished 
wines from three Romanian regions using elements such as Ni, Ag, Cr, 
Sr, Cu, Rb, Mn, Pb, Zn, Co, and V. Similarly, Coetzee, van Jaarsveld, and 
Vanhaecke (2014) successfully classified wines from various South Af
rican estates using nine elements—B, Ba, Cs, Cu, Mg, Rb, Sr, Tl, and 
Zn—in conjunction with PCA, cluster analysis, and discriminant anal
ysis. These findings align closely with the results of the current study. 
These elements are mainly influenced by local climate and soil texture. 
In practice, priority should be given to these important elements, so as to 
reduce the testing cost and improve the recognition efficiency. 

3.3. Volatile composition fingerprinting 

The volatile components of wines from the three different production 

Fig. 1. Heat map (A) of the differential distribution of 12 mineral elements in wine samples (geographic sources: BHW, Bohai Bay; HLS, Ningxia Helanshan Dongluo; 
and HZ, Huai Zhuo Basin); score plots of the principal coordinate analysis (PCA) model (B) and the orthogonal partial least squares discriminant analysis (OPLS-DA) 
model (C) for the mineral elements of wines; results of cross-validation of the 200 calculations using the permutation test (D); variable importance in projection (VIP) 
plots (E). 
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regions in China were determined using HS-SPME-GC–MS. A total of 74 
volatile components was detected, including 27 alcohols, 26 esters, 4 
organic acids, 4 aldehydes, 2 ketones, 3 phenols, 5 terpenes, 3 alkanes. 
The contents and statistics of the main volatile components are listed in 
Table 1. Combined with the radar plots of volatile component compo
sition and mass concentration (Fig. 2A, B), the volatile component types 
and mass concentrations of wines from the three production regions in 
China showed some variability. Alcohols and esters were the main vol
atile components in the wine samples (Fig. 2A), which is consistent with 
the results of other studies (Garcia-Carpintero, Sanchez-Palomo, & 
Gonzalez-Vinas, 2011). In terms of the mass concentrations of the vol
atile components (Fig. 2B), HZ showed a higher content of alcohols, 
esters, and phenols. Different alcohols can produce wines with different 
aromas and flavors. Low concentrations of higher alcohols can impart a 
pleasant aroma to wine, whereas high concentrations of higher alcohols 
can have a negative impact on wine aroma and even harm human 
health. As the content of higher alcohols increases, botanical and black 
pepper aromas in wines are enhanced, whereas red fruit and woody 
aromas in wines are significantly suppressed (Sun & Xiao, 2018). 
Therefore, the content of higher alcohols, which are byproducts of wine 
fermentation, can be important indicators of wine quality. This study 
found that the alcohol richness of HZ was higher than that of wines from 
the other two appellations, mainly because HZ wines contained signif
icantly higher levels of phenylethanol, furfuryl alcohol, 2,3-butanediol, 
and 4-terpineol compared to those in BHW and HLS. Furfuryl alcohol 
gives the wine a caramel aroma, which is mainly converted from furfural 
in the oak during aging; phenyl alcohol has a floral and peachy-fruity 
aroma; 4-terpineol, which is often found in the skin of grapes and 
vines, is warm and peppery, with lighter earthy and woodsy notes; and 
2,3-butanediol, a by-product of alcoholic fermentation, has a creamy 
and buttery flavor, which is greater in greater amounts of sugar in the 
grape juice (Cadahia, Fernandez de Simon, Sanz, Poveda, & Colio, 
2009). HZ showed the highest 2, 3-butanediol content, indicating that 
the grape berries had a high sugar content and moderate sour and sweet. 
This is because of the sandy soil, dry climate, abundant sunshine, and 
large temperature differences between day and night, which are favor
able for sugar accumulation. For the same reason, the phenolic content 
of wines from HZ was higher than that of wines from the other two sites. 
Excessive volatile phenolics can diminish the fruity aroma of wines, but 
at low concentrations, it is generally considered that volatile phenolics 
≤420 μg/L increase the complexity of the wine aroma (Silva, Campos, 
Hogg, & Couto, 2011). Esters in HZ wines with higher richness than 
those in other two sites belonged to the fatty acid ethyl esters (ethyl 
butyrate, ethyl heptanoate, ethyl isovalerate, diethyl butanedioate, 
monoethyl butanedioate, and ethyl 2-methylbutanoate), which are 
mainly produced via the fatty acid acyl and acetyl coenzyme A 
pathways. 

