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Complexity in genetic cardiomyopathies and new
approaches for mechanism-based precision medicine
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Genetic cardiomyopathies have been studied for decades, and it has become increasingly clear that these progressive diseases
are more complex than originally thought. These complexities can be seen both in the molecular etiologies of these disorders
and in the clinical phenotypes observed in patients. While these disorders can be caused by mutations in cardiac genes,
including ones encoding sarcomeric proteins, the disease presentation varies depending on the patient mutation, where
mutations even within the same gene can cause divergent phenotypes. Moreover, it is challenging to connect the mutation-
inducedmolecular insult that drives the disease pathogenesis with the various compensatory and maladaptive pathways that
are activated during the course of the subsequent progressive, pathogenic cardiac remodeling. These inherent complexities
have frustrated our ability to understand and develop broadly effective treatments for these disorders. It has been proposed
that it might be possible to improve patient outcomes by adopting a precision medicine approach. Here, we lay out a practical
framework for such an approach, where patient subpopulations are binned based on common underlying biophysical
mechanisms that drive the molecular disease pathogenesis, and we propose that this function-based approach will enable the
development of targeted therapeutics that ameliorate these effects. We highlight several mutations to illustrate the need
for mechanistic molecular experiments that span organizational and temporal scales, and we describe recent advances in the
development of novel therapeutics based on functional targets. Finally, we describe many of the outstanding questions for the
field and how fundamental mechanistic studies, informed by our more nuanced understanding of the clinical disorders, will
play a central role in realizing the potential of precision medicine for genetic cardiomyopathies.

Introduction
Genetic cardiomyopathies encompass a broad array of pro-
gressive cardiac disorders that result in complex patterns of
pathogenic ventricular and atrial remodeling (Lorenzini et al.,
2020). The most common subclasses, hypertrophic (HCM) and
dilated (DCM) cardiomyopathies, are characterized by hyper-
trophy of the left ventricular wall and dilation of the left ven-
tricular chamber, respectively. The classification of these
differing remodeling patterns has long been based on nonin-
vasive diagnostic criteria (e.g., echocardiography) of often
end-stage disease. Clinical symptoms and outcomes are largely
defined by the functional effects onmyocardial performance, as
dictated by both the observed patterns of morphologic change
and the timing of disease onset. While the precise disease fre-
quency rates are somewhat controversial, extensive clinical data
support a worldwide frequency of ∼1/300–1/500 individuals for
HCM and ∼1/250 for DCM (Semsarian et al., 2015; McNally and
Mestroni, 2017). In 1990, cardiac myosin (MYH7) was the first

gene linked to HCM, and most of the subsequently identified
genes associated with HCM encode sarcomeric proteins (Geisterfer-
Lowrance et al., 1990). While the genetic basis of DCM is broader
and more complex, a recent study identified 12 genes robustly
associated with DCM, including a majority of sarcomeric pro-
teins (Mazzarotto et al., 2020b).

Despite an extensive array of studies over the last ∼30 yr
encompassing biophysical, cellular, animal model, and, more
recently, patient tissue methodologies, the current approaches
to community-based patient management for cardiomyopathies
remains largely unchanged since the era preceding genetic
linkage. At present, medical therapy is largely palliative and
reserved for patients with symptoms that occur later in the
pathogenic process after irreversible cardiac remodeling has
occurred (Gersh et al., 2011). This lack of translational insight is
humbling, given our relatively sophisticated understanding of
the structure and function of myocellular processes and the
proteins encoded by the genes linked to cardiomyopathies.
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As we have learned more about these progressive disorders,
it has become apparent that they are more complex in their
molecular etiologies and clinical presentation than generally
appreciated. This complexity has limited our understanding of
the molecular and cellular effectors that drive disease patho-
genesis and frustrated the development of effective therapeu-
tics. Overcoming these enduring limitations will require
updated, nuanced models based on experimentally derived
insights into the molecular mechanisms that drive this most
biophysical of disorders, coupled with a more modern and ro-
bust understanding of the variability of clinical expression. The
goals of this review are to (1) highlight recent advances in our
basic science and clinical understanding of these diseases, and
(2) provide a roadmap forward for leveraging basic science
discoveries to make translational advances for these complex
disorders.

Cardiomyopathies have variable and complex
clinical presentations
To begin to overcome these limitations, it is important to ac-
knowledge the current challenges in full. At the most basic level,
the primary question to be addressed is deceptively simple: How
does mutation of a given protein result in a given morphological–
clinical phenotype? Our increasing understanding of the ge-
netics, molecular underpinnings, and clinical phenotypes of
cardiomyopathies have demonstrated that these disorders are
anything but simple.

As of 2020, we have identified thousands of mutations linked
to cardiomyopathies. With the recent development of large and
curated genomic data sets, it has become clear that simply as-
signing pathogenicity to a given gene variant in the absence of
robust genetic linkage is highly imperfect (Mazzarotto et al.,
2020a). Connecting genetic variants with disease phenotype is
not only a central challenge in clinical medicine, but this issue
also greatly impacts basic science. Many basic science studies of
variants have assumed rigorous linkage to disease when the
variant might not be causative. This is most commonly observed
with variants that have only been observed in a single individual
or family, and this issue is compounded by the lack of precise
clinical phenotyping in many of the submissions to large data-
bases. While the use of such rare variants to probe basic biology
and structure can be informative, translational insights and in-
ferences about disease mechanism drawn from such approaches
are limited. Both genotype and phenotype must be rigorously
determined and validated in order to generate clinically relevant
and actionable mechanistic information.

Our understanding of the phenotype component of this
equation has also vastly expanded over the past decade. The
terms HCM and DCM are historic, representing descriptive
terminology originally derived from autopsy studies or ech-
ocardiography (Teare, 1958; Frank and Braunwald, 1968). For
example, HCM is classically defined as a diagnosis of exclusion
of other potential causes or “unexplained left ventricular
hypertrophy.” In the modern, postgenetics era, these terms
are imprecise and used by clinicians only in the broadest
sense. Recent data from highly curated clinical data sets have
validated what clinicians have long known—that genetic

cardiomyopathies, especially HCM, are protean in their mor-
phologic manifestations. For example, the most important
clinical question regarding a patient diagnosed with HCM is
whether they exhibit obstructive (hypertrophic obstructive
cardiomyopathy; ∼60%) or nonobstructive (∼40%) physiology,
largely determined from the hemodynamic and morphologic
profiles of the left ventricular outflow tract. This classification
determines both the treatment approaches and likely outcomes
(Neubauer et al., 2019). Other impactful morphologic observa-
tions that determine management include the distribution of left
ventricular hypertrophy (e.g., apical versus concentric), fibrotic
burden, degree of diastolic impairment, atrial remodeling, and
potential mitral valve involvement. Thus, the robust linkage of
genotype to phenotype in HCM or DCM requires more precise
characterization of patient-specific phenotypes to reflect the
reality of clinical management.

The pathologic remodeling in HCM and DCM is progressive.
At birth, patients have the mutation yet typically do not show
signs of remodeling (genotype+/phenotype−); however, many
patients progress and develop remodeling and subsequent dis-
ease symptoms (phenotype+/genotype+). Disease severity is
closely correlated to the time of onset, with worse outcomes
correlated to younger age of diagnosis. Patterns of pathogenic
remodeling are often nonlinear, with unpredictable zones of
accelerated or quiescent remodeling. Moreover, patients with
HCM can transition to DCM, which is predictive of poor out-
comes in sarcomere gene–positive patients (Helms and Day,
2016; Ho et al., 2018).

