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Background: To interpret blood pressure (BP) data
appropriately, healthcare providers need to be
knowledgeable of the factors that can potentially impact
the accuracy of BP measurement and contribute to
variability between measurements.

Methods: A systematic review of studies quantifying BP
measurement inaccuracy. Medline and CINAHL databases
were searched for empirical articles and systematic reviews
published up to June 2015. Empirical articles were included
if they reported a study that was relevant to the
measurement of adult patients’ resting BP at the upper arm
in a clinical setting (e.g. ward or office); identified a specific
source of inaccuracy; and quantified its effect. Reference
lists and reviews were searched for additional articles.

Results: A total of 328 empirical studies were included.
They investigated 29 potential sources of inaccuracy,
categorized as relating to the patient, device, procedure or
observer. Significant directional effects were found for 27;
however, for some, the effects were inconsistent in
direction. Compared with true resting BP, significant
effects of individual sources ranged from �23.6 to
R33 mmHg SBP and �14 to R23 mmHg DBP.

Conclusion: A single BP value outside the expected range
should be interpreted with caution and not taken as a
definitive indicator of clinical deterioration. Where a
measurement is abnormally high or low, further
measurements should be taken and averaged. Wherever
possible, BP values should be recorded graphically within
ranges. This may reduce the impact of sources of
inaccuracy and reduce the scope for misinterpretations
based on small, likely erroneous or misleading, changes.
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T
he measurement of blood pressure (BP) is a com-
mon procedure that is relied upon in a variety of
healthcare settings. In hospital care, its uses include

identifying clinical deterioration [1], informing vasoactive
drug titration [2] and guiding goal-directed treatment [3]. In
Journal of Hypertension
general practice, high BP values are used as a basis for the
diagnosis of hypertension [4]. Inaccurate or misleading BP
values, therefore, can be detrimental to the quality of
healthcare received by patients.

Several guidelines have been published with the aim of
improving the accuracy of BP measurements by standard-
izing the associated procedures [4–6]. These have primarily
addressed measurements taken at the upper arm and have
commonly included recommendations in relation to patient
posture, cuff size, arm height, cuff deflation rate and the
number of repeated measurements. Studies comparing BP
measurements taken with strict adherence to guidelines vs.
‘usual technique’ have reported marked variation and
differential treatment decisions between the two methods
[7,8]. However, even after training on standardized pro-
cedures, BP measurement may be limited in its accuracy [9].

To interpret BP data appropriately, it would be beneficial
for healthcare providers to be knowledgeable of the factors
that can impact the accuracy of a BP measurement and
contribute to variability between measurements. The current
systematic review supplements existing guidelines by iden-
tifying empirically evaluated potential sources of inaccuracy
and summarizing the evidence for each. In so doing, it also
addresses the limitations of previous reviews of the BP
measurement literature, which have included sources
of inaccuracy that lack empirical evidence, or reported
estimated effects based on small numbers of empirical
studies [10–14]. The resulting list of empirically evaluated
potential sources of inaccuracy could be incorporated into
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evidence-based training packages andused as a reference for
clinicians when interpreting BP readings.

METHODS
A systematic literature review was performed to determine
and categorize empirically evaluated potential sources of
inaccuracy in the measurement of BP in adult patients, and
determine the range of estimated effects of these sources of
inaccuracy on measured BP values. The scope of this
review was limited to studies relevant to upper arm BP
measurement in clinical settings, such as wards and offices.
Consequently, it did not directly address home BP monitor-
ing, 24-h ambulatory BP monitoring or measurement at
locations other than the upper arm.

Initial exploratory searches
To determine a list of potential sources of inaccuracy to
investigate, the online databases CINAHL, The Cochrane
Library, Medline and PsycINFO were searched using the
terms: ‘vital sign measurement’, ‘vital sign AND (error OR
accuracy)’, ‘blood pressure determination’, ‘blood pressure
TABLE 1. MEDLINE and CINAHL EBSCOHost search terms for the prel
English language)

Potential source of inaccuracy Search terms

Acute ingestion of food blood pressure AND (food OR meal OR in
caffein� OR nicotine)

Acute alcohol use blood pressure AND alcohol AND acute N

Acute caffeine use blood pressure AND (caffeine OR coffee

Acute nicotine use blood pressure AND (nicotine OR smok�
Bladder distension ‘blood pressure’ AND ‘bladder distension

Cold exposure blood pressure AND cold expos�
Paretic arm blood pressure AND (paretic OR paralyse

White-coat effect blood pressure AND (white coat effect O

Indirect measurement aneroid AND mercury AND blood pressur

General device inaccuracy sphygmomanometer� AND agreement

Aneroid device inaccuracy aneroid AND mercury AND blood pressur

Automated device inaccuracy auto� AND manual AND blood pressure

Pseudohypertension pseudohypertension OR pseudo-hyperten

Rest period duration (blood pressure measurement OR measur

Body position blood pressure AND (body position�)
Leg position blood pressure AND (leg cross� OR leg p

Unsupported back blood pressure AND (back support� OR s
unsupported)

Unsupported arm blood pressure AND (arm support� OR su
unsupported)

Arm position blood pressure AND arm position�
Cuff size blood pressure AND (cuff� size� OR blad

Cuff tightness blood pressure AND (loose� OR tight�) A

Clothing effect blood pressure AND (clothes OR clothing

Stethoscope placement blood pressure AND stethoscope AND (p

Talking during measurement blood pressure measur� AND (talk OR ta

Stethoscope head blood pressure AND diaphragm AND bel

Deflation rate blood pressure AND deflat� rate

Interval between repeated measurements (‘blood pressure measurement’ OR ‘blood
readings’) AND interval AND time

Number of measurements blood pressure AND number of measurem

Interarm difference blood pressure AND (arm difference OR i

Auscultatory gap auscultatory gap

General observer inaccuracy blood pressure AND (observer error� OR

Korotkoff sound interpretation (korotkoff OR korotkov) AND (sound� OR

Terminal digit bias blood pressure AND (terminal digit OR en
OR end-digit OR final-digit OR last-digi
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measurement’, ‘blood pressure error’, ‘blood pressure
accuracy’ and ‘sphygmomanometer error’. Articles obtained
from these searches aided the identification of specific
sources of inaccuracy and the creation of individual search
terms for each (Table 1). Two additional potential sources
of inaccuracy (also included in Table 1 and the final
searches) were added in response to reviewer comments
(i.e. short interval between repeated measurements and
acute meal ingestion).

Final searches
Individual searches were undertaken for each identified
source of inaccuracy, using the Medline and CINAHL data-
bases (which had been found to be the most relevant data-
bases in the initial exploratory searches) via EBSCOHost. The
searches covered journal articles from the inception of each
database through to June 2015 and were limited to English
language publications relating to humans. The search terms
used for each potential source of inaccuracy are presented in
Table 1. Reference lists from acquired empirical articles and
systematic reviews were also searched for articles that may
have not been identified directly from the database searches.
iminary list of potential sources of error (limited by Humans and

Number of results

gest� OR eat) AND acute effect� NOT (alcohol OR 143

OT withdraw� 274

OR ‘energy drink�’) AND acute 139

OR cigarette�) AND acute effect� 215

’ 23

238

d arm OR paralyzed arm) 9

R white-coat effect) 294

e 48

101

e 48

231

sion 76

ing blood pressure) AND before AND (wait� or rest�) 88

224

osition�) 84

upported back OR unsupported back OR back 13

pported arm OR unsupported arm OR arm 37

117

der� size�) 221

ND cuff 13

) 167

lacement OR location) 4

lks OR talking) 28

l 7

24

pressure measurements’ OR ‘blood pressure 142

ents 65

nter-arm difference OR interarm difference) 134

8

observer factors) 40

phase�) 255

d digit OR final digit OR last digit OR terminal-digit
t)

50
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Inclusion criteria
Publications that contained all of the following were
eligible for inclusion in the final analysis:
FIG

Jou
1.
URE

rn
Results from an empirical study relevant to the
measurement of adult patients’ resting BP at the
upper arm in a clinical setting (e.g. ward or office);
2.
 Identification of one or more specific potential sour-
ce(s) of inaccuracy in the measurement of BP; and
3.
 Quantification of the independent effects of one or
more source(s) of inaccuracy on the measured value
of SBP and/or DBP; or the prevalence of such
an inaccuracy.
Search outcome
The Medline and CINAHL database searches on each indi-
vidual potential source (Table 1) yielded a total of 3147
articles, excluding duplicates. The abstracts and/or titles of
the pooled articles were then evaluated for relevance to the
inclusion criteria, after which 783 full texts were obtained.
Of these, a total of 328 publications were summarized in
this review (Fig. 1) after articles that did not meet the
inclusion criteria were excluded (e.g. because they
included child participants, confounded multiple potential
sources of inaccuracy or did not use a quantifiable
measure).