To assess the volatile components in detail, PCA was performed on 
the volatile component data. A total of four principal components was 
extracted, explaining 63.5% of the total variance. Notably, the Q2 value 
was − 0.016. In addition, as shown in Fig. 2C, wine samples from the 
BHW, HLS, and HZ appellations showed high similarity and a negative 
Q2 parameter, suggesting that the model was unable to provide effective 
geographic traceability for wine samples. To exclude intra-group dif
ferences, highlight inter-group differences, and maximize the differen
tiation of wines from the three appellations, supervised OPLS-DA was 
used, with the main parameters R2X = 0.518, R2Y = 0.54, and Q2 =

0.385, indicating that the model fit was high but the model's predictive 
ability was poor. As shown in Fig. 2D, wines from the HZ were clearly 
separated from wines from the other two appellations, and those from 
BHW and HLS overlapped to some extent. The results of the 200 per
mutation tests were unsatisfactory (intercepts of R2 and Q2 were 0.149 
and − 0.281, respectively; the original R2 and Q2 were not always larger 
than their corresponding values after permutation), and the OPLS-DA 
model showed some overfitting (Fig. 2E). In addition, to identify vari
ables with an important contribution to sample classification, this study 

also calculated the VIP values of the volatile components based on the 
OPLS-DA model; the 14 compounds with VIP values >1 are listed in 
Fig. 2F. The condition of p < 0.05 was also considered, and 13 charac
teristic volatile components were screened out. Among these were 6 
alcohols, 1 organic acid, 1 ester, 3 terpenes, 1 phenols, 1 aldehyde. 
Similar to other studies, the regional diversity in this study depends 
mainly on alcohols, terpenoids, ketones, and some acids and esters 
(Zhang et al., 2023). The results of this paper suggest that the volatile 
components of wines from different regions vary considerably. These 
differences may be influenced by the expression of functional genes, 
nutritional status of the grapes, and various fermentation factors (Ling 
et al., 2022). This study demonstrated that GC–MS-based volatile 
component analysis combined with multivariate statistical analysis may 
be used as a potential tool to identify the origin of wine. 

3.4. Untargeted metabolomics fingerprinting 

Untargeted metabolomics is a powerful analytical strategy for iden
tifying the markers of food authenticity and geographic traceability. 
Metabolites identification is essential for obtaining information on the 
classification of samples and possible markers of authenticity. To further 
categorize wines by appellation, an untargeted metabolomics strategy 
based on UHPLC-Q-Exactive Orbitrap-MS was established to obtain 
comprehensive information on wine metabolites. Fig. 3A and B show the 
total ion flow chromatograms of wine samples from different 
geographical sources. A large number of compounds was detected in 
both positive and negative ion modes, indicating that the method is 
effective for comprehensively characterizing wine compounds. Howev
er, it is difficult to identify the geographical origin of wine samples based 
on macroscopic comparisons of metabolic fingerprints, both in positive 
and negative ion modes, although wines originate from different 
geographical sources. Therefore, further mining is essential to exploit 
the taxonomic potential of the obtained metabolic fingerprints. Ac
cording to previous studies, anthocyanin glycosides and anthocyanidins 
in wines likely ionize in positive ion mode, whereas phenolic acids, 
flavonols, and flavan-3-ols produce stronger signals in negative ion 
mode (Palade, Croitoru, Albu, Radu, & Popa, 2021). Thus, the two po
larity datasets were analyzed to obtain as many metabolites as possible. 

A total of 6830 (for ESI+ mode) and 6404 (for ESI− mode) ion peaks 
were extracted from each wine sample using R-package XCMS software. 
The data were further processed, resulting in the annotation of 2075 
metabolites (1276 for ESI+ mode and 799 for ESI− mode) using the 
available database. A PCA-based geographic classification model was 
developed. Specifically, the model fitted 11 principal components with 
principal parameters of 0.805 and 0.695 for R2X and Q2, respectively, in 
positive ion mode (Fig. 3C), whereas 12 principal components were 
fitted with principal parameters of 0.764 and 0.65 for R2X and Q2, 
respectively, in negative ion mode (Fig. 3D). The red wine samples from 
HZ clustered independently and were clearly distinguished from sam
ples from the other producing regions, whereas samples from BHW and 
HLS were difficult to separate, as they showed high overlap. The ag
gregation of QC samples shows that the UHPLC-Q-Exactive Orbitrap-MS 
analysis method has good stability and reproducibility. The red wine 
samples from HZ were collected at a high latitude and the overall tem
perature was lower than that of the other two places, which led to large 
differences in metabolite production between red wines from this 
appellation and those from the other regions. Although BHW and HLS 
were geographically distant, there was little difference in their metab
olites, which may be related to being at the same latitude. 