There are currently no definitive cures for cardiomyopathies.
Current therapy is largely dependent on the contractile state of
the heart. In systolic heart failure (frequently seen with DCM),
also known as heart failure with reduced ejection fraction, the
heart shows reduced contractile function during systole. Treat-
ment of heart failure with reduced ejection fraction, which is
comprehensive and a highly active research area, focuses on
supporting hemodynamics and preventing additional adverse
remodeling (e.g., β-blockers, angiotensin-converting enzyme
inhibitors, angiotensin receptor blockers, and, recently, nepri-
lysin inhibitors; Yancy et al., 2017). The efficacy of these ap-
proaches in patients with genetic DCM is highly variable and
often insufficient to avoid progression to end-stage disease.
Pediatric patients with DCM frequently do not respond well to
these therapeutics (Kantor et al., 2010). Later-stage therapies
focus on direct contractile support via left ventricular assist
devices or heart transplantation.

In contrast, systolic performance is often preserved or su-
pranormal in patients with HCM, where the patterns of ven-
tricular remodeling are near protean compared with DCM. HCM
patients often demonstrate diastolic dysfunction, which impacts
diastolic filling, and their hearts operate at elevated pressures,
similar to heart failure with preserved ejection fraction, for
which there are currently no effective therapies. Current
guidelines support therapy only in patients with overt symp-
toms and are mostly limited to therapeutics that improve
hemodynamics in obstructive patients (e.g., β-blockers, non-
dihydropyridine calcium channel blockers, and disopyramide;
Gersh et al., 2011). These palliative approaches are effective in a
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subset of patients for improving exercise tolerance and quality
of life, but do not address the underlying disease mechanism.
For the significant cohort of patients with HCM without ob-
struction, no specific therapies are effective (Day, 2019). As
such, new approaches are needed to identify therapeutics that
improve outcomes.

Cardiomyopathies are excellent candidates for a precision
medicine approach
Clearly, the field is challenged with highly complex disorders
defined by large degrees-of-freedom issues with respect to both
sides of the genotype–phenotype linkage. Addressing this chal-
lenge will require new approaches that leverage growing data
sets with more refined and precise views of the clinical dis-
orders. Rather than considering HCM and DCM as monolithic
entities, translational advances will likely come from a precision
medicine approach of dividing patients into rational subsets
with therapeutics tailored to each subset.

We propose defining subsets based on the primary molecular
mechanisms that drive the disease pathogenesis. This requires
identifying common structural–functional groups or biophysical
bins, rather than the current approaches that either focus on
individual mutations in isolation or that do not consider genetic
information. This is important for many reasons. First, in the era
of next-generation sequencing and the rapid expansion of pa-
tient genotyping, the number of potentially pathogenic muta-
tions identified is rising quickly, and when coupled to the
complexity of patient phenotypes, the ability to link genotype to
phenotype such that genetic information can be used in patient
management remains elusive. Genetic screening is primarily
used to identify genotype-positive family members for addi-
tional screening. This limitation remains a central concern of
modern clinical management. The ability to stratify or place
newly identified mutations or variants into functional bins
based on biophysical mechanisms would provide a robust
framework both for clinical prediction and rational therapeutic
targeting.

Second, given that the cardiac sarcomere is a near-crystalline
array of proteins that form highly evolved and allosterically
regulated macromolecular complexes, the identification of
disease-causing mechanisms must consider both inter- and in-
tramolecular interactions that may occur at a significant dis-
tance from the mutational site. Not surprisingly, this
comprehensive molecular phenotyping has revealed that the
“one gene, one mechanism” or even “one mutation, one
mechanism” assumptions are overly simplistic since a given
mutation can affect multiple functional units of macromolec-
ular complexes.

Finally, the initial myocellular response(s) to perturbations
in sarcomeric function are likely compensatory, involving a
myriad of signaling pathways affecting metabolism/energetics,
calcium homeostasis, and proteasomal degradation, to name but
a few (Spirito et al., 1985; Javadpour et al., 2003; Day, 2013;
Helms et al., 2016; Lehman et al., 2019). The coupling of robust
functional bins to early phases of the molecular response would
facilitate targeting either the primary biophysical defect and/or
the initial downstream signaling pathways, and this could

potentially alter the natural history of pathogenic cardiac re-
modeling in these disorders. Taken together, this overall ap-
proach would be predicted to transcend the simple notions that
HCM and DCM represent monolithic disorders and enable the
field to leverage the overall pathogenic complexity of these
disorders to develop new panels of mechanistically driven
therapeutic options.

The molecular and cellular manifestations of
cardiomyopathies are complex, and they evolve with
disease progression
It can be challenging to decipher the initial molecular insult that
drives the disease pathogenesis from other cellular dysfunctions.
Genome-wide association studies and targeted next-generation
sequencing of patients have revealed thousands of mutations in
genes primarily expressed in cardiomyocytes (McNally and
Mestroni, 2017; Ho et al., 2018; Fatkin et al., 2019). These
genes can be broadly characterized into those encoding proteins
involved in sarcomeric contraction (e.g.,MYH7, TNNT2,MYBPC3,
and TTN), mechanotransduction (e.g., LMNA and DES), excitation-
contraction coupling and calcium handling (e.g., PLN, SERCA2A,
and SCN5A), metabolism (e.g., TAZ), and organizing cytoskele-
tal architecture (e.g., ACTN1 and VCL). Thus, mutations in genes
involved in different pathways can lead to convergent cellular
manifestations and ventricular remodeling phenotypes. For exam-
ple, a primary biophysical effect of phospholamban mutations—a
protein that regulates sarcoplasmic calcium uptake via SER-
CA2a inhibition—is altered intramyocellular calcium handling;
however, the resulting calcium dysregulation will impact both
contractility andmetabolism due to the increased energetic cost of
sequestering calcium. Likewise, altered myofilament contractility
due to mutations in cardiac troponin T can affect cellular me-
chanotransduction (Clippinger et al., 2019), leading to down-
stream changes in the expression of calcium-handling genes
(Chandra et al., 2001; Montgomery et al., 2001).

Moreover, despite similarities observed in later stage,
symptomatic disease, independent genetic etiologies can cause
different mutation-induced changes in molecular and cellular
function early in the disease. The initial mutation-induced
perturbations in function act as molecular stress tests that
trigger subsequent responses by the cell tomaintain homeostatic
and functional mechanisms. These responses can vary between
mutations and they define the nature and magnitude of early,
often compensatory pathways driving myocardial remodeling.
These molecular and cellular signatures are highly dynamic and
vary over the often-extended time course of the disease.

Initial molecular insults affect protein biochemistry
and biophysics
Mechanistic studies have highlighted the need to reevaluate
some of the earlier models for organizing mutations. These
studies have repeatedly revealed that it is impossible to classify
mutations based on the affected gene alone. For example, nu-
merous variants in cardiac myosin (MYH7) have been identified,
some of which cause HCM, some of which cause DCM, and some
of which are benign (Alamo et al., 2017). Similarly, it is not
possible to classify the diseases as arising from either a gain or

Greenberg and Tardiff Journal of General Physiology 3 of 19

Complexity in genetic cardiomyopathies https://doi.org/10.1085/jgp.202012662

https://doi.org/10.1085/jgp.202012662


loss of molecular function. For example, mutations in titin (TTN)
and myosin-binding protein C (MyBPC; MYBPC3 gene) can both
cause loss of protein function (Andersen et al., 2004; Hinson
et al., 2015; Helms et al., 2020a); however, titin mutations typ-
ically cause DCM, while MyBPC mutations typically cause HCM.
Moreover, it has been proposed that HCM is caused by muta-
tions that result inmolecular hypercontractility and DCM results
from hypocontractility; however, many mutations associated
with cardiomyopathies, such as those in lamin A/C—the second-
most frequently mutated gene in DCM—or desmin play no direct
role in contractility. Finally, patients with HCM can transition to
DCM with the activation of maladaptive pathways. Taken to-
gether, it has become clear that understanding the disease path-
ogenesis will require the development of models that better
capture these subtleties.