Quality appraisal
Due to the diverse nature of research questions and study
methodologies reported, the Standard Quality Assessment
Criteria for Evaluating Primary Research Papers from a
Variety of Fields were considered appropriate for quality
appraisal [15]. These criteria can be used to assess the
Records identified through
database search for individua
of inaccuracy
(EBSCOHost medline and CIN
(n = 3147)

Relevent articles from
reference lists (n = 72)

Full-text articles assessed for
(n = 795)

Articles summarised
this review (n = 328)

1 Flow chart showing study selection.
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quality of various types of empirical studies by rating
aspects of the design, participants, analysis and results.
Summation of the individual scores for each area was used
to represent the overall quality of a study, expressed as a
percentage of the maximum possible score applicable to
the study. These quality indicators are not directly compar-
able due to the many differences between studies. How-
ever, they can be used as a guide when interpreting the
quality of evidence from individual studies (Supplementary
Tables 1–29, http://links.lww.com/HJH/A702).

Data extraction
After selection of articles from title and abstract review, the
full-texts of potentially relevant articles were analysed.
Information relating to country of origin, observers, partici-
pants, devices and procedures was extracted from articles
meeting the inclusion criteria, along with the effects of the
specific source of inaccuracy on patients’ SBP and/or DBP,
or its prevalence. Extracted information varied depending
on the source of inaccuracy, with some sources requiring
more categories of data to be obtained than others. These
procedures were conducted by one reviewer (N.K.) and
checked by another (M.O.W.), with disagreements resolved
through discussion.

Synthesis
Meta-analysis was not considered appropriate due to the
diversity of research questions addressed by the articles (a
total of 29 potential sources of inaccuracy were identified),
and marked variation in methodologies, reporting detail
and study populations. Instead, study results were aggre-
gated in a table outlining the empirically evaluated potential
sources of inaccuracy, and the ranges of their reported
mean effects across studies (Table 2). Note that ranges
l sources

AHL)

 eligibility

 in

Records excluded based
on title and abstract review
(n = 2424)

Articles excluded due to not
fulfilling inclusion criteria
(e.g. included child patients,
confounded multiple sources of 
innacuracy, did not use
quantifiable measure) (n = 467)
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TABLE 2. Empirically-evaluated potential sources of inaccuracy in the measurement of adults’ resting blood pressure (note that ranges
expressed in mmHg include only significant effects and hence exclude results from studies reported in Supplementary Tables
that lacked significance testing, http://links.lww.com/HJH/A702)

Range of reported significant mean effects
(in mmHg) unless specified

Potential source of inaccuracy SBP DBP
Suppl. Table

number

Patient-related
1. Acute meal ingestion [16,17] �6a �5 to �1.9 1

2. Acute alcohol use [18–35] �23.6 to þ24 �14 to þ16 2

3. Acute caffeine use [40–74] þ3 to þ14 þ2.1 to þ13 3

4. Acute nicotine use or exposure [70,75–103] þ2.81 to þ25 þ2 to þ18 4

5. Bladder distension [104–106] þ4.2 to þ33 þ2.8 to þ18.5 5

6. Cold exposure [107–115] þ5 to þ32 þ4 to þ23 6

7. Paretic arm [116,117] þ2a þ5a 7

8. White-coat effect [120–160] �12.7 to þ26.7 �8.2 to þ21 8

Device-related
9. Device model bias

Mercury models
vs. invasive criterion [167–170] �10.6 to �4 þ1.9 to þ4 9A

Aneroid models
vs. invasive criterion [162,171,172] �9.7 to �4.0 þ5.1a 9B

vs. noninvasive criterion [173–179] �0.8a �1.7a 9C

Automated models
vs. invasive criterion [162,167,168,171,182–189] �23 to þ6 �3 to þ5.6 9D

vs. noninvasive criterion [167,176,190–227] �3.7 to þ16.53 �8 to þ9.71 9E

10. Device calibration error
Mercury [229–238] 0–61.8% of individual devices>�3 mmHg calibration error 10A

Aneroid [229–237,239–247] 1.4–69.7% of individual devices>�3 mmHg calibration error 10B

Automated [229–231] 4.5–26% of individual devices>�3 mmHg calibration error 10C

Procedure-related
11. Insufficient rest period [249,250] þ4.2 to þ11.6 þ1.8 to þ4.3 11

12. Body position
Standing [251,252] �2.9 to þ5 þ7a 12

Supine [251–259] �10.7 to þ9.5 �13.4 to þ6.4 12

13. Legs crossed at knees [260–266] þ2.5 to þ14.89 þ1.4 to þ10.81 13

14. Unsupported back [267] No significant effects reported þ6.5a 14

15. Unsupported arm [268–270] þ4.87a þ2.7 to þ4.81 15

16. Arm lower than heart level [255,269,271–278] þ3.7 to þ23 þ2.8 to þ12 16

17. Incorrect choice of cuff size
Smaller cuff [279–283] þ2.08 to þ11.2 þ1.61 to þ6.6 17

Larger cuff [279–283] �3.7 to �1.45 �4.7 to �0.96 17

18. Cuff placed over clothing [284–287] No significant effects reported No significant effects reported 18

19. Stethoscope under cuff [288,289] þ1.0 to þ3.1 �10.6 to �3.5 19

20. Talking during measurement [290–295] þ4 to þ19 þ5 to þ14.3 20

21. Use of stethoscope bell (vs. diaphragm) [267,296–299] �3.8 to þ1.54 �1.61a 21

22. Excessive pressure on stethoscope head [300] No significant effects reported �15 to �9 22

23. Fast cuff deflation rate [301–303] �9 to �2.6 þ2.1 to þ6.3 23

24. Short interval between measurements [304–306] No significant effects reportedb No significant effects reported 24

25. Reliance on a single measurement
[147,258,259,275,307,308]

þ3.3 to þ10.4 �2.4 to þ0.6 25

26. Interarm variability [311–325] j3.3j to j6.32j j2.7j to j5.06j 26

Observer-related
27. Observer hearing deficit [328] �1.55 to �0.11 þ1.05 to þ4.32 27

28. Korotkoff Phase IV (vs. V) for DBP [334,335] N/A þ12.5a 28

29. Terminal digit preference for zero [8,275,334,336–366] 1–79% over-representation of
terminal zero

3–79% over-representation of
terminal zero

29

aOnly one study found a significant effect.
bNo study found a significant directional effect (although one found reduced variation in SBP).