Because PCA cannot ignore within-group errors and eliminate 
random errors unrelated to the purpose of the study, a supervised OPLS- 
DA model was constructed to identify variables that caused separation 
between groups. OPLS-DA modeling was used to produce score plots for 
the BHW, HLS, and HZ samples, which more clearly represented the 
metabolite differences among the three production regions. As shown in 
Fig. 3E and F, in positive ion mode, 49.2% (R2X) of the variables 
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Table 1 
Results of GC–MS analysis of aroma components of Cabernet Sauvignon wines from three different production areas.  

No. Compounds CAS Threshold (μg/L) RI Concentration (μg/L) 

BHW HLS HZ 

1 Glycerol 56–81-5 nd nd 2358.95 ± 285.80a 1456.64 ± 252.98a 1691.84 ± 328.36a 

2 Phenyl alcohol 60–12-8 100001 1116 628.70 ± 182.77a 767.07 ± 128.20a 1310.97 ± 148.28b 

3 Propanol 71–23-8 500001 1056 29.91 ± 8.28b 42.49 ± 7.64a 51.12 ± 8.77ab 

4 Butanol 71–36-3 1500001 675 13.08 ± 1.41a 11.30 ± 0.51a 10.45 ± 1.07a 

5 2-Methyl propanol 78–83-1 400001 625 109.52 ± 14.91b 161.61 ± 17.68ab 235.91 ± 8.13a 

6 Furfuryl alcohol 98–00-0 150001 851 3.56 ± 0.42b nd 16.45 ± 0.87a 

7 Benzyl alcohol 100–51-6 2000001 1110 19.12 ± 3.63a 25.00 ± 4.78a 28.88 ± 3.53a 

8 N-hexanol 111–27-3 80001 868 114.16 ± 14.93a 139.26 ± 14.61a 206.56 ± 13.27a 

9 N-octanol 111–87-5 1201 1290 19.00 ± 4.21b 18.75 ± 2.93ab 29.28 ± 3.70a 

10 3-Methyl-1-butanol 123–51-3 300001 736 1687.99 ± 131.62b 2333.11 ± 121.28ab 3592.59 ± 144.09a 

11 1-Nonyl alcohol 143–08-8 6001 1665 15.37 ± 4.11a 15.16 ± 0.85b 14.12 ± 2.27ab 

12 3-Methylthiopropanol 505–10-2 5001 928 12.97 ± 4.44b 15.11 ± 4.26a 14.64 ± 2.90c 

13 2,3-Butanediol 513–85-9 1500001 788 34.99 ± 4.46a 48.24 ± 5.36b 102.09 ± 6.93b 

14 3-Methyl-1-amyl alcohol 589–35-5 7.53 1324 3.40 ± 0.56a 4.94 ± 1.07a 5.89 ± 0.88a 

15 4-Methyl-1-amyl alcohol 626–89-1 21873 853 4.16 ± 0.92a 3.22 ± 0.42a nd 
16 Cis-3-hexenol 928–96-1 9101 935 5.58 ± 0.77a 9.76 ± 1.87a 5.96 ± 1.16a 

17 Trans-3-hexene-1-ol 928–97-2 4001 852 6.54 ± 0.60a 8.32 ± 1.46a 7.69 ± 1.09a 

18 (2S,3S)-(+)-2,3-Butanediol 19,132–06-0 nd nd 216.25 ± 13.84a nd 132.73 ± 25.12a 

19 (S)-(+)-3-Methyl-1-pentanol 42,072–39-9 10001 859 3.42 ± 0.44b 5.99 ± 0.80ab 6.95 ± 1.16a 

20 2-Ethylhexanol 104–76-7 2600003 1034 6.27 ± 0.13 nd nd 
21 Cis-2-Penten-1-ol 1576-95-0 nd 750 2.44 ± 0.81 nd nd 
22 5-Methyl-2-hexanol 627–59-8 nd 1593 2.04 ± 0.82 nd nd 
23 2-Heptanol 543–49-7 701 850 1.24 ± 0.36 nd nd 
24 Citronellol 106–22-9 1001 1675 20.91 ± 3.89a nd 10.73 ± 2.34b 

25 4-Terpeneol 562–74-3 1101 nd 5.50 ± 1.80b nd 10.20 ± 1.36a 

26 Alpha-Terpineol 98–55-5 2503 1191 36.53 ± 1.55 nd nd 
27 Geraniol 106–24-1 103 1849 15.59 ± 1.18 nd nd 
Alcohols (27 types) 
28 Acetic acid 64–19-7 2000001 1190 149.10 ± 19.07b 224.91 ± 12.98ab 350.18 ± 18.26a 