We propose classifying patient mutations into bins based on
the initial biophysical insult driving the disease pathogenesis at
the molecular scale and the resultant functional effects (Fig. 1).
For each bin, therapeutics can be designed to ameliorate the
underlying biophysical defect. This is a central point since, given
the relative infrequency of individual mutations, therapeutics
targeting independent mutations are not feasible. Instead, ro-
bust mutational binning based on the initial molecular insult can
identify subsets of mutations that would be predicted to respond
similarly to a given therapy. While these proposed biophysical
bins are not mutually exclusive, they provide a useful organi-
zational framework for organizing mutations.

The molecular effects of mutations can be divided into three
broad categories: protein abundance, stability, and function;
however, these categories are not mutually exclusive. For ex-
ample, while DCM-causing dystrophin mutations affect its
function in vitro, the protein is degraded in the cell, leading to
reduced abundance (Kerr et al., 2001). As such, it is necessary to
consider the molecular effects of mutations both in vitro and
in vivo, especially in the development of new therapeutics. A
compound that restores activity to a protein that is degraded in
the cell would not be useful, and, similarly, a compound that
increases protein abundance would not be useful if the protein is

nonfunctional. In the following section, we describe potential
bins and provide specific examples of mutations that fall within
these bins.

Mutations affecting protein abundance
Some mutations affect protein abundance, leading to a net
haploinsufficiency. Haploinsufficiency can arise from nonsense-
mediated decay of mRNA, degradation of proteins that fail
quality control, or changes in protein structure that affect its
integration into stable macromolecular complexes. For example,
titin, the most frequently mutated gene in DCM, is a large pro-
tein with multiple globular domains that connects the thick
filament to the Z-disc, and it is a major source of muscle passive
tension. Many titin mutations are frameshift or nonsense mu-
tations that lead to protein degradation (Hinson et al., 2015).
Similarly, in Duchenne’s muscular dystrophy, DCM is a common
late-stage manifestation. The disorder is frequently caused by
frameshift mutations in dystrophin (DMD), which anchors the
sarcomere to the extracellular environment via the sarcolemma.
These frameshift mutations lead to protein degradation, and
many patients have no detectable expression of dystrophin
(Kerr et al., 2001). This leads to repeated sarcolemmal damage
with eventual myocyte loss and extensive replacement fibrosis.

Haploinsufficiency due to protein loss can also lead to HCM.
For example, one of the most commonly mutated proteins
in HCM is MyBPC. MyBPC lies along the thick filament
and its N-terminal region can bind to the thin filament in a
phosphorylation-dependent manner (Shaffer et al., 2009). It has
been proposed thatMyBPC plays a role in regulating both thin and
thick filament activation (Mun et al., 2014; McNamara et al., 2019;
Toepfer et al., 2019). ManyMyBPC HCMmutations are frameshift
or nonsense mutations that lead to a depletion of MyBPC and
dysregulation of contractility (Helms et al., 2020b). Deletion of
MYBPC3 causes HCM (Harris et al., 2002).

Mutations affecting protein stability
Some cardiomyopathy-causing mutations affect the stability of
proteins, which can lead to changes in protein function and/or

Figure 1. Mutations can be grouped into bins based on the biophysical consequences of the initial molecular insult that drives the disease path-
ogenesis. Colored boxes represent potential biophysical bins for organizing mutations. White boxes represent broad bins that we subdivided into more
specialized bins to describe the effects of sarcomeric mutations. While these bins are neither mutually exclusive nor exhaustive, they provide a useful
framework for classifying patient subpopulations and for identifying biophysical parameters that can be targeted pharmacologically for the development of
precision therapeutics for these subpopulations.
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abundance. One example of a cardiomyopathy caused by
changes in noncardiac protein stability is cardiac amyloidosis
(Bart et al., 2020). This disorder presents as infiltrative cardi-
omyopathy, resulting in a loss of ventricular compliance. It can
be familial or arise from clonal mutations in plasma cells. In the
most common form, light chain amyloidosis, mutations in Ig
light chains in clonal plasma cells lead to protein instability and
the formation of insoluble amyloid. Similarly, inherited muta-
tions in liver-produced transthyretin (TTR) can cause amyloid
formation and cardiac deposition. The exact mechanism by
which these amyloid plaques cause disease is an active field of
research.

Cardiomyopathic remodeling can also be caused by muta-
tions that affect the stability of macromolecular complexes. For
example, there are disease-causing mutations in the coiled-coil
cardiac myosin tail/rod domain that affect the assembly and
stability of the thick filament (Blair et al., 2002). It is important
to note that the stability of macromolecular complexes depends
on the Kd of the components as well as the local cellular protein
concentration, which can vary throughout the cell. For example,
within the sarcomere, there are very high concentrations of
troponin (∼0.15 mM) and actin (∼1 mM) due to crystalline
packing of thick and thin filament latices. Outside the sarco-
mere, the effective concentration of troponin is very small. The
Kd for troponin binding to the thin filament in solution is ∼50
µM (Gangadharan et al., 2017). Given the high concentration of
actin and troponin within the sarcomere, all of the troponin will
be bound to the thin filament. In this case, subtle mutation-
induced changes in the Kd would be predicted to have little
impact on the steady-state fraction of troponin bound to the thin
filament. That being said, subtle changes in affinity can provide
insights into mutation-induced structural changes.

Mutations affecting protein function
The majority of cardiomyopathy-causing mutations are single
point mutations. Some of these mutations occur in introns
where they can affect gene splicing, leading to altered protein
abundance or function. Other mutations occur in exons, re-
sulting in amino acid substitutions. Many of these mutations
directly affect protein function, such as point mutations in the
myosin head domain that affect the kinetics of its ATPase cycle
(Sommese et al., 2013; Liu et al., 2018; Adhikari et al., 2019;
Sarkar et al., 2020) and mutations within troponin and tropo-
myosin that affect calcium-based thin filament regulation
(Tardiff et al., 1999; Barrick et al., 2019; Clippinger et al., 2019;
Clippinger et al., 2020 Preprint; Ezekian et al., 2020). Other
mutations can affect the mechanical properties of proteins. For
example, mutations in the myosin light chain binding domain
can potentially affect the stiffness of the lever arm, impacting
myosin’s ability to efficiently generate force (Greenberg et al.,
2010). Other point mutations affect posttranslational mod-
ifications that regulate protein activity, such as phosphorylation
of troponin I (Memo et al., 2013).

It remains challenging to predict functional consequences
solely from the mutation’s location in the molecule’s three-
dimensional structure. Crystal structures capture a single,
static, typically low-energy conformation of a protein, and,

therefore, higher energy, functionally relevant conformations
and transition states are frequently not captured. Proteins and
protein complexes are complicated machines that can be func-
tionally regulated by allosteric interactions through the mole-
cule, and, therefore, point mutations distal from the protein
active site can affect the conformational dynamics of side chains
at the active site. Therefore, not all functionally relevant muta-
tions occur at active sites. For example, some mutations in the
myosin converter domain occur far from the active site and affect
the ATPase cycling kinetics (Gunther et al., 2019; Vera et al.,
2019). The recent use of computational modeling coupled with
high-resolution in vitro experiments is expanding our under-
standing of these processes and the effects of disease-causing
mutations and genetic modifiers (Guinto et al., 2007; Manning
et al., 2012; Williams et al., 2016; McConnell et al., 2017; Porter
et al., 2020). We anticipate that these tools will greatly enhance
our understanding of mutations at the molecular/atomic scale
(Manning et al., 2012; Williams et al., 2016; Porter et al., 2020).

Classic genetic cardiomyopathies are caused by
sarcomeric mutations
To illustrate how functional binning of initial molecular insults
could be accomplished, we will discuss targetable biophysical
bins for sarcomeric protein mutations (Fig. 1). HCM patients
with known pathogenic mutations in sarcomeric proteins have
worse outcomes than do patients with variants in nonsarcomeric
genes or genotype-negative patients (Ho et al., 2018). In general,
HCM is typically associated with diastolic dysfunction, and DCM
is typically associated with systolic dysfunction in patients;
however, the mutation’s effects on molecular contractility are
not necessarily the same as those observed in symptomatic pa-
tient hearts. The initial insult causes the activation of adaptive
and maladaptive pathways, and, therefore, it can be masked by
secondary adaptations associated with disease progression. Un-
derstanding the molecular basis of sarcomeric mutations neces-
sitates a careful examination of their impact across multiple
levels of biologic complexity and experimental resolution.