Kallioinen et al.
expressed in mmHg (i.e. results for all potential sources of
inaccuracy except device calibration error and terminal
digit preference for zero) only include statistically significant
effects. However, detailed descriptions of all studies that
met the inclusion criteria (including those that lacked
significance testing) are included in the data supplement,
in which they are organized into tables according to the
424 www.jhypertension.com
relevant potential source of inaccuracy (Supplementary
Tables 1–29, http://links.lww.com/HJH/A702). For ease
and consistency of communication, we adopted the follow-
ing conventions in our narrative descriptions of the size of
potential inaccuracies in BP measurement: small¼ less than
5mmHg, moderate¼ 5–15 mmHg and large¼ greater than
15mmHg.
Volume 35 � Number 3 � March 2017
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Blood pressure measurement inaccuracy
RESULTS
A total of 328 full-text articles were summarized in this
review. Collectively, these studies investigated a total of 29
distinct empirically evaluated potential sources of inaccur-
acy in the measurement of adult BP in clinical settings.
These sources were organized into four categories, similar
to those used in previous reviews: patient-related, device-
related, procedure-related and observer-related [11,13,14].
Results for the potential sources of inaccuracy within each
category are summarized in Table 2 and outlined below.
Each potential source of inaccuracy has been numbered
(from 1 to 29) to facilitate cross-referencing between text
and tables.

Patient-related sources of inaccuracy
BP is a dynamic variable: its value naturally changes over
time and within different regions of the body. This review
identified eight distinct empirically evaluated patient-
related sources of inaccuracy that may cause additional
variation, contributing to an underestimation or overesti-
mation of the patient’s ‘true’ resting BP.

1. Acute meal ingestion
Two studies were included that reported the effect of acute
meal ingestion on BP (Supplementary Table 1, http://links.
lww.com/HJH/A702) [16,17]. One study reported the
effects of a mixed meal at two specific intervals after
ingestion, finding moderate significant decreases in both
SBP and DBP at 180 min, but no significant effect at 60min.
The other study assessed the mean effect of a light breakfast
meal over a 2-h period after ingestion (averaging over
measurements taken every 15min) finding no significant
effect on SBP and a small decrease in DBP.

2. Acute alcohol use
Eighteen studies were included that reported the effect of
acute alcohol ingestion on BP (Supplementary Table 2,
http://links.lww.com/HJH/A702) [18–35]. Alcohol dos-
ages ranged from 0.4 to 1 g/kg (relative to the participant’s
body weight), and one study reported an absolute dosage
of 41 g [18]. Significant effects of acute alcohol ranged from
large decreases to large increases in SBP, and moderate
decreases to large increases in DBP (Table 2). Only a small
number of studies found no significant effects. The studies
employed inconsistent time intervals between alcohol
consumption and measurement (ranging from 5 min to
4 h). However, with the exception of only two studies
[21,28], all significant increases were measured within
60 min of consumption, and all significant decreases from
60 min to 4 h postconsumption. Of the exceptions, one
study found significant decreases in both SBP and DBP
30 min after ingestion [21]. The other study was not directly
comparable because it reported the maximum BP response
up to 3-h postconsumption, rather than using a fixed time
interval [28].
3. Acute caffeine use
Three systematic reviews and one narrative review were
identified that assessed the short-term effect of caffeine
Journal of Hypertension
consumption on BP [36–39]. A total of 35 empirical
studies that were eligible for inclusion in this review
were identified, some having been included previously
in other reviews (Supplementary Table 3, http://links.
lww.com/HJH/A702) [40–74]. Common caffeine dosages
evaluated were 3.3 mg/kg (relative to the patient’s
weight) and 250 mg (absolute). Others ranged from
relative dosages of 1.5–6.0 mg/kg and absolute dosages
of 67–400 mg. All reported significant mean effects on
SBP or DBP were increases, ranging in magnitude from
small to moderate (Table 2). Some small caffeine dos-
ages, such as 100 and 200 mg, were not consistently
reported to have a significant effect on BP [59,61].
Studies also employed different time intervals between
consumption and measurement (with those intervals that
were fixed ranging from 30 to 270 min). Significant effects
were reported for intervals as long as 180 min after
consumption.
4. Acute nicotine use or exposure
A total of 30 articles measuring the short-term effect of
cigarette smoking, nicotine ingestion or passive cigarette
smoke exposure were evaluated (Supplementary Table
4, http://links.lww.com/HJH/A702) [70,75–103]. The
reported significant effects ranged from small to large
increases for both SBP and DBP (Table 2). The majority of
studies reported dosages in mass of nicotine, ranging
from 0.4 to 13 mg. Other dosages included one and four
cigarettes over 1 h, both of unspecified nicotine content
[80,94]. Most studies examined the effect of conventional
cigarette smoking; however, the effects of electronic
cigarettes, bidi cigarettes, cigars, Arabian pipes, nicotine
tablets, nicotine patches, nicotine gum and snuff tobacco
were also reported. Studies also used different time
intervals between nicotine use and measurement
(including during, immediately after and up to 60 min
later). Significant effects of acute nicotine use were
measured as far as 20–30 min after smoking, 30 min after
snuff chewing and 40–60 min after ingesting a 4-mg
nicotine tablet.

The four studies that investigated the effect of passive
smoking employed exposure durations of 30–60 min
[100–103]. Of these, only two studies reported significant
effects. One found large increases to both SBP and
DBP [100]; in the other study, however, the increases
were only moderate and were confined to SBP in male
participants [103].
5. Bladder distension
Three studies were included that reported the effect of a
full bladder on BP (Supplementary Table 5, http://links.
lww.com/HJH/A702) [104–106]. Effects ranged from
small to large increases in both SBP and DBP (Table
2). In the study that found only small effects, participants
drank as normal over a mean period of 7 h, with BP
measured before and after voiding their full bladders
[104]. The other studies found large increases in both
SBP and DBP within 60 min after drinking 1200 ml of
water [106], and after drinking water until the urge to void
became irresistible [105].
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6. Cold exposure
Nine studies that assessed the effect of patient exposure to
cold were identified (Supplementary Table 6, http://links.
lww.com/HJH/A702) [107–115]. Reported effects ranged
from moderate to large increases in SBP and small to large
increases in DBP (Table 2). These studies compared resting
BP at varying temperatures. The majority compared air
temperatures, whereas some used skin temperatures. All
studies found that exposure to cold significantly increased
SBP (and, where reported, DBP).
7. Paretic arm
Two studies were evaluated that compared BP measure-
ments between the intact and paretic arms of stroke patients
(Supplementary Table 7, http://links.lww.com/HJH/A702)
[116,117]. One found that measurements from paretic arms
yielded small but significant increases in both SBP and DBP
relative to measurements from intact arms (Table 2) [117].
The other study found no significant effects for either SBP
or DBP [116].

8. White-coat effect
The white-coat effect is the phenomenon in which a
patient’s BP changes when in the presence of a clinician.
Generally, this change is assumed to involve an increase in
both SBP and DBP from normal daytime values [4]. Two
systematic reviews with meta-analyses relating to the
white-coat effect were identified in the literature search
[118,119]. However, these focused on the differences in
white-coat effect between age groups and ethnic groups,
respectively, and not on the mean white-coat effect
in general.

A total of 41 empirical studies were analysed in the
current study, including some that had not been included
in the aforementioned systematic reviews. A large range
of estimates for the white-coat effect was apparent
(Supplementary Table 8, http://links.lww.com/HJH/
A702) [120–160]. Reported significant effects of the pres-
ence of a clinician ranged from moderate decreases to
large increases in both SBP and DBP (Table 2). The most
common method used to quantify the white-coat effect
was to compare daytime ambulatory or home self-
measurements with those made by a clinician in a clinical
setting. By subtracting patients’ normal daytime BPs from
clinical measurements, the impact of the clinician’s pres-
ence and the clinical setting could be quantified. A nega-
tive white-coat effect indicated that, on average, patients’
BP decreased in the presence of a clinician, whereas a
positive value indicated that it increased. Of the studies
that yielded significant results, all but four produced only
positive mean white-coat effects. Of the four exceptions,
one produced only negative mean effects [158], and three
produced positive and negative effects for different
sample groups [145,147,148]. Characteristics of the
observers and patients (such as age, sex, ethnic group
and the presence of hypertension) differed between
studies and sample groups and may therefore have
impacted the magnitude and direction of reported effects.
The aforementioned systematic reviews addressed some
of these differences, finding that older patients
426 www.jhypertension.com
experienced greater positive white-coat effects than
younger patients [118], and South Asian patients experi-
enced smaller white-coat effects than patients of African
or European descent, on average [119].