29 Caprylic acid 124–07-2 5001 1180 113.28 ± 7.42a 118.97 ± 13.77a 95.19 ± 18.04a 

30 Caproic acid 142–62-1 30001 990 60.84 ± 16.50a 73.84 ± 25.65a 73.34 ± 24.47a 

31 Decanoic acid 334–48-5 150001 1373 22.49 ± 9.22a 15.86 ± 8.25a 15.64 ± 7.93b 

Organic acids (4 types) 
32 Ethyl lactate 97–64-3 1280832 936 87.69 ± 15.34a 146.59 ± 11.78a 123.83 ± 15.76a 

33 Phenylethyl acetate 103–45-7 2501 1258 15.90 ± 8.41a 19.58 ± 7.88a 6.14 ± 1.81a 

34 Ethyl butyrate 105–54-4 201 802 33.67 ± 13.86b 46.72 ± 9.34ab 64.15 ± 7.07a 

35 Ethyl heptanoate 106–30-9 4001 1334 2.07 ± 0.38b 2.52 ± 1.12b 5.04 ± 2.14a 

36 Ethyl octanoate 106–32-1 51 1196 312.28 ± 23.88a 325.18 ± 28.82a 448.25 ± 34.86a 

37 Methyl caproate 106–70-7 nd 1205 nd 15.31 ± 1.94a 6.20 ± 0.82a 

38 Ethyl isovalerate 108–64-5 72 827 14.53 ± 7.01b 20.55 ± 7.53b 50.83 ± 8.86a 

39 Ethyl decanoate 110–38-3 2001 1396 31.59 ± 3.36a 28.11 ± 8.40a 42.05 ± 7.15a 

40 Methyl octanoate 111–11-5 2001 1390 7.53 ± 1.68a 6.74 ± 2.71a 6.00 ± 1.62a 

41 Methyl salicylate 119–36-8 nd 1420 27.11 ± 3.96ab 18.19 ± 1.60a 32.36 ± 2.21b 

42 Diethyl succinate 123–25-1 12001 1182 470.50 ± 86.04b 829.46 ± 31.21b 1596.46 ± 47.24a 

43 Ethyl hexanoate 123–66-0 51 1000 338.69 ± 79.83a 448.59 ± 33.56a 545.82 ± 80.13a 

44 3-Methyl-1-butanol acetate 123–92-2 301 876 162.88 ± 71.04a 148.09 ± 39.95a 209.82 ± 34.75a 

45 Ethyl acetate 141–78-6 75001 894 513.70 ± 38.05a 751.52 ± 65.27a 1305.86 ± 47.62a 

46 Hexyl acetate 142–92-7 6701 1011 9.55 ± 4.53a 11.48 ± 6.64a 24.13 ± 7.58a 

47 Ethyl valerate 539–82-2 272 1607 nd nd 6.16 ± 0.86 
48 Ethyl 2-furoate 614–99-3 nd 1638 3.03 ± 1.24b 4.09 ± 1.19ab 14.16 ± 2.00a 

49 Ethyl 2-hydroxypropionate 687–47-8 500003 805 110.50 ± 7.87a 123.34 ± 6.64a 341.03 ± 15.02a 

50 Monoethyl succinate 1070-34-4 nd 2351 329.29 ± 45.08b 156.04 ± 7.92b 238.86 ± 32.86a 

51 Ethyl 2-methyl butyrate 7452–79-1 181 1003 11.79 ± 5.01b 18.88 ± 7.32b 43.85 ± 4.41a 

52 Whisky lactone 39,212–23-2 nd 1989 nd nd 46.49 ± 3.99 
53 Ethyl phenylacetate 101–97-3 4062 1822 nd nd 10.52 ± 1.56 
54 Ethyl 3-hexenoate 2396-83-0 nd 1151 nd nd 1.23 ± 0.51 
55 Isoamyl lactate 19,329–89-6 nd nd nd nd 14.83 ± 3.12 
56 Ethyl Laurate 106–33-2 4001 1595 7.00 ± 0.65 nd nd 
57 Ethyl sorbate 2396-84-1 nd 1519 nd 45.82 ± 2.27 nd 
Esters (26 types) 
58 3-Octanone 106–68-3 21.41 830 7.73 ± 1.36a 5.82 ± 1.60a 8.52 ± 1.44a 

59 3-Hydroxy-2-butanone 513–86-0 300001 1320 3.48 ± 0.83b 14.99 ± 1.07a 17.73 ± 4.29ab 