The sarcomere is the fundamental unit of cardiac contrac-
tion, where force and power are generated by the collective
motion of myosin molecular motors interacting with the thin
filament. Myosinsmust generate sufficient power during systole
to pump blood throughout the body and then stop generating
power during diastolic filling. The physiologic state of the heart
and hemodynamic demand varywith disease and patient activity,
and, therefore, multiple complex mechanisms have evolved to
regulate power output. In the next sections, we review the mo-
lecularmechanisms ofmuscle contraction and describe targetable
biophysical bins based on these mechanisms.

Calcium-based regulation of muscle contraction
Cardiomyocyte contraction is initiated by depolarization of the
sarcolemma, which leads to the activation of voltage-gated ion
channels, including L-type calcium channels. Local calcium in-
flux and activation of the ryanodine receptor on the sarcoplasmic
reticulum follows, initiating calcium-induced calcium release.
This causes the levels of intracellular calcium to rise, activating
the thin filament and initiating sarcomeric contraction. At the
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end of the contraction, calcium is removed from the cytoplasm
via the sarcoendoplasmic reticulum calcium ATPase pump and
the sodium-calcium exchanger, facilitating muscle relaxation.
The time scale ofmuscle activation depends on the amplitude and
kinetics of the calcium transient.

Force is generated by myosins pulling on thin filaments
consisting of actin, troponin, and tropomyosin (Fig. 2). During
diastole, when the intracellular calcium levels in the cell are low,
tropomyosin lies along the myosin strong-binding sites on actin,
sterically inhibiting force generation (blocked state of tropo-
myosin; McKillop and Geeves, 1993; Lehman et al., 1994). When
calcium enters the sarcomere, it binds to troponin C, leading to
an axial shift in the tropomyosin positioning on actin to the
closed state. This partially exposes the myosin strong-binding
sites on actin. Myosin strong binding to the thin filament pushes
tropomyosin into the open state, which opens multiple adjacent
myosin-binding sites, leading to cooperative recruitment of
myosin cross-bridges. Therefore, calcium-based regulation de-
pends on calcium, myosin binding, and the coupling between
troponin and tropomyosin.

Bins: Kinetics of the calcium transient, calcium binding to tro-
ponin, tropomyosin positioning along actin, calcium dissociation ki-
netics, cooperativity of activation.

Mechanics of the myosin working stroke
Cardiac myosin has a core structure that is conserved with other
myosins (Preller and Manstein, 2012; Winkelmann et al., 2015).
It is a hexameric complex comprised of twomyosin heavy chains
(MHCs), two regulatory light chains (RLCs), and two essential
light chains (ELCs). The two MHCs dimerize via a long coiled-
coil tail that facilitates oligomerization into the thick filament.
The head domain of theMHC contains the sites of ATP hydrolysis
and actin binding. Small conformational changes at the nucleo-
tide binding site associated with nucleotide binding, hydrolysis,
and release cause kinking of the relay helix and rotation of the
converter domain (Fig. 3). The converter domain acts as a ful-
crum, and its rotation is amplified into a larger displacement by
the lever arm composed of the light chain binding domain
(Rayment et al., 1993b). This rotation is known as the power-
stroke, and the lever arm rotates by ∼70° to generate a unitary
displacement (or working stroke), d, of ∼6 nm (Dominguez et al.,
1998; Fig. 3 B). The force generated is proportional to both the
unitary displacement and the stiffness of the myosin cross-
bridge. Thus, if a given mutation affects the mechanics of the
working stroke, by either changing the angular swing or the
stiffness of the lever arm, this can affect myosin force production.

Bins: Mechanics of the working stroke.

Figure 2. Regulation of contraction by the thin filament. (A) The thin filament, consisting of actin (Ac; peach), tropomyosin (Tm; yellow), troponin I (TnI;
blue), troponin C (TnC; green), and troponin T (TnT; pink) regulates calcium-dependent interactions between myosin and the thin filament. Black dashed line
shows regions of troponin T that were not resolved in the structure. Structure is from PDB accession no. 6KN7. (B) Tropomyosin can lie in three positions along
the thin filament, blocked (red), closed (yellow), and open (green). When tropomyosin lies in the blocked position, it sterically blocks the strong binding of
myosin (blue ribbon structure). When tropomyosin is pushed into the open position by myosin binding, it opens adjacent myosin-binding sites, leading to
cooperative recruitment of additional myosin cross-bridges. Based on PDB accession nos. 6KN7 (blocked), 6KN8 (closed), and 4A7L (open, myosin bound).
(C) Cartoon of thin filament regulation. Calcium binding to the thin filament causes tropomyosin to shift to the closed position. The tropomyosin can then either
thermally diffuse or be pushed into the open position by myosin binding. Myosin initially binds weakly to the thin filament, and then strongly. Upon the
transition to myosin strong binding of the thin filament, myosin releases phosphate and undergoes its power stroke, generating force. KB, KT, KW, and KS are
equilibrium constants between states.
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Kinetics of the myosin enzymatic cycle
Myosin generates force in an ATP-dependent manner (Lymn
and Taylor, 1971; De La Cruz and Ostap, 2004). In the absence
of nucleotide, myosin strongly binds actin. ATP binding
causes rapid dissociation of actin and myosin. Myosin then
hydrolyzes ATP and it adopts a primed “pre–power stroke
conformation” (Dominguez et al., 1998). Upon strong binding
to actin, phosphate is released and the myosin undergoes its
power stroke, generating force. ADP is then released, gener-
ating an additional small displacement (Greenberg et al.,
2014) and the cycle resets. The rates and equilibrium con-
stants that define these biochemical transitions are major
determinants of the rates of muscle shortening (see below).
The slowest transition in the ATPase cycle is the rate of my-
osin strong binding to actin and the subsequent phosphate
release (∼10 s−1 at 20°C). The unloaded muscle shortening
speed is limited by the rate of ADP release (Bárány, 1967;
Siemankowski et al., 1985) from actomyosin (∼70 s−1 at 20°C;
Deacon et al., 2012).

The rates of individual biochemical transitions can be af-
fected by mechanical forces, and this can affect both the muscle-
shortening speed and force production (Spudich, 2014;
Greenberg et al., 2016). Force slows myosin’s ATPase kinetics
(Hill, 1938), and this slowing contributes to the Fenn effect
(Fenn, 1923). The rate of a transition in the presence of force,
k(F), can be calculated as (Bell, 1978):

k(F) � koe
− F∗δ
kBT, (1)

where ko is the rate of the transition in the absence of force, kBT
is the thermal energy, F is the force on the molecule, and δ is the
distance to the transition state, where a larger δ represents a
greater force sensitivity. In the case of cardiac muscle, force
slows the rate of ADP release (Nyitrai and Geeves, 2004; Takagi
et al., 2006), the transition that sets the rate of unloaded muscle
shortening (Siemankowski et al., 1985), and δ equals ∼1 nm
(Greenberg et al., 2014; Sung et al., 2015; Fig. 3 C).

Bins: Myosin kinetics, load dependence of kinetics.