Further potential patient-related sources of
inaccuracy
Other potential sources of inaccuracy were mentioned in
the reviewed literature; however, they lacked valid empiri-
cal evidence for their effects in clinical settings. These
included soft Korotkoff sounds (the audible cues heard
from the stethoscope when performing manual sphyg-
momanometry) [13], and time of day [161].

Device-related sources of inaccuracy
There are two primary methods of BP measurement:
invasive and noninvasive. Invasive, or intra-arterial, BP
measurement through the use of a catheter is regarded as
the gold standard of BP measurement [162,163]. How-
ever, due to its invasiveness, it is used less commonly
than noninvasive alternatives. Most noninvasive BP
measurements typically make use of an inflatable cuff
to temporarily occlude blood flow in the upper arm. As
the cuff is deflated, different methods can be employed
to determine the SBP and DBP, depending on the type
of device. These include the use of auditory or oscillo-
metric cues.

9. Device model inaccuracy
A variety of sphygmomanometer devices can be used for
noninvasive measurement of BP. Two primary types of
clinical device were identified: manual and automated.
Manual sphygmomanometers can be either mercury or
aneroid. Due primarily to the toxicity of mercury, the use
of mercury-free devices (both aneroid and automated) has
increased in recent years [164].

Two methods of measuring the inaccuracy of different
models were apparent in the literature: comparison with
invasive measurement and comparison with noninvasive
‘standard manual measurement’. Reported inaccuracies
from these two methods are discussed separately. The
standard reporting of the inaccuracy of devices includes
the mean bias (i.e. the average of the difference scores,
which may be positive or negative) and 95% limits of
agreement. For a particular study comparing a test device
to a criterion standard (e.g. invasive measurement), these
limits specify the lowest and highest difference scores that
would fall within 2 SDs of the mean difference score for
that particular sample, thus capturing approximately 95%
of difference scores. The width of the limits of agreement
indicates how much the difference score (or bias) varies
from measurement-to-measurement. Wider limits of
agreement indicate greater variation, whereas narrow
limits indicate less variation. Therefore, when interpreting
the accuracy of a device, both the mean bias and the
width of the limits of agreement should be considered
[165,166]. Supplementary Tables 9A–9E, http://links.
lww.com/HJH/A702 include the mean biases and 95%
limits of agreement for all included studies of device
model inaccuracy.
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Mercury devices: Four studies were identified that
examined the accuracy of mercury devices in comparison
with the criterion standard of invasive measurement
(Supplementary Table 9A, http://links.lww.com/HJH/
A702) [167–170]. Three of these investigated standard mer-
cury devices, whereas one investigated the accuracy of a
random-zero device. Reported significant mean biases
ranged from small to moderate underestimation of SBP,
and small overestimation of DBP (Table 2), with moderately
wide limits of agreement in each study (between �13
and �16.2 mmHg for SBP, and between �6 and
�13 mmHg for DBP).

Aneroid devices: Three studies reported the bias of three
different models of aneroid device compared with invasive
measurement (Supplementary Table 9B, http://link-
s.lww.com/HJH/A702) [162,171,172]. All studies reported
underestimation of SBP (including two small-to-moderate
significant effects) and overestimation of DBP (including
one moderate significant effect) (Table 2). There was
noticeable variation in the widths of the limits of agreement
across studies, indicating the variability in accuracy
between devices (between �8.6 and �27.1 mmHg for
SBP, and between �4.6 and �14mmHg for DBP).

Seven studies compared a total of seven different ane-
roid models to a noninvasive criterion standard manual
measurement (Supplementary Table 9C, http://links.
lww.com/HJH/A702) [173–179]. Significant reported
biases were small underestimations of both SBP and
DBP (Table 2). Again, there was noticeable variation in
the widths of the limits of agreement (between �4.4 and
�25 mmHg for SBP, and between �5.2 and
�15.64 mmHg for DBP).

Automated devices: Two systematic reviews were ident-
ified that examined the accuracy of different models of
automated devices [180,181]. Twelve empirical studies eval-
uated the accuracy of 17 different models of automated
devices compared with invasive measurement (Supple-
mentary Table 9D, http://links.lww.com/HJH/A702)
[162,167,168,171,182–189]. Reported significant mean
biases ranged from large underestimation to moderate
overestimation of SBP and small underestimation to mod-
erate overestimation of DBP (Table 2). There was very
marked variation in the width of the 95% limits of agree-
ment with the invasive criterion, reflecting the diversity of
automated devices that were evaluated (between �10 and
�52.9 mmHg for SBP, and between �8 and �29.2 for
DBP).

A total of 40 studies compared 33 different automated
models with a noninvasive criterion standard (Supple-
mentary Table 9E, http://links.lww.com/HJH/A702)
[167,176,190–227]. The majority of studies used standard
mercury measurement as the criterion, although some used
aneroid measurement. Significant mean biases ranged from
small underestimation to large overestimation for SBP and
moderate underestimation to moderate overestimation for
DBP. Again, there was marked variation in the width of the
95% limits of agreement (between �5.2 and �35.9 mmHg
for SBP, and between �3.8 and �26.68 mmHg for DBP).

Various reasons why the discrepancy between noninva-
sive and invasive measures might be more apparent in
some patients than others were also discussed in the
Journal of Hypertension
literature. For example, patients with shock have been
identified to exhibit lower noninvasive SBP than invasive
SBP [169]. In addition, erroneously high BP values from
noninvasive techniques, known as pseudohypertension,
may be related to arterial stiffness [228].

10. Device integrity and calibration
Incorrect calibration or poor device integrity can affect all
types of sphygmomanometers. This can lead to measure-
ment error in either direction that is constant for a particular
device (at least in the short-term). One review [164] and
nineteen empirical studies were identified. Ten of these
empirical studies assessed the calibration accuracy of mer-
cury sphygmomanometers (Supplementary Table 10A,
http://links.lww.com/HJH/A702) [229–238], 18 assessed
aneroid sphygmomanometers (Supplementary Table 10B,
http://links.lww.com/HJH/A702) [229–237,239–247] and
three assessed automated devices (Supplementary Table
10C, http://links.lww.com/HJH/A702) [229–231]. The com-
mon method of analysing device inaccuracy was to
measure the deviation of sphygmomanometer readings
from a known accurate criterion device. The majority of
studies categorized an individual sphygmomanometer as
inaccurate if it showed a discrepancy of greater than
�3mmHg from a criterion device. However, thresholds
of �4 and �5 mmHg were also employed in some studies
[242,247].

The prevalence of inaccurate devices varied greatly
between studies and device types, with more than half
of the tested devices showing inadequate accuracy in some
studies, but fewer than 5% in other studies (Table 2). It
should be noted that different studies evaluated the
accuracy of sphygmomanometers at different pressures,
and this may limit general comparisons between studies
and device types. Specific issues with sphygmomanometers
that were reported to decrease accuracy included blocked
vents and leaky bulb valves [238,239,248].

Procedure-related sources of inaccuracy
Standardized guidelines for clinical BP measurement
have primarily targeted aspects of the procedure that
may contribute to measurement inaccuracy. These
include the position and posture of the patient and the
appropriate size and placement of the cuff. The current
review identified 16 empirically evaluated procedure-
related sources of inaccuracy.