Ketones (2 types) 
60 Acetaldehyde 75–07-0 5001 645 93.54 ± 6.68 nd nd 
61 Furfural 98–01-1 141001 830 24.52 ± 7.73a 31.64 ± 12.77a 31.56 ± 8.81a 

62 Benzaldehyde 100–52-7 20001 790 15.60 ± 2.11b 111.09 ± 11.70a 14.14 ± 5.02b 

63 3-Furfural 498–60-2 nd 828 9.66 ± 2.04a 32.88 ± 9.22a 22.65 ± 11.70a 

Aldehydes (4 types) 
64 2, 4-Di-tert-butylphenol 96–76-4 2001 2325 12.10 ± 4.48b 17.48 ± 5.56b 26.43 ± 9.42a 

65 Phenol 108–95-2 nd 1978 2.64 ± 0.70b 1.81 ± 1.13a nd 
66 M-cresol 108–39-4 nd 1077 nd 0.46 ± 0.25 nd 
Phenols (3 types) 
67 Styrene 100–42-5 nd 890 4.52 ± 1.89b 7.59 ± 4.96b 11.15 ± 6.01a 

(continued on next page) 
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explained 91.4% (R2Y) of differences among wines from the three pro
duction zones, with an average predictive power after cross-validation 
of 89.5% (Q2); in negative ion mode, 56% (R2X) of the variables 
explained 99.1% (R2Y) of differences among wines from the three pro
duction zones, with an average predictive power after cross-validation 
of 97.2% (Q2). BHW, HLS and HZ were completely separated, indi
cating that OPLS-DA can effectively distinguish samples. 

To prevent model overfitting, the model was validated using the 
replacement test with 200 responses (Fig. 3G and H). The results showed 
that all R2 points from left to right were lower than the original R2 

points, and all Q2 points were lower than the original Q2 points. In the 
positive ion model, the metabolites in red wine from the three produc
tion regions conformed to R2 = 0.066, Q2 = − 0.206; in the negative ion 
model, R2 = 0.464, Q2 = − 0.445. Thus, the randomized arrangement of 
the model produced smaller R2 and Q2 values than those of the original 
model, indicating that the modeling was effective. 

Based on the criteria of p < 0.05 and VIP score > 1.5 in univariate 
analysis, 31 and 20 characteristic variables were screened as differential 
metabolites among the three wine taxa in the ESI + and ESI− models, 
respectively. A complete list of these metabolites is shown in Supple
mentary Table S3 and Table S4. The metabolites were categorized as 
phenylacetones and polyketides, lipids and lipid-like molecules, organic 
acids and their derivatives, organic oxides, organic heterocyclic com
pounds, benzenes, and other compounds (Fig. 4). Fig. 5A and B show 
heat maps of the identified differential metabolites in the red wine 
samples. The samples were clustered according to the appellation, and 
differential metabolites were classified into four categories, which 
initially suggested that the identified differential metabolites can be 
used for geographic origin identification of Chinese red wine. To un
derstand how these metabolites behave in samples from different pro
duction regions, the relative contents of each group of compounds in red 
wine samples from each production region were compared, as shown in 
Fig. 5C–J. For the ESI+ mode data shown in Fig. 5C–F, Groups 1 and 2 
were more abundant in the HLS sample and compounds in Groups 3 and 
4 were most abundant in the HZ and BHW samples, respectively. For the 
ESI-mode data shown in Fig. 5G–J, Group 1 and 3 compounds were most 
abundant in the BHW sample, Group 2 compounds were least abundant 
in the BHW sample, and Group 4 compounds were most abundant in the 
HLS sample. Group 1 and 2 compounds in ESI+ mode and group 3 and 4 
compounds in ESI mode were mainly amino acids and flavonoids. Fla
vonoids promote color stability and are responsible for the astringency 
of wines, affecting their taste and mouth feel (Bimpilas, Tsimogiannis, 
Balta-Brouma, Lymperopoulou, & Oreopoulou, 2015). Amino acids are 
commonly used for yeast and bacterial growth during fermentation, and 
amino acid levels strongly depend on the process factors, such as the 
addition of nitrogen (Arapitsas et al., 2020). Additionally, microbial 
communities on grape skin are influenced by the wine production 
location and climatic conditions (Wei et al., 2022). Therefore, amino 
acid profiles can be used as markers to distinguish wines from different 
regions. The distribution of the three geographic sources in China is 
relatively decentralized, with large differences in eco-climatic condi
tions. The BHW production area is located close to the Bohai Sea and 

experiences abundant heat and rainfall. The HLS region has a typical 
continental climate, with a dry climate and large temperature difference 
between day and night. The HZ production area is in a semi-arid zone of 
a middle temperate zone, with high light, moderate heat, a large tem
perature difference between day and night, a cool summer, and a dry 
climate; the soil texture is sandy and rich in minerals. Climatic condi
tions, including temperature, light, and rainfall, were closely related to 
metabolites, such as organic acids and terpenoids, in the ESI+ and ESI−
models (Martinez-Luscher, Chen, Brillante, & Kurtural, 2017; Torres, 
Martinez-Luscher, Porte, & Kurtural, 2020; Wang et al., 2022). 