Figure 3. The myosin motor drives cardiac contraction. (A) The myosin motor generates force when it transitions from the pre–power stroke state to the
post–power stroke state. This force generates a displacement, d, and the transmission of this force depends on the stiffness of the myosin, k. Troponin (Tn;
blue); tropomyosin (Tm; yellow); MHC (green); ELC (magenta); RLC (pink). (B) The transition from the pre–power stroke state causes the light chain binding
domain to rotate by 70°, generating a displacement, d, of ∼6 nm. (C) Force slows the rate of actomyosin detachment according to Eq. 1. Mutation or drug-
induced changes in the load dependence of the rate of detachment affects the speed of shortening (Eq. 2), the myosin duty ratio (Eq. 3), force generation (Eq.
4), and power output (Eq. 5). (D)Myosin can form an autoinhibited state, known as the interacting heads motif. The SRX state is likely related to the formation
of the interacting heads motif, where one myosin head, the blocked head, binds to the coiled-coil S2 region, and the other head, the free head, forms in-
teractions with the blocked head. The interacting heads motif is regulated by several mechanisms, including mechanical stretch, RLC phosphorylation, and
interactions between myosin and MyBPC. Relief of the autoinhibition causes the myosin to adopt a disordered relaxed state, where the myosin heads can
interact with activated thin filaments. Interacting head motif is based on PDB accession no. 5TBY.
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Myosin thick filament–based regulation of muscle contraction
Cardiac contractility can also be regulated at the level of myosins
within the thick filament. Intact striatedmuscle has a population
of myosin heads that hydrolyze ATP slower than the rate seen
using purified proteins (Stewart et al., 2010; Hooijman et al.,
2011). This led to the hypothesis that striated muscle myosin
can adopt a super-relaxed state (SRX). Based on EM re-
constructions of smooth and skeletal muscle thick filaments
(Woodhead et al., 2005; Alamo et al., 2016), it was proposed that
the SRX represents an autoinhibitory state of myosin, where the
two myosin heads interact both with each other and the S2 re-
gion (Fig. 3 D). In this state, the myosin heads form an inter-
acting heads motif that sequesters them to the thick filament
backbone and prevents binding to the thin filament. The heads
can be released from the thick filament backbone by phospho-
rylation of the RLC (Yang et al., 1998) or via a mechanosensitive
mechanism following mechanical stretch (Linari et al., 2015).
Once the heads release from the thick filament backbone, they
adopt a disordered relaxed state where they can bind the thin
filament. There is emerging evidence that the SRX is regu-
lated by MyBPC, potentially through phosphorylation of the
N-terminal region (Nag et al., 2017; McNamara et al., 2019).
Thus, muscle contraction can be regulated by modulating the
number of myosin heads available to interact with the thin
filament (N).

Bins: Number of myosin heads available to bind the thin filament.

Cardiomyopathies are complex, dynamic disorders whereby
changes in the molecular and cellular environment drives
pathogenic cardiac remodeling
Each of the biophysical bins described above have multiple
levels of regulation that can be tuned in both health and disease.
These adaptive and maladaptive processes are highly dynamic,
and they can affect these parameters differently as the disease
progresses. One prominent experimental challenge is that many
studies provide a snapshot of the disease at a single time point;
however, it is important to consider the time-dependent nature
of the disorders. As cardiomyopathic remodeling progresses,
changes in both tissue structure and cellular function are often
observed. At the molecular scale, there are changes in protein
phosphorylation patterns (e.g., RLCs, troponin I, MyBPC) that
tune the biophysical properties of contraction (Nakano et al.,
2019; Tucholski et al., 2020). There are also functionally sig-
nificant shifts in protein isoform expression, with a shift toward
amore fetal gene expression pattern in the later stages of disease
(Yin et al., 2015). Moreover, modification of proteins, such as
methylglyoxal modification of contractile proteins in patients
with diabetes (Papadaki et al., 2018), can affect their biophysical
properties. Thus, when designing rigorous experiments, the
question of which precise phenotype and which phase of
the disorder is being modeled is paramount for determining
translational insights. Of note, many pathways activated in
disease are not unique to genetic cardiomyopathies, but are
shared, in part, with other causes of pathogenic remodeling,
including myocardial infarction, aortic stenosis,
chemotherapy-induced cardiomyopathy, diabetic cardiomyop-
athy, and chronic hypertension. Since not all causes of cardiac

remodeling are similar in presentation or treatability, it is
important to understand both the initial molecular insults that
drive early myocellular remodeling and subsequent downstream
compensatory responses, as these prepathogenetic states are
potential therapeutic targets.

How biophysical parameters relate to muscle shortening,
force production, and power output
The biophysical parameters described above can be combined to
describe the rate of muscle shortening, force production, and
power output. The muscle shortening rate depends on both the
kinetics and mechanics of the myosin working stroke. An un-
loaded or lightly loaded muscle will shorten at its maximal speed
if at least one cross-bridge is attached to the thin filament at any
given time. Under these circumstances, the shortening rate,
V(F), is limited by the rate of actomyosin dissociation (Huxley,
1990):

V(F) � d
ton(F)

, (2)

where d is the unitary step size and ton(F) is the amount of time
that actin and myosin are attached (typically set by the ADP
release rate). Perturbations that affect either parameter will
affect the shortening speed. It should be noted that there are
alternative models describing the unloaded shortening speed as
being limited by attachment-limited kinetics that use similar
biophysical bins (Brizendine et al., 2015). At higher loads, the
speed depends on the number of force-generating cross-bridges,
and expressions have been derived that use similar biophysical
bins to define the loaded speed (Baker et al., 2002).

The force produced by a muscle will depend on several pa-
rameters. One parameter is the duty ratio, r(F), which defines
the fraction of myosin’s biochemical cycle spent attached to
actin:

r(F) � ton(F)
tcycle(F)

� ton(F)
ton(F) + toff (F)

, (3)

where ton(F) is the amount of time that myosin spends attached
to actin, tcycle(F) is the time that it takes for myosin to complete
one ATPase cycle (i.e., the inverse of the ATPase rate), and toff(F)
is the amount of time that myosin spends detached from actin
(typically set by the rate of myosin strong binding and subse-
quent phosphate release; Muretta et al., 2015; Woody et al.,
2019). Therefore, mutations affecting the rates of individual
biochemical transitions can potentially affect the duty ratio.
Since these rates depend on force (Eq. 1), mutation-induced
changes in myosin’s force-sensing properties can affect the
duty ratio (Liu et al., 2018). Moreover, the effective duty ratio
depends on calcium-based regulation, since at low calcium,
myosin is inhibited from interacting with the thin filament
(McKillop and Geeves, 1993).

The force generated by an ensemble of motors inmuscle, Fens,
is given by (Spudich, 2014)

Fens � Funi ∗ N ∗ r(F), (4)

where N is the number of myosin heads available to interact
with the thin filament; Funi is the unitary force of a single
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myosin, which depends on the working stroke mechanics; and
r(F) is the load-dependent duty ratio. Changes in any of these
parameters will affect force production.

The power output, P(F), is given by the product of force and
velocity:

P F( ) � V d, ton(F)[ ] ∗ Fens N, r F( ), Funi[ ]. (5)

And, therefore, it depends on the composite effects of the
biophysical bins.

Mechanobiology links aberrant mechanical forces with
biologic adaptation
As discussed above, many cardiomyopathy mutations occur in
sarcomeric genes and thus affect contractility. It has been
challenging to connect altered cardiac contraction with the
disease progression which manifests itself over the course of
decades; however, the development of a hypertrophic or dilated
phenotype can be predicted based on the integral of the tension
transient (Davis et al., 2016). Therefore, the initial molecular
insult of altered contractility can activate downstream adaptive
and maladaptive pathways, including changes in metabolism,
calcium handling, gene expression, and protein posttransla-
tional modifications.

The cell must sense altered mechanics and respond via acti-
vation of mechanobiological signaling pathways. These changes
can vary over length and time scales (Iskratsch et al., 2014). For
example, short-term changes in cellular function can occur via
rapid phosphorylation of proteins, whereas longer-term changes
can occur via altered transcription or tissue-scale remodeling
(DuFort et al., 2011). Mechanobiological signaling pathways have
been thoroughly described in several cell types, and determining
their exact molecular mediators in the heart remains an active
field of research (Majkut et al., 2014; Boothe et al., 2016; Chiou
et al., 2016; Cho et al., 2019).