11. Insufficient rest period
Few studies directly assessed the effect of rest period
duration on BP. Of these, two were deemed to be eligible
for inclusion in this review (Supplementary Table 11, http://
links.lww.com/HJH/A702) [249,250]. The studies differed in
methodology, including the rest periods that they com-
pared (i.e. 5 vs. 10 and 0 vs. 16min) but both found that
patients had significantly higher SBP and DBP if they did
not rest for a sufficient period of time prior to measurement.
It was shown that resting for 10 or 16min could decrease
SBP by a small-to-moderate amount and DBP by a small
amount (Table 2). However, it is unclear from these results
whether longer rest periods are necessary to completely
reverse the effects of prior physical activity.
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12. Body position
Nine studies comparing patient body positions were
included in this review (Supplementary Table 12, http://
links.lww.com/HJH/A702). Of these, only two studies
investigated the effects of standing, and they yielded bidir-
ectional results. One study reported moderate increases for
both SBP and DBP (in hypertensive patients) [251], whereas
the other reported a small decrease in SBP and no signifi-
cant effect on DBP, compared with sitting (in healthy young
adults) [252].

All studies in this category compared supine posture
with sitting posture [251–259]. The supine position gener-
ally yielded small-to-moderate significant increases in SBP
relative to the sitting position [252,253,255,258,259].
Although one study showed a statistically significant mod-
erate decrease in SBP, the researchers did not control for
order effects; consequently, participants had been resting
for a longer period by the time that their BP was measured
in the supine position [254]. A further two studies found
no statistically significant effect [251,256]. Similarly,
DBP was shown to be affected bi-directionally by supine
posture: most studies reported significant decreases
[251,253,254,256,258] but two reported significant increases
[255,259]. These effects ranged from moderate decreases to
moderate increases (Table 2).

13. Legs crossed at knees
The effect of leg position was assessed by comparing legs
crossed at the knee with feet flat on the floor. All seven
identified studies reported an increase in SBP when
legs were crossed compared with sitting with feet flat
(Supplementary Table 13, http://links.lww.com/HJH/
A702) [260–266]. Significant effects ranged from small to
moderate increases in both SBP and DBP.

14. Unsupported back
A single study was evaluated that addressed the effect of
back support on BP measurement (Supplementary Table
14, http://links.lww.com/HJH/A702) [267]. It was reported
that sitting on a table with no back support increased DBP
(but not SBP) by a moderate amount, compared with sitting
on a chair with back support (Table 2). However, the results
should not be overinterpreted as the study did not control
for potential confounds between the table and the chair,
such as height (which may have affected whether or not
participants’ feet reached the floor) and level of comfort.

15. Unsupported arm
Three studies addressed measurement of BP in an unsup-
ported arm compared with a supported arm (Supple-
mentary Table 15, http://links.lww.com/HJH/A702) [268–
270]. Small but significant increases were reported for both
SBP and DBP when measured in the unsupported arm
(Table 2).

16. Arm lower than heart level
The height of the measured arm relative to the heart was
also found to affect BP. Ten studies included in this review
compared BP when the measured arm was at heart level vs.
lower than heart level (Supplementary Table 16, http://
links.lww.com/HJH/A702) [255,269,271–278]. Both SBP
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and DBP were found to increase (by a small to large
amount) when the arm was lower than heart level (Table
2). The majority of studies compared measurements of the
arm at heart level with the arm hanging by the patient’s side.
The magnitude of the increase may also have been affected
by body position (which varied among standing, sitting and
supine), or the absolute or relative distance of the arm from
heart level (which was seldom reported).

17. Incorrect choice of cuff size
Five studies included in this review indicated that cuff width
affected BP values (Supplementary Table 17, http://link-
s.lww.com/HJH/A702) [279–283]. Generally, an erroneous
reduction in cuff size significantly increased the measure-
ments for SBP and DBP (to a small or moderate degree),
whereas an increase in cuff size significantly decreased the
measurements (to a small degree) (Table 2). Most studies
compared specific cuff sizes with the recommended cuff
size, which was dependent on the arm circumference of the
patient (Supplementary Table 17, http://links.lww.com/
HJH/A702 for details).

18. Cuff placed over clothing
Four studies were included that examined the effect of
measuring BP with the cuff placed over clothing (Supple-
mentary Table 18, http://links.lww.com/HJH/A702) [284–
287]. However, all reported nonsignificant effects. Guide-
lines often specify that the sphygmomanometer cuff should
be placed over a bare arm; however, the empirical evidence
does not provide any clear support for this recommen-
dation (Table 2).

19. Stethoscope under cuff
Two studies addressed the effect of placing the stethoscope
under the cuff during auscultation (Supplementary Table
19, http://links.lww.com/HJH/A702) [288,289]. They
reported small but significant increases in measured SBP
and small-to-moderate decreases in measured DBP, when
compared with placing the stethoscope in the recom-
mended position outside the cuff (Table 2).

20. Talking during measurement
Six studies on the effect of the patient talking during BP
measurement were evaluated, all of which found increases
in both SBP and DBP (Supplementary Table 20, http://
links.lww.com/HJH/A702) [290–295]. Significant effects
ranged from small to large increases for SBP, and small-
to-moderate increases for DBP, compared with not talking
(Table 2). However, variation in methodologies between
studies, including the verbal content, may have affected the
magnitude of BP increases.

21. Use of stethoscope bell (vs. diaphragm)
Five studies were identified that investigated the effect of
using the bell rather than the diaphragm of the stethoscope
to measure Korotkoff sounds (Supplementary Table 21,
http://links.lww.com/HJH/A702) [267,296–299]. Two stud-
ies reported significant effects of using the bell [297,299]. It
reduced the SBP measurement by a small amount in trauma
patients and increased it by a small amount in young
women (Table 2). In these studies, the effect on DBP ranged
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from no difference to a small decrease (for young women).
Other similar studies found no significant difference
between bell and diaphragm.

22. Excessive pressure on stethoscope head
One study reported moderate decreases in the value of DBP
when excessive force was applied to the head of the
stethoscope during auscultation, with greater force yielding
a greater decrease (Table 2; Supplementary Table 22,
http://links.lww.com/HJH/A702) [300].

23. Fast cuff deflation rate
Three studies examined the effect of cuff deflation faster
than the recommended 2–3mmHg/s (Supplementary
Table 23, http://links.lww.com/HJH/A702) [301–303].
Reported significant effects ranged from small to moderate
decreases in SBP and small to moderate increases in DBP
(Table 2). The magnitude of effects was found to depend on
the speed of deflation and the patient’s heart rate.

24. Short interval between measurements
Three studies were identified that investigated the effect of a
shorter-than-usual interval between subsequent measures
(Supplementary Table 24, http://links.lww.com/HJH/A702)
[304–306]. Of these, only two reported the mean differences
in SBP and DBP between different intervals (specifically 15 s
vs. 1min and 1 vs. 2min), but they were not statistically
significant. The third studydidnot reportmeandifferences as
itwas focused specificallyonvariation (i.e. fluctuation) inBP.
Results indicated that, when a standard mercury sphygmom-
anometer (but not an electronic device) was used, SBP (but
not DBP) measures were significantly less variable when
consecutive measurements were taken with no interval to
separate them vs. a 1-min interval.

25. Reliance on a single measurement
Six studies were identified that investigated potential var-
iability between consecutive measurements of BP (Supple-
mentary Table 25, http://links.lww.com/HJH/A702)
[147,258,259,275,307,308]. The intervals between com-
pared measurements ranged from 1 to 45min. Studies
reporting statistically significant differences consistently
found that, on average, initial measurements of SBP were
higher by small-to-moderate amounts, compared with
measurements taken 1–25min later. However, of the two
studies that reported a significant mean difference in SBP
(both of which employed a 2-min interval and yielded a
small effect), the initial measurement was higher in one
study [147], and lower in the other [259] (Table 2). These
findings were interpreted as indicating a need for multiple
consecutive measurements to minimize inaccuracy.

26. Interarm variability
Two systematic reviews on the differences in BP between
the left and right arms of individuals were identified
[309,310]. Fifteen empirical studies, some already included
in these reviews, were analysed (Supplementary Table 26,
http://links.lww.com/HJH/A702) [311–325].