3.5. Identifying red wine regions using machine learning algorithms 

The PCA and OPLS-DA models based on mineral elements, volatile 
components, and metabolites initially discriminated the red wine re
gions, particularly based on metabolites. One possible explanation for 
the low accuracy of individual analytical methods in identifying mineral 
elements and volatile components is the presence of numerous variables. 
However, a more plausible reason is that each method alone is insuffi
cient to obtain a comprehensive geographic profile. Therefore, some of 
the red wine samples overlapped and could not be clearly distinguished. 
In contrast to the above classifiers, machine-learning algorithms have 
strong capabilities for data processing and classification construction 
(Gromski et al., 2014). Therefore, three classical recognition algorithms 
(KNN, SVM, and RF) were used to verify the reliability of the models and 
obtain accurate classification results. In addition, multi-technology data 
fusion can provide complementary information on chemical features, 
thus improving the accuracy of geographic traceability. This study fused 
multi-technology data to improve the recognition rate. 

These established datasets were normalized and scaled to the same 
matrix for KNN, SVM, and RF analyses. Table 2 and Table 3 lists the 
evaluation metrics (accuracy, precision, recall, and F1-score) of the 
three classifiers on single datasets and fusion datasets. Precision and 
recall are typically used to evaluate the accuracy of different algorithms. 
The F1-score is a comprehensive indicator of precision and recall, usu
ally as close to 100% as possible. In this study, the recognition rate of all 
the training texts is above 87.0%, indicating that these models have 
relatively good reliability. 

In Table 2, the results from all-variable modeling indicate that the 
prediction accuracy for volatile compounds was the lowest, ranging 
from 55.0% to 87.8%, whereas that for metabolites was the highest, 
ranging from 93.1% to 97.0%. The accuracy of mineral elements was 
slightly lower than that of metabolites, ranging from 71.0% to 97.0%. 
Compared with the results of full variable modeling, the prediction ac
curacy for characteristic variable modeling has improved to various 
degrees. Table 3 shows that the prediction accuracy for the combination 
of volatile components and mineral elements was the lowest, ranging 
from 64.3% to 97.0%, in data-level fusion. The combination of volatile 
components, minerals, and metabolites yielded the best performance, 
achieving 100.0% accuracy across all algorithms except for KNN in the 
validation set. Metabolites play a major role in classification and 
considerably enhance model prediction, whereas volatile constituents 

Table 1 (continued ) 

No. Compounds CAS Threshold (μg/L) RI Concentration (μg/L) 

BHW HLS HZ 

68 Terpene oleene 586–62-9 2603 1083 4.69 ± 1.13a nd 3.01 ± 0.78ab 

69 Cyclooctyl tetraene 629–20-9 nd 910 5.16 ± 0.62a 4.60 ± 1.78a 5.44 ± 1.69a 

70 Myrcene 123–35-3 1.23 993 5.15 ± 2.23 nd nd 
71 D-terpene 5989-27-5 nd 1030 5.32 ± 1.69 nd nd 
Terpene (5 types) 
72 Cycloheptane 291–64-5 nd 791 nd 11.61 ± 1.45a 11.36 ± 2.22a 

73 Bis(trimethylsiloxy)methylsilane 1873-88-7 nd nd 1.06 ± 0.23 nd nd 
74 Methyltris(trimethylsiloxy)silane 17,928–28-8 nd nd 6.09 ± 1.90 nd nd 
Alkanes (3 types) 

Odor threshold referred to literature: 1 (Chen et al., 2022). 2 (Niu, Yao, Xiao, Xiao, & Zhu, 2017). 3 (Jiang, Xi, Luo, & Zhang, 2013) 
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and mineral elements are comparatively less critical. In the data-level 
data fusion modeling process, various aspects of experimental data are 
effectively combined, but the fusion of data leads to an increase in the 
number of variables, introducing irrelevant information that can inter
fere with the model's discriminative ability. Consequently, this study 
advanced to feature-level data fusion. The results showed that datasets 

fused based on feature variables (mineral elements, volatile compo
nents, and metabolites) were deemed the optimal combination, 
achieving a 100.0% prediction rate across all three algorithms. The 
phenomenon may be attributed to the fact that the other three combi
nations have an inappropriate number of variables and contain exces
sive redundant information. The KNN algorithm exhibited the lowest 