Mechanotransduction in cardiomyocytes can occur via sev-
eral pathways (Iskratsch et al., 2014; Pruitt et al., 2014). Forces
outside of the cell are transmitted into the cell via linkages be-
tween the cell and the extracellular matrix (e.g., dystroglycan
complex) or between cells (e.g., intercalated discs). These forces
can be directly transmitted to the nucleus through cytoskeletal
elements or indirectly via force-induced unfolding of signaling
molecules (Hu et al., 2017). Alternatively, forces at the mem-
brane can open mechanosensitive ion channels (e.g., transient
receptor potential channels), leading to ion influx and the
activation of secondary messenger pathways (e.g., calcium–

calcineurin). The reader is referred to several reviews on
cardiomyocyte mechanosensing (Smith et al., 2017; Nakamura
and Sadoshima, 2018; Saucerman et al., 2019).

While we have focused on sarcomeric gene mutations, there
are other genes beyond the sarcomere linked to cardiomyopathies.
Many of these genes lie along canonical mechanotransduction
pathways, including dystrophin (DMD), desmin (DES), and
lamin A/C (LMNA; Cho et al., 2016). In fact, lamin A is one of the
most frequently mutated genes associated with DCM. Lamin
intermediate filaments in the nucleus form lamin-associated
domains (LADs) that bind to chromatin (van Steensel and
Belmont, 2017). These LADs are regions of low transcriptional

activity, and mechanical forces can cause the disruption of
these domains (Janota et al., 2020). A recent study examining
an LMNA DCM mutation in stem cell–derived cardiomyocytes
showed changes in LAD topology, leading to altered gene ex-
pression (Lee et al., 2019).

Recent work demonstrated that cardiomyocyte microtubules
may play a role in mechanotransduction (Caporizzo et al., 2019).
Microtubules stretch perpendicular to and are mechanically
coupled to the Z-discs, likely through interactions between de-
tyrosinated tubulin and desmin (Robison et al., 2016). These
interactions contribute to the viscoelastic properties of the
muscle and are disrupted in patients with heart failure (Chen
et al., 2018; Caporizzo et al., 2020). The microtubule network
also plays a role in regulating the production of reactive oxygen
species in response to stretch. Disruption of this network leads
to aberrant X-ROS signaling, which increases the frequency of
proarrhythmogenic calcium sparks (Kerr et al., 2015). This
provides a mechanism bywhich disruptedmechanics can lead to
calcium dysregulation, independent of changes in gene
expression.

Mechanotransduction also plays a central role in sarcomeric
formation and maintenance (Chopra et al., 2018). Disruption of
mechanotransduction in stem cell–derived cardiomyocytes by
knockout of vinculin or inhibition of myosin contraction by
blebbistatin leads to sarcomeric disassembly (Chopra et al.,
2018). Moreover, troponin T, which regulates cardiac force
generation, is necessary for proper sarcomere assembly in sev-
eral model systems (Ahmad et al., 2008; Nishii et al., 2008;
Ferrante et al., 2011). Taken together, these results demonstrate
that mutation-induced changes in molecular tension or mecha-
notransduction could affect sarcomeric organization.

There is emerging evidence that the primary disruption of
mechanotransduction plays a role in cardiomyopathies. DCM-
linked mutations in sarcomeric proteins, including titin and
troponin T, cause sarcomeric disarray in stem cell–derived
cardiomyocytes (Chopra et al., 2018; Clippinger et al., 2019; Dai
et al., 2020). Our recent work demonstrated that the DCM
mutation, ΔK210, in troponin T reduces molecular and cellular
force generation and alters cardiomyocyte mechanosensing
(Clippinger et al., 2019). We cultured human pluripotent stem
cell–derived cardiomyocytes on substrates of different stiffness.
While the WT cells showed robust sarcomeric organization over
a range of stiffnesses, ΔK210 cells showed sarcomeric disarray
on stiff substrates, but not on substrates matching the stiffness
of the healthy heart. Thus, mutation of sarcomeric proteins
can affect not only cellular contraction, but also mechano-
transduction. Moreover, our results suggest that fibrosis-induced
stiffening of the heart could contribute to disease progression.

The role of altered mechanical forces and mechanobiology
in disease likely extends beyond cardiomyocytes. There are
multiple cell types in the heart, including macrophages, fibro-
blasts, endothelial cells, and pericytes that likely play critical
roles in disease pathogenesis. Importantly, myocardial tissue
in both HCM and DCM exhibits varying degrees of fibrosis,
which can act as a substrate for arrhythmias. Fibrosis, in part, is
due to activation of quiescent fibroblasts to become myofibrob-
lasts (Nakamura and Sadoshima, 2018). Myofibroblasts show
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increased contractility and increased deposition of extracellular
matrix due to the activation of the TGF-β pathway (Davis and
Molkentin, 2014). Mechanical forces can promote the myofi-
broblast transition, and, therefore, mutation-induced
altered cardiac contractility can affect processes beyond
cardiomyocytes.

Examples of well-characterized sarcomeric mutations
There have been many excellent mechanistic studies of sarco-
meric cardiomyopathy mutations, and it is impossible to cover
them all. Here, we focus on two well-studied mutations that
highlight the complex disease pathogenesis and the need to
examine mutations over several scales of organization.

R403Q in MYH7 (MHC) causes HCM
R403Q, the first mutation associated with HCM (Geisterfer-
Lowrance et al., 1990), is one of the most studied mutations.
The mutation results in a charge reversal, suggesting that it
could affect electrostatic interactions between residue 403 and
binding partners (Fig. 4). R403 is located in the MHC cardio-
myopathy loop (Rayment et al., 1993a), which derives its name
from the multiple cardiomyopathy-causing mutations found
there (Preller and Manstein, 2012).

Studying the initial molecular insult driving R403Q patho-
genesis has been challenging, in part, due to difficulties in es-
tablishing model systems that faithfully recapitulate the human
disease phenotype. Early studies were conducted with myosin
extracted from patient samples; however, some studies showed
decreased contractile function (e.g., reduced sliding speed [Cuda
et al., 1997] and tension [Lankford et al., 1995]), while others
showed increased contractility (e.g., increased actomyosin de-
tachment kinetics; Palmiter et al., 2000). These experiments
were confounded by the limited availability of human tissue and
challenges with preserving the myosin.

A major advance was the development of an R403Q trans-
genic mouse that expresses abundant amounts of control and
mutant protein (Geisterfer-Lowrance et al., 1996); however,
mouse ventricles primarily express α-cardiac MHC (MYH6), not
the β-isoform (MYH7) expressed in human ventricles. The
α-isoform has faster motility and ATPase kinetics and lower
force than the β-isoform (VanBuren et al., 1995; Alpert et al.,
2002; Deacon et al., 2012) and, as such, the use of α-cardiac
myosin may not reproduce the human phenotype. Biochemical
studies of murine R403Q α-cardiac isoform showed an increase
in motility, ensemble force, and ATPase kinetics. Based on these
results, it was proposed that R403Q causes molecular hyper-
contractility (Tyska et al., 2000; Debold et al., 2007). Studies
using transgenic mice and rabbits showed different molecular
defects with the β-isoform (Lowey, 2002; Lowey et al., 2008;
Lowey et al., 2013; Lowey et al., 2018).

Expressing recombinant human β-isoform MHC has been
challenging since it cannot be expressed by using the baculovi-
rus/Sf9 system typically used to express myosin proteins due to
the lack of proper chaperones (Srikakulam and Winkelmann,
2004). However, it is possible to express MHC fragments
of recombinant human cardiac myosin in C2C12 cells, which
contain muscle specific chaperones (Deacon et al., 2012), and

this system has been used to generate recombinant human
R403Q. Unexpectedly, human R403Q myosin showed reduced
intrinsic force, unchanged size of the working stroke, decreased
ensemble force, increased motile speed with unregulated actin,
and decreased motile speed with regulated thin filaments (Nag
et al., 2015).