Because individuals can differ in terms of which arm (i.e.
right or left) will yield higher BP readings, some studies
reported absolute interarm differences (i.e. calculated for
Journal of Hypertension
each participant by deducting the lower value from the
higher value, irrespective of which arm each was measured
at, before averaging). These studies reported small-to-mod-
erate significant mean absolute interarm differences for
both SBP and DBP (Table 2). For a patient whose BP is
only measured in one arm, these values can be regarded as
estimates of the average amount by which their apparent
BP may have been higher or lower if it had been measured
using the other arm.

Among studies that instead deducted the values for one
specific arm from the values for the other arm before
averaging, small-to-moderate significant mean interarm
differences were also reported for SBP (þ1.6 to
þ5.1 mmHg) and DBP (�1.4 to þ3.73 mmHg) (standar-
dized as right minus left). However, these latter figures
represent estimates of the extent to which one specific arm
tends to yield a higher apparent BP in the study population
(e.g. positive values indicate that the right arm is higher),
rather than the likely magnitude of interarm differences for
patients within that population. This is because, in averag-
ing over participants, values from those who have higher
right-arm BP will, to some extent, ‘cancel out’ values from
those who have higher left-arm BP (and vice-versa).

Further potential procedure-related sources of
inaccuracy
Other unsubstantiated procedure-related sources of inac-
curacy that were mentioned in the reviewed literature
included the temperature of the stethoscope or the exam-
iner’s hands, environmental noise and initial inflation into
an auscultatory gap [13]. This gap exists in some patients
and is a range between SBP and DBP in which there are no
audible Korotkoff sounds [326,327].

Observer-related sources of inaccuracy
Sources of inaccuracy related to the observer are primarily
apparent during manual sphygmomanometry (either mer-
cury or aneroid). Empirically evaluated sources of inaccur-
acy of this kind included observer hearing deficit, incorrect
Korotkoff sound interpretation and terminal digit bias.

27. Observer hearing deficit
One study was identified that assessed the impact of hear-
ing loss on the manual measurement of BP (Supplementary
Table 27, http://links.lww.com/HJH/A702) [328]. When
hearing loss of 5, 10, 15, 20 and 25 dB was simulated across
all frequencies, small decreases in SBP and small increases
in DBP values were reported (Table 2).

However, the flat decrease of 5–25 dB across all fre-
quencies does not accurately represent common forms of
hearing loss, such as presbyacusis (age-related). Presbya-
cusis primarily affects the detection of higher frequency
sounds, particularly those with frequency bands greater
than 1000Hz, whereas Korotkoff sounds have frequencies
of 20–300Hz [329–331]. Therefore, conclusions from this
study should not be generalized to actual hearing loss.

28. Korotkoff sound interpretation
The pressures at which Korotkoff sounds appear and dis-
appear in manual sphygmomanometry correspond to the
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SBP and DBP, respectively. Differing interpretation of these
sounds can have a bidirectional effect on measurement.
There has been debate regarding which phase of Korotkoff
sounds best corresponds to the DBP – phase IV (muffling of
sounds) or phase V (disappearance of sounds) [332,333];
however, phase V has been recommended for most circum-
stances [4]. Two studies were evaluated that quantified the
effect of different Korotkoff sound interpretations (Supple-
mentary Table 28, http://links.lww.com/HJH/A702)
[334,335]. Measuring DBP at phase IV (rather than phase
V) was reported to significantly increase the DBP measure-
ment by a moderate amount (Table 2).

29. Terminal digit preference for zero
Terminal digit bias refers to the preference to round BP
readings to a specific end-digit, usually zero. An observer
who biases zero as an end digit may, for example, record
120 mmHg when the sphygmomanometer shows a value
between 117 and 122 mmHg. Thirty-four studies were
identified that reported over-representation of terminal
zeros in BP records, indicative of such a bias (Supple-
mentary Table 29, http://links.lww.com/HJH/A702)
[8,275,334,336–366]. Given that the expected frequency
of terminal zero is 20% (because measurements are gener-
ally recorded to the nearest even number), approximately
79% of all SBP and DBP values analysed may have included
erroneous terminal zeros in the study that reported the
highest prevalence (i.e. 99%) (Table 2) [350].

Further potential observer-related sources of
inaccuracy
Other observer-related sources of inaccuracy were men-
tioned in the reviewed literature but found to lack sufficient
empirical evidence. These included value bias and visual
impairment [4]. Value bias is related to, but distinct from,
terminal digit bias. Although terminal digit bias is a prefer-
ence for a specific final digit of the reading, value bias relates
to the entire value of the reading. For example, in one study,
there was a reported preference for recording 88mmHg for
DBP when a value of 90mmHg would lead to treatment
consideration [358]. In addition, one article examined ‘gauge
reading errors’ relating to the reading of a mercury column in
conjunction with Korotkoff sounds [367]. The researchers
assessed the readings of groups of novice and experienced
individuals in a single-trial simulation. They reported under-
reading for SBP and over-reading for DBP, compared with
the true value. In addition, there was notable variability
between observers, as indicated by a moderately sized SD.
However, due to the highly simplified representation of the
mercury column as a rectangular bar presented on a com-
puter screen, the single-trial design and a lack of statistical
significance testing, the conclusions that can be drawn from
this particular study are extremely limited.

DISCUSSION
The current systematic review has described 29 empirically
evaluated potential sources of inaccuracy in the measure-
ment of adults’ resting BP at theupper arm in clinical settings,
such as wards and offices (Table 2). Each of these was
categorized as relating to either: the patient, the device,
430 www.jhypertension.com
the procedure or the observer. Significant directional effects
on SBP and/or DBP were found for 27 of the 29 potential
sources of inaccuracy, and the ranges of these effects were
presented for each source. The significant effects of individ-
ual sources were highly variable and ranged from a mean
underestimation of 24mmHg to a mean overestimation of
33mmHg for SBP, and a mean underestimation of 14mmHg
to a mean overestimation of 23mmHg for DBP. Differences
of this magnitudebetween ‘true’ resting BP and measured BP
can have important implications in several clinical domains,
including the physiological monitoring of inpatients, and the
diagnosis and surveillance of hypertension.

Clinical impact

Patient monitoring
The majority of patient monitoring protocols, such as track-
and-trigger systems, incorporate routine BP measurement,
obtained through either manual or automated methods [1].
Typically, the patient’s vital sign values are compared
against predefined ranges to determine whether they are
‘normal’ or ‘abnormal’ and, in some cases, to categorize the
extent of any deviation from the normal range. Monitoring
protocols also vary in terms of the mechanisms by which
clinical responses are triggered [368,369]. In some systems,
a criterion breach in relation to just one individual vital sign
– such as SBP – can be enough to trigger a clinical
response, whereas other systems require multiple vital
signs to reach predefined thresholds before a response is
triggered. More complex monitoring protocols utilize both
of these mechanisms in different circumstances.

The current systematic review has presented evidence
indicating that up to 25 factors may affect the accuracy and
interpretability of any particular SBP measurement (and up
to 27 for DBP). The magnitude of these potential effects
ranged from small to large in both the positive and negative
directions, and some individual sources of inaccuracy had
potentially bidirectional effects. Therefore, the net effect of
multiple sources may be negative, positive or (in some
cases) neutral. However, in practice, it will often be imposs-
ible to know how many sources of inaccuracy influenced a
particular BP measurement recorded on an observation
chart. The results of this systematic review therefore call
into question the use of patient monitoring protocols in
which a single criterion breach in relation to SBP alone
triggers a clinical response. Such trigger protocols are more
vulnerable to overestimation or underestimation of SBP
compared with triggers that incorporate multiple vital signs;
that is, they are likely to have higher sensitivity coupled
with lower specificity. However, all patient monitoring
protocols could be improved by more appropriate
interpretation of BP values.

One potential suggestion to discourage unjustified
reliance on precise BP values is to use observation charts
in which observations are simply recorded as dots (or, in
the case of BP, arrowheads) in a series of range rows, rather
than recording the precise values numerically. Recent
experimental results suggest an additional advantage of
recording vital sign data (including BP) as dots/arrowheads
in a graphical format. Specifically, novice chart-users who
were tested using a range of observation chart designs
Volume 35 � Number 3 � March 2017
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identified abnormal vital signs faster and more accurately
when recorded this way rather than as numbers, even when
those numbers were presented in otherwise identical quasi-
graphs [370]. That is, in addition to their limited interpret-
ability, the presence of numerical vital signs on a chart can
actually impair user-performance.