Fig. 2. Radar plots of volatile constituent species (A) and mass concentration (B) in wine samples from three production regions in China; plots of scores from the 
principal coordinate analysis (PCA) model (C) and the orthogonal partial least squares discriminant analysis (OPLS-DA) model (D) for volatile constituents; results of 
cross-validation of 200 calculations using the permutation test (E); and plots of the variable importance in projection (VIP) (F). 
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performance, possibly because of its limitations, such as only consid
ering the number of adjacent categories and neglecting the distance 
between samples. Therefore, feature-level data fusion based on mineral 
elements, volatile components, and metabolites is considered the best 
model. Similarly, Gao et al. (2022) measured the mineral elements of 
wines from six regions in China through ICP-MS, and combined three 
machine learning models (feedforward neural network, random forest 
and support vector machine) to identify the geographical origin of the 
wines, the correct recognition rates obtained using the three models 
were 100%, 96.67% and 98.33% respectively. The accuracy of the 
classification models in the above studies was lower than that obtained 
in this study. These results can be attributed not solely to differences 
among the samples but mainly to the choice of the identification tech
nique employed. Therefore, this study indicated that ICP-MS, GC–MS 
and UPLC-Q-Exactive Orbitrap-MS combined with machine learning 
models was a potential tool to identify the geographical origin of Chi
nese wines. 

4. Conclusions 

In this study, the mineral elements, volatile components and me
tabolites in wine were analyzed by ICP-MS, HS-SPME-GC–MS and 
UHPLC-Q-Exactive Orbitrap MS analysis techniques. The most critical 
discriminant variables (5 mineral elements, 13 volatile components, and 

Fig. 3. Ultra-perofmance liquid chromatography-quadrupole time-of-flight-mass spectrometry (UHPLC-Q-Exactive Orbitrap MS) total ion chromatograms of 
Cabernet Sauvignon wines from different production areas in electrospray ionization-positive (ESI+) and ESI− negative (ESI− ) modes (A and B), principal coordinate 
analysis (PCA) model score plots (C and D), orthogonal partial least squares discriminant analysis (OPLS-DA) model score plots (E and F), and cross-validation results 
of 200 calculations using the substitution test (G and H). 

Fig. 4. Type composition of significantly different metabolites in wines from 
three regions. 
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Fig. 5. Heatmap visualization of electrospray ionization-positive (ESI+) mode (A) and ESI-negative (ESI− ) mode. (B) Differential metabolites in wine samples and 
boxplots of the relative amounts of each group of compounds in ESI+ mode (C–F) and ESI− mode (G–J) in wine samples from each region. 
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51 metabolites) in wine origin classification were selected by PCA and 
OPLS-DA. Subsequently, three algorithms were applied to model both 
single and fused datasets for origin identification. The results showed 
that the fused datasets based on feature variables, combining mineral 

elements, volatile components, and metabolites, achieved the best per
formance, with predictive accuracy of 100% across all three algorithms. 
This study underscores the efficacy of a data fusion strategy for 
authenticity identification of Chinese wine. Future research will include 

Table 2 
Evaluation metrics of three classifiers on single datasets.  

Model Dataset Number of variables Evaluation indicators Training sets validation sets 

KNN SVM RF KNN SVM RF 

Full-variable modeling  

VC 
74 

Accuracy (%) 82.3 87.1 84.0 57.1 71.4 61.0 
Precision (%) 84.2 90.3 87.0 57.1 87.8 81.0 

Recall (%) 82.3 87.1 84.0 69.8 71.4 61.0 
F1-scores(%) 82.4 86.5 81.0 55.7 72.4 55.0 

ME 12 

Accuracy (%) 94.0 88.7 100.0 71.0 82.1 96.0 
Precision (%) 94.0 88.8 100.0 88.0 84.4 97.0 

Recall (%) 94.0 88.7 100.0 71.0 82.1 96.0 
F1-scores(%) 93.0 88.7 100.0 72.0 82.1 97.0 

MET 2075 

Accuracy (%) 100.0 100.0 100.0 93.4 96.0 93.5 
Precision (%) 100.0 100.0 100.0 93.1 97.0 94.6 

Recall (%) 100.0 100.0 100.0 94.4 96.0 93.5 
F1-scores(%) 100.0 100.0 100.0 93.7 97.0 93.6 