The finding of reduced contractility with human R403Q
motor domains was inconsistent with the model that HCM
mutations cause molecular hypercontractility; however, myosin
operates in the sarcomeric macromolecular complex. Spudich
(2015) noted that the myosin head has a domain enriched with
charged amino acids that he dubbed the myosin mesa, and he
proposed that the mesa participates in protein–protein interac-
tions. Many cardiomyopathy-causing mutations, including
R403, are located along the mesa (Alamo et al., 2017). Structural
models have suggested that the mesa helps form the SRX and
that it interacts with MyBPC (Nag et al., 2017; Trivedi et al.,
2018). In the interacting head configuration, R403 on the
blocked head likely interacts with the free head, and R403 of the
free head interacts with MyBPC (Sarkar et al., 2020). Consistent
with this model, biochemical experiments and x-ray fiber dif-
fraction studies demonstrated that R403Q destabilizes the SRX
(Anderson et al., 2018; Sarkar et al., 2020) and reduces binding
to MyBPC (Sarkar et al., 2020). Based on these results, it was
proposed that the R403Q mutation destabilizes the SRX, leading
to hypercontractility by increasing the number of available
myosin heads. This hypercontractility is independent of changes
in the intrinsic force-generating or ATPase properties of indi-
vidual motors. These results highlight the need to consider the
molecular effects of mutations in systems with biophysical
properties similar to the human isoforms, as well as the impor-
tance of studying mutations over several scales of organization.

R92Q in TNNT2 (troponin T) causes HCM
The R92 residue in troponin T has been proposed as a hot spot
for HCM mutations (Forissier et al., 1996). To date, three sepa-
rate mutations (R92Q/L/W) have been identified at this site with
different clinical presentations, depending on the mutation.
Structurally, troponin T is part of the complex that regulates
calcium-dependent interactions between myosin and the thin
filament (Fig. 4). Troponin is a trimeric protein composed of
troponin C, which binds calcium; troponin I, which inhibits the
movement of tropomyosin in the absence of calcium; and tro-
ponin T, which anchors the troponin complex to tropomyosin
and plays a role in thin filament inhibition (Tobacman et al.,
2002; Madan et al., 2020). The troponin complex core domain
was crystalized in 2003 (Takeda et al., 2003); however, the
majority of troponin T, including R92, was not resolved, likely
because this region is intrinsically disordered in solution. Re-
cently, a high-resolution cryo-EM structure of the thin filament
provided near-atomic resolution structures of actin, tropomyo-
sin, andmost of the troponin complex (Yamada et al., 2020), and
the position of troponin T was further refined by computational
docking (Pavadai et al., 2020). The majority of troponin T forms
an elongated structure, and R92 is located near the region of
troponin T that interacts with tropomyosin. Whole-atom mo-
lecular dynamics simulations of fully regulated thin filaments
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revealed that the R92L mutation increases the distance between
troponin T and tropomyosin, potentially reducing the affinity
and coupling between tropomyosin and troponin T (McConnell
et al., 2017). These simulations also revealed that mutations at
R92 cause allosteric changes in troponin C that potentially affect
calcium-binding dynamics (Williams et al., 2016).

The molecular consequences of R92Q have been studied in
both in vitro and in vivo systems. The earliest studies involved
overexpressing R92Q troponin T in mouse, rat, cat, and quail
cells (Marian et al., 1997; Morimoto et al., 1998; Sweeney et al.,
1998). In all of these studies, the R92Q protein integrated into
sarcomeres, suggesting that the primary effect of the mutation is
disrupted protein function. Furthermore, there were several
studies in which recombinant troponin was exchanged into
muscle fibers (Yanaga et al., 1999; Szczesna et al., 2000), and the
majority, but not all (Sweeney et al., 1998; Rust et al., 1999),
of these studies demonstrated that the mutation shifts the
force–calcium curve toward submaximal calcium activation
(Morimoto et al., 1998; Yanaga et al., 1999; Szczesna et al.,
2000). Similar shifts were also seen by using recombinant
proteins (Robinson et al., 2007; Messer et al., 2016; Clippinger
et al., 2020 Preprint). A shift toward submaximal calcium ac-
tivation would be expected to cause hypercontractility during a
calcium transient. Some (Robinson et al., 2007), but not all (Liu
et al., 2012; Clippinger et al., 2020 Preprint), of these studies
showed changes in calcium binding to troponin C.

A major step forward was the generation of the R92Q
transgenic mouse (Tardiff et al., 1999), which recapitulates
several features of the disease phenotype, including increased
ventricular mass, diastolic dysfunction, cellular fibrosis, and
myocyte disarray. The degree of cardiac dysfunction depends on
the expression levels of mutant protein. Muscle fibers from
these mice showed a shift toward submaximal calcium activa-
tion (Chandra et al., 2001) and energetic abnormalities
(Javadpour et al., 2003). There were important sex-based differ-
ences with the mice, with males having worse outcomes (Maass
et al., 2004). Importantly, the R92Q disease phenotype in the
mouse depends on the MHC isoform (He et al., 2007; Rice et al.,
2010; Ford et al., 2012). The R92Q mutation with the β-isoform
MHC background showed differences in calcium handling, cross-
bridge kinetics, energetics, and diastolic dysfunction. This result
highlights the importance of using humanized protein isoforms in
disease modeling.

Three models have been proposed for the initial insult of the
R92Q mutation: altered cross-bridge kinetics (Ford et al., 2012),
altered calcium homeostasis due to changed myofilament buff-
ering (Robinson et al., 2007; Robinson et al., 2018), and
mutation-induced changes in tropomyosin positioning
(McConnell et al., 2017). Our recent biochemical work dem-
onstrated that R92Q affects the stability of tropomyosin’s
blocked state without affecting calcium binding or cross-bridge
kinetics (Clippinger et al., 2020 Preprint). Moreover, R92Q

Figure 4. Examples of well-studied muta-
tions. (A) R403Q in the MHC (MYH7) causes
HCM. Structural model of the myosin interacting
heads motif (PDB accession no. 5TBY). The
MHCs and their associated ELCs and RLCs fold
back to form an autoinhibited structure. R403 is
shown in red. R403 on the blocked head sits at
the interface formed with the free head. Dashed
box highlights the myosin head domain in B.
(B) Structure of the myosin head domain (ro-
tated from the dashed box in A). R403 lies in the
cardiomyopathy loop in the myosin head that
forms part of the actin binding interface.
(C) R92Q in troponin T (TNNT2) causes HCM. The
thin filament, consisting of actin (Ac; peach),
tropomyosin (Tm; yellow), troponin I (TnI; blue),
troponin C (TnC; green), and troponin T (TnT;
pink) regulates calcium-dependent interactions
between myosin and the thin filament. R92Q lies
near the region of troponin T that binds the
overlap region between two tropomyosin mole-
cules. Based on PDB accession no. 6KN8.

Greenberg and Tardiff Journal of General Physiology 11 of 19

Complexity in genetic cardiomyopathies https://doi.org/10.1085/jgp.202012662

https://doi.org/10.1085/jgp.202012662


mutation reduces the affinity of troponin for tropomyosin
(Gangadharan et al., 2017). These results are consistent with
molecular dynamics simulations showing that mutation of R92
affects the coupling between tropomyosin and troponin
(McConnell et al., 2017).

Development of therapeutics for cardiomyopathies
There is an outstanding need to develop therapeutics for HCM
and DCM that improve outcomes and patients’ quality of life.
Here, we discuss two compounds in clinical trials that were
rationally designed to target myosin-based contractility, rather
than traditional therapeutic pathways. We are still at an early
stage of understanding of how these modulators can be used
therapeutically.