An important caveat to the findings of this systematic
review is that hypotensive patients were seldom studied in
the reviewed literature, with most participants being
normotensive or hypertensive. The extent to which the
identified sources of inaccuracy generalize to hypotensive
deteriorating patients is not apparent, and replications
utilizing varying populations would help to clarify this.

Goal-directed treatment and blood pressure
maintenance
Recommendations for goal-directed therapy often specify
target BP values [371,372]. However, given potential
measurement inaccuracies and transient changes in
patient-related and procedure-related factors, a difference
between two subsequent BP readings (in some cases, even
a seemingly substantial difference) may not indicate a
meaningful change. This should be considered when
attempting to maintain BP within a narrow range of values.
If a single reading deviates slightly from the desired range, it
is unlikely that immediate action, such as titration of vaso-
active drugs, would be required; and it may even
be counterproductive.

It is important to recognize that many of the identified
sources of inaccuracy may not apply to invasive measure-
ment, which may be employed in acute care settings. This is
particularly true of sources relating to the device and the
procedure. However, although the sources of inaccuracy
may vary between contexts, the general principle that BP
measurement can be inaccurate, and is seldom likely to be
precise, applies to all known methods of measurement.

Hypertension diagnosis and treatment
Errors such as terminal digit bias can have significant
impacts on clinical outcomes. For example, in one study
population, simply changing the definition of hypertension
from SBP of ‘140mmHg or greater’ to ‘greater than
140 mmHg’ would have decreased the prevalence of diag-
nosed hypertension from 25.9 to 13.3%, as the cut-off value
no longer contained a terminal zero [362]. This potential
decrease was the result of minimizing the effect of a single
source of inaccuracy, and there is also a need to consider
the potential cumulative effects of multiple sources before
making clinical diagnoses. Repeated measurement of BP at
multiple clinic visits is strongly advised before treatment for
hypertension is initiated or adjusted.

Conclusion and limitations
It was not the purpose of this review to critique current
clinical guidelines for BP measurement, particularly given
the international readership of the journal and the variation
in guidelines across jurisdictions. Rather, our goal was to
supplement existing guideline recommendations with
additional evidence-based information (which may also
be of use to those charged with reviewing the guidelines
or commissioning further empirical research designed to
Journal of Hypertension
inform them). In considering the evidence, it should be
noted that standardized procedures can be used to target
many of the identified sources of inaccuracy but lack the
ability to negate issues such as the white-coat effect, device
model bias, and most observer-related factors. However,
the impact of some of these sources of inaccuracy may
be decreased by employing multiple observers and
through training programmes focused on minimizing
observer biases.

Although many of the identified sources of inaccuracy
may not individually affect a reading of BP enough to alter a
clinical decision, the cumulative effect of multiple patient,
procedure, device and/or observer factors could have a
substantial impact – as could some of the more influential
sources of inaccuracy in isolation. To make sound interpret-
ations of BP measurements, clinicians should recognize the
extent of variability that can exist between any two
measurements. The values in Table 2 act as a reminder
that any single BP measurement includes the potential for
substantial inaccuracy and should not be treated as a mean-
ingful clinical indicator on its own.

Furthermore, by considering which sources of inaccur-
acy may be introduced at each stage in the process of
measuring BP, clinicians may be better placed to recognize
and mitigate their effects. To this end, Table 3 presents all of
the empirically evaluated potential sources of inaccuracy
rearranged into six sequential categories and indicates the
direction of all reported significant effects on SBP and DBP.
On average, potential sources of inaccuracy to which the
plus sign has been assigned will tend to increase measure-
ments of SBP or DBP (as the case may be), and sources to
which the minus sign has been assigned will tend to result
in a decrease. These monodirectional sources of inaccuracy
include most of the more transitory patient-related factors
(i.e. acute meal ingestion, acute caffeine use, acute nicotine
use or exposure, bladder distension and cold exposure), the
influence of which can only be eliminated by repeating the
measurement once the relevant factor is no longer current.
For the other sources with monodirectional effects on SBP
and/or DBP (such as legs crossed at knees and unsupported
arm), repeated measurements cannot eliminate their influ-
ence, irrespective of the interval between measurements
(with the obvious exceptions of insufficient rest period and
reliance on a single measurement). Hence, it is important
that procedures are in place to address these factors.

Plus-or-minus signs have been used to indicate bidirec-
tional results. In the case of device model bias, this is
because the direction of the effect depends on the specific
device type and model being used. However, for any given
device, it is also important to consider variation from
measurement-to-measurement (as indicated by the width
of the 95% limits of agreement), the influence of which can
be reduced by taking multiple measurements. For the other
potential sources of inaccuracy, there are three general
possibilities. First, some are inherently bidirectional (e.g.
device calibration error can add a constant error in either
direction, and terminal digit preference for zero can result in
rounding up or rounding down). Second, for some poten-
tial sources of inaccuracy, the direction of the effect may be
moderated by another factor (e.g. the directional effect of
interarm variability depends on which arm has been
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TABLE 3. Empirically-evaluated potential sources of inaccuracy that may be introduced at each stage in the process of measuring an
adult’s resting blood pressure, and the reported direction of significant effects (note that numbers in parentheses correspond to
the numbering of potential sources of inaccuracy in the ‘RESULTS’ section, Table 2 and the Supplementary Tables, http://
links.lww.com/HJH/A702)

Stage in the process of blood
pressure measurement

Potential sources of
inaccuracy introduced

Direction of significant
effects

SBP DBP

Before measurement Acute meal ingestion (1) � �
Acute alcohol use (2) � �
Acute caffeine use (3) þ þ
Acute nicotine use or exposure (4) þ þ
Bladder distension (5) þ þ
Cold exposure (6) þ þ
Insufficient rest period (11) þ þ

Selecting the device Device model biasa (9) � �
Device calibration error (10) � �

Positioning the patient Standing body position (vs. sitting) (12) � þ
Supine body position (vs. sitting) (12) � �
Legs crossed at knees (13) þ þ
Unsupported back (14) ns þ
Unsupported arm (15) þ þ
Arm lower than heart level (16) þ þ

Attaching the device to the patient Paretic arm (7) þ þ
Smaller cuff (vs. correct size) (17) þ þ
Larger cuff (vs. correct size) (17) � �
Cuff placed over clothing (18) ns ns

Stethoscope under cuff (19) þ �
Taking the measurement White-coat effect (8) � �

Talking during measurement (20) þ þ
Use of stethoscope bell (vs. diaphragm) (21) � �
Excessive pressure on stethoscope head (22) ns �
Fast cuff deflation rate (23) � þ
Observer hearing deficit (27) � þ
Korotkoff phase IV (vs. V) for DBP (28) N/A þ
Short interval between measurements (24) ns ns

Interpreting the measurement Reliance on a single measurement (25) þ �
Interarm variabilityb (26) � �
Terminal digit preference for zero (29) � �

Symbols indicate whether significant increases (þ), significant decreases (�) or both (�) were reported. Sources for which all reported directional effects were nonsignificant are
marked ns.
aDirection depends on the device type and model (Table 2 and Supplementary Tables 9A–9E, http://links.lww.com/HJH/A702).
bDirection depends on which arm was selected for measurement (individuals differ in which arm will yield the higher values).
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selected for measurement, the effect of acute alcohol use
may depend on the time elapsed since ingestion, and the
white-coat effect may vary according to factors such as age
and race). Third, for the remaining factors with bidirectional
effects in relation to SBP and/or DBP (i.e. standing body
position, supine body position, use of stethoscope bell and
reliance on a single measurement), there is limited and
somewhat conflicting evidence, as outlined in the
‘RESULTS’ section.