Feature variable modeling 

VC 13 

Accuracy (%) 90.3 79.0 100.0 71.4 60.7 92.9 
Precision (%) 91.1 81.4 100.0 71.2 67.2 94.4 

Recall (%) 90.3 79.0 100.0 71.4 60.7 92.9 
F1-scores(%) 90.3 79.3 100.0 70.8 61.5 92.9 

ME 5 

Accuracy (%) 90.3 69.4 100.0 78.6 53.6 96.4 
Precision (%) 90.3 69.7 100.0 80.4 63.7 96.9 

Recall (%) 90.3 69.4 100.0 78.6 53.6 96.4 
F1-scores(%) 90.3 67.4 100.0 77.6 53.0 96.5 

MET 51 

Accuracy (%) 100.0 100.0 100.0 94.0 97.0 99.4 
Precision (%) 100.0 100.0 100.0 94.0 98.0 99.5 

Recall (%) 100.0 100.0 100.0 94.0 97.0 99.4 
F1-scores(%) 100.0 100.0 100.0 93.0 98.0 99.4 

VC = Volatile compositions; ME = Mineral elements; MET = Metabolomics. 

Table 3 
Evaluation metrics of three classifiers on fusion datasets.  

Data fusion strategy Data set Number of variables Evaluation indicators Training sets validation sets 

KNN SVM RF KNN SVM RF 

Data-level data fusion 

VC + ME 86 (74 + 12) 

Accuracy (%) 87.1 100.0 93.5 67.9 96.0 85.7 
Precision (%) 90.9 100.0 93.8 78.9 97.0 85.7 

Recall (%) 87.1 100.0 93.5 67.9 96.0 85.7 
F1-scores(%) 87.6 100.0 93.5 64.3 97.0 85.7 

VC + MET 2149 (74 + 2075) 

Accuracy (%) 98.4 100.0 100.0 96.8 100.0 100.0 
Precision (%) 98.5 100.0 100.0 97.1 100.0 100.0 

Recall (%) 98.4 100.0 100.0 93.5 100.0 100.0 
F1-scores(%) 98.4 100.0 100.0 94.6 100.0 100.0 

ME + MET 2087 (12 + 2075) 

Accuracy (%) 96.8 100.0 100.0 85.7 100.0 100.0 
Precision (%) 97.1 100.0 100.0 90.1 100.0 100.0 

Recall (%) 96.8 100.0 100.0 85.7 100.0 100.0 
F1-scores(%) 96.7 100.0 100.0 96.7 100.0 100.0 

VC + ME + MET 2161 (74 + 12 + 2075) 

Accuracy (%) 100.0 100.0 100.0 98.9 100.0 100.0 
Precision (%) 100.0 100.0 100.0 98.8 100.0 100.0 

Recall (%) 100.0 100.0 100.0 98.9 100.0 100.0 
F1-scores(%) 100.0 100.0 100.0 98.9 100.0 100.0 

feature-level data fusion 

VC + ME 18 (13 + 5) 

Accuracy (%) 93.5 88.7 100.0 75.0 82.1 85.7 
Precision (%) 94.6 89.1 100.0 78.7 88.5 92.9 

Recall (%) 93.5 88.7 100.0 75.0 82.1 85.7 
F1-scores(%) 93.6 88.7 100.0 75.3 80.6 86.7 

VC + MET 64 (13 + 51) 

Accuracy (%) 100.0 100.0 100.0 100.0 100.0 98.7 
Precision (%) 100.0 100.0 100.0 100.0 100.0 96.4 

Recall (%) 100.0 100.0 100.0 100.0 100.0 97.8 
F1-scores(%) 100.0 100.0 100.0 100.0 100.0 97.1 

ME + MET 56 (5 + 51) 

Accuracy (%) 100.0 100.0 100.0 99.4 100.0 100.0 
Precision (%) 100.0 100.0 100.0 98.5 100.0 100.0 

Recall (%) 100.0 100.0 100.0 98.4 100.0 100.0 
F1-scores(%) 100.0 100.0 100.0 98.4 100.0 100.0 

VC + ME + MET 69 (13 + 5 + 51) 

Accuracy (%) 100.0 100.0 100.0 100.0 100.0 100.0 
Precision (%) 100.0 100.0 100.0 100.0 100.0 100.0 

Recall (%) 100.0 100.0 100.0 100.0 100.0 100.0 
F1-scores(%) 100.0 100.0 100.0 100.0 100.0 100.0 

VC = Volatile compositions; ME = Mineral elements; MET = Metabolomics. 
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more representative samples from various production areas to enhance 
and verify the accuracy, reliability, and practicability of the discrimi
nant model. 
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