Although this review fulfilled the goal of identifying and
listing empirically evaluated sources of inaccuracy in the
measurement of BP, the breadth of the topic limited the
level of detail with which each source of inaccuracy could
be investigated. Future reviews should therefore focus on
specific individual sources of inaccuracy and their causes.
Further, sources of inaccuracy that have been investigated
by few high quality empirical studies (such as bladder
distension, unsupported back and fast cuff deflation rate)
require stronger empirical evidence and should be priori-
tized in future research on BP measurement. In addition,
the focus on studies relevant to upper arm BP measurement
in clinical settings meant that we did not evaluate studies
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that were specific to home and ambulatory BP measure-
ment, or measurement at locations other than the upper
arm. Nevertheless, many of the reported sources of inac-
curacy would also be relevant to these contexts.

Recommendations
As demonstrated by these studies, the accuracy of BP
measurement can be affected by many factors. A single
BP value outside the expected range should therefore be
interpreted with caution and should not be seen as a
definitive indicator of clinical deterioration or lead to an
alteration in clinical care without the support of other
evidence. Where a BP measurement indicates an abnor-
mally high or low level, further measurements should
therefore be taken and the average used (instead of the
original reading) before deciding on appropriate clinical
interventions.

Wherever possible, BP values should be recorded
graphically within ranges, rather than numerically; or else
an agreed-upon standardized rounding method should be
adopted. This may reduce the impact of some sources of
inaccuracy. For example, given the substantial variability in
Volume 35 � Number 3 � March 2017

http://links.lww.com/HJH/A702
http://links.lww.com/HJH/A702
http://links.lww.com/HJH/A702


Blood pressure measurement inaccuracy
the reported frequency of terminal digit preference, it could
eliminate some of the variation between individual
measurements recorded by different observers. Signifi-
cantly, it would also reduce the scope for misinterpretation
of small, likely erroneous or misleading, changes in BP
values. In line with the recommended change to graphing
or rounding, protocols using BP to guide clinical interven-
tions need to be reviewed.
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Kiukaanniemi S. Blood pressure responses to whole-body cold
exposure: effect of carvedilol. Eur J Clin Pharmacol 2000;
56:637–642.

114. Kawahara J, Sano H, Fukuzaki H, Saito K, Hirouchi H. Acute effects of
exposure to cold on blood pressure, platelet function and sympathetic
nervous activity in humans. Am J Hypertens 1989; 2:724–726.

115. Scriven AJ, Brown MJ, Murphy MB, Dollery CT. Changes in blood
pressure and plasma catecholamines caused by tyramine and cold
exposure. J Cardiovasc Pharmacol 1984; 6:954–960.

116. Dewar R, Sykes D, Mulkerrin E, Nicklason F, Thomas D, Seymour R.
The effect of hemiplegia on blood pressure measurement in the
elderly. Postgrad Med J 1992; 68:888–891.

117. Yagi S, Ichikawa S, Sakamaki T, Takayama Y, Murata K. Blood
pressure in the paretic arms of patients with stroke. N Engl J Med
1986; 315:836–1836.

118. Ishikawa J, Ishikawa Y, Edmondson D, Pickering TG, Schwartz JE.
Age and the difference between awake ambulatory blood pressure
and office blood pressure: a meta-analysis. Blood Press Monit 2011;
16:159–167.

119. Agyemang C, Bhopal R, Bruijnzeels M, Redekop WK. Does the white-
coat effect in people of African and South Asian descent differ from
that in White people of European origin? A systematic review and
meta-analysis. Blood Press Monit 2005; 10:243–248.

120. Schmieder RE, Schmidt ST, Riemer T, Dechend R, Hagedorn I, Senges
J, et al. Disproportional decrease in office blood pressure compared
with 24-h ambulatory blood pressure with antihypertensive treat-
ment: dependency on pretreatment blood pressure levels. Hyperten-
sion 2014; 64:1067–1072.

121. Agarwal R, Weir MR. Treated hypertension and the white coat
phenomenon: office readings are inadequate measures of efficacy.
J Am Soc Hypertens JASH 2013; 7:236–243.

122. Saladini F, Benetti E, Malipiero G, Casiglia E, Palatini P. Does home
blood pressure allow for a better assessment of the white-coat
effect than ambulatory blood pressure? J Hypertens 2012; 30:
2118–2124.

123. Yoon HJ, Ahn Y, Kim KH, Park JC, Park JB, Park CG, et al. Can pulse
pressure predict the white-coat effect in treated hypertensive patients?
Clin Exp Hypertens 2012; 34:555–560.

124. O’Shaughnessy MM, Newman CA, Kinsella SM, Reddan DN, Lappin
DW. In-office assessment of blood pressure in chronic kidney disease:
usual measurement versus automated BpTRU measurement. Blood
Press Monit 2011; 16:124–128.

125. Sabater-Hernández D, de la Sierra A, Sánchez-Villegas P, Baena MI,
Amariles P, Faus MJ. Magnitude of the white-coat effect in the
community pharmacy setting: the MEPAFAR study. Am J Hypertens
2011; 24:887–892.

126. Scherpbier-de Haan N, van der Wel M, Schoenmakers G, Boudewijns
S, Peer P, van Weel C, et al. Thirty-minute compared to standardised
office blood pressure measurement in general practice. Br J Gen Pract
2011; 61:e590–e597.

127. Sendra-Lillo J, Sabater-Hernández D, Sendra-Ortolá A, Martı́nez-Mar-
tı́nez F. Comparison of the white-coat effect in community pharmacy
versus the physician’s office: the Palmera study. Blood Press Monit
2011; 16:62–66.

128. Pierdomenico SD, Pannarale G, Rabbia F, Lapenna D, Licitra R, Zito M,
et al. Prognostic relevance of masked hypertension in subjects with
prehypertension. Am J Hypertens 2008; 21:879–883.

129. Blanco F, Gil P, Arco C del, Sáez T, Aguilar R, Lara I, et al.
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283. Sprafka JM, Strickland D, Gómez-Marı́n O, Prineas RJ. The effect of
cuff size on blood pressure measurement in adults. Epidemiol 1991;
2:214–217.

284. Pinar R, Ataalkin S, Watson R. The effect of clothes on sphygmom-
anometric blood pressure measurement in hypertensive patients. J
Clin Nurs 2010; 19:1861–1864.

285. Liebl M, Holzgreve H, Schulz M, Crispin A, Bogner J. The effect of
clothes on sphygmomanometric and oscillometric blood pressure
measurement. Blood Press 2004; 13:279–282.

286. Kahan E, Yaphe J, Knaani-Levinz H, Weingarten MA. Comparison of
blood pressure measurements on the bare arm, below a rolled-up
sleeve, or over a sleeve. Fam Pract 2003; 20:730–732.

287. Holleman DR Jr, Westman EC, McCrory DC, Simel DL. The effect of
sleeved arms on oscillometric blood pressure measurement. J Gen
Intern Med 1993; 8:325–326.

288. Weber F, Anlauf M, Hirche H, Roggenbuck U, Philipp T. Differences
in blood pressure values by simultaneous auscultation of Korotkoff
sounds inside the cuff and in the antecubital fossa. J Hum Hypertens
1999; 13:695–700.

289. Ljungvall P, Thulin T. Hand-free stethoscope – method and instru-
ment for more reliable blood pressure measurements. J Intern Med
1991; 230:213–217.

290. Zheng D, Giovannini R, Murray A. Effect of respiration, talking and
small body movements on blood pressure measurement. J Hum
Hypertens 2012; 26:458–462.

291. Le Pailleur C, Montgermont P, Feder JM, Metzger JP, Vacheron A.
Talking effect and ‘white coat’ effect in hypertensive patients: physical
effort or emotional content? Behav Med 2001; 26:149–157.

292. Le Pailleur C, Vacheron A, Landais P, Mounier-Véhier C, Feder JM,
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