Omecamtiv mecarbil (OM) as a treatment for systolic dysfunction
OM was identified in high-throughput screens for compounds
that increased the steady-state, actin-activated myosin ATPase
rate (i.e., myosin activators; Morgan et al., 2010; Malik et al.,
2011). OMhas selectivity for human ventricularmyosin over fast
skeletal or smooth muscle isoforms and it has a Kd of 1.6 µM for
ventricular myosin. This compound increases the steady-state,
actin-activated myosin ATPase rate by accelerating the rates of
phosphate release and ATP hydrolysis. As such, this compound
was expected to increase the myosin duty ratio (Eq. 3) and, thus,
the ensemble force production (Eq. 4). When added to rat ven-
tricular cardiomyocytes, OM increased the rate and extent of
muscle shortening without affecting the amplitude or kinetics of
the calcium transient.

Recent experiments have shown that the molecular mecha-
nism of OM is more complex than originally appreciated. The
first evidence of this was seen in studies with regulated thin
filaments (Malik et al., 2011), where, under fully activating cal-
cium concentrations, the ATPase rate was lower with OM, not
faster as would be expected for a myosin activator. The ATPase
rate was higher only at intermediate calcium concentrations
(Kieu et al., 2019), suggesting that the primary mechanism of
action may involve activating the thin filament. In vitro motility
assays demonstrated that OM causes a 14-fold, dose-dependent
reduction in the speed of myosin movement (Liu et al., 2015;
Swenson et al., 2017). A reduction in speed could come from
decreasing the unitary displacement or increasing ton (Eq. 2).
The rates of ADP release and ATP-induced actomyosin dissoci-
ation, which typically set ton, were unchanged by the addition of
OM (Liu et al., 2015), suggesting that the drug decreases the
working stroke and/or changes the biochemical pathway.

Optical trapping experiments demonstrated that OM causes a
dose-dependent increase in the fraction of myosin cross-bridges
that bind the thin filament without actively generating a
working stroke (Woody et al., 2018). Moreover, the measured
attachment durations show that OM-bound cross-bridges have a
slower dissociation rate, suggesting that OM causes the myosin
to enter a noncanonical biochemical pathway. A similar result
was seen by using transient time-resolved FRET, which showed
that OM decreases the rate of the powerstroke and causes the
myosin to enter a noncanonical biochemical pathway (Rohde
et al., 2017). Taken together, the measured speed in the

in vitro motility assay decreases because the number of cross-
bridges that generate a productive displacement decreases, in-
dependent of the accelerated attachment kinetics seen in the
ATPase measurements. OM binds to the myosin converter
domain, near the junction between the head and lever arm
domains (Malik et al., 2011; Winkelmann et al., 2015;
Planelles-Herrero et al., 2017). Thus, the effects on myosin
ATPase kinetics occur allosterically. It is possible that OM’s
binding near the converter domain helps to uncouple lever
arm rotation from the ATPase kinetics. Taken together, these
results strongly suggest that OM is not a pure myosin acti-
vator as initially proposed.

If OM is not a myosin activator, how does it increase con-
tractility? The answer likely lies in the effects on thin filament
activation. As described above, thin filament activation depends
both on calcium and myosin cross-bridge binding (McKillop and
Geeves, 1993). OM, by increasing the rate of cross-bridge asso-
ciation and prolonging the time that the cross-bridge remains
attached to the thin filament, likely increases thin filament ac-
tivation by moving tropomyosin and exposing additional
myosin-binding sites on actin (Woody et al., 2018). This explains
the shift toward submaximal calcium activation seen in the
steady-state ATPase rate with regulated thin filaments. At low
levels of OM, the minority population of slowly cycling, OM-
bound cross-bridges would tend to recruit more force-
generating cross-bridges to the thin filament. At high levels of
OM, most cross-bridges would bind OM, which inhibits the
working stroke, and thus the muscle force would decrease. This
effect—activation at low levels of OM and reduced contractility
at high concentrations of OM—has been modeled computa-
tionally (Woody et al., 2018) and observed in muscle fibers
(Nagy et al., 2015). Therefore, OM is better characterized as a
thin filament activator rather than a myosin activator.

The mechanism of OM likely extends beyond its effects on
single myosin motor domains. OM binds near the interface
adopted in the interacting head motif. X-ray diffraction studies
of muscle fibers demonstrated that OM disrupts the SRX, in-
creasing the number of heads available to interact with the thin
filament (Kampourakis et al., 2018), potentially increasing force
and power generation (Eq. 4). This effect on SRX formation is
nonexclusive from the effects on thin filament activation.

Taken together, OM likely acts through a different mecha-
nism than initially envisioned. The two effects of thin filament
activation and SRX destabilization would increase myosin force
production and systolic function. These predictions were largely
supported by the results of the phase II trial (COSMIC-HF,
NCT01786512), a short-term, randomized trial designed to assess
left ventricular morphology and systolic performance in patients
with New York Heart Association class II and III systolic heart
failure (Teerlink et al., 2016). Both safety and increased systolic
function (systolic ejection time), decreased left ventricular end-
systolic and end-diastolic diameter, decreased heart rate, and
decreased plasma NT-proBNP were observed. This was followed
by the first phase III outcomes trial (GALACTIC-HF,
NTC02929329) designed to assess whether OM, when added to
the standard of care, was well tolerated and superior to placebo
in reducing the risk of cardiovascular death or heart failure in
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patients with chronic systolic heart failure (Teerlink et al.,
2020). This was a large, well-designed multinational trial with
8,526 patients randomized to either placebo or three different
oral doses of OM (25 mg, 37.5 mg, or 50 mg, twice daily). While
the primary composite outcome—a small but significant de-
crease in the incidence of heart failure or death from cardio-
vascular causes—was met, none of the secondary outcomes,
including cardiovascular death, improvement in the Kansas City
Cardiomyopathy Questionnaire, first heart failure hospitaliza-
tion, or death from any cause were achieved. While the apparent
discordance between the results of the two trials, whereby clear
short-term functional and structural improvement (COSMIC-
HF) did not translate to the important clinical outcome of car-
diovascular death (GALACTIC-HF) was surprising en face, the
complexity and heterogeneity of the clinical syndrome is a likely
contributor. Further subgroup analysis may identify specific
patient subsets who benefit in a disorder for which highly tai-
lored medical therapy is a mainstay.

Mavacamten as a treatment for HCM
Mavacamten is currently in clinical trials for treating HCM
(Green et al., 2016). Recent results of the first phase III
randomized, double blind, placebo-controlled trial (EX-
PLORER-HCM, NCT03470545) conducted in hypertrophic
obstructive cardiomyopathy patients exhibited encouraging
safety and tolerability profiles. Importantly, minor im-
provements in the New York Heart Association functional
class, left ventricular outflow tract obstruction, and health
status were observed in this well-designed multicenter trial
(Olivotto et al., 2020). The compound was originally iden-
tified via a high-throughput screen for molecules that de-
crease the steady-state, actin-activated myosin ATPase rate.
Mavacamten causes a dose-dependent reduction in the ATPase
rate, with an EC50 of 300 nM, due to a reduction in the rate of
actin-activated phosphate release. By reducing the rate of actin-
activated phosphate release, mavacamten slows the transition
into the strongly bound state, reducing the duty ratio (Eq. 3).
The drug did not affect the calcium dependence of muscle
contraction or the calcium transients, an important concern in
a disorder that impacts myocardial energetics (Spindler et al.,
1998; Crilley et al., 2003).

In contrast to OM, mavacamten promotes the formation of
the SRX (Anderson et al., 2018; Rohde et al., 2018), and therefore
reduces the number of cross-bridges available to interact with
the thin filament. This mavacamten-induced change in the SRX
has also been seen in single-molecule studies of ATP turnover
(Nelson et al., 2020). By reducing the duty ratio and the number
of available myosin heads, mavacamten reduces force produc-
tion (Eq. 4), and this was seen in treated mice (Green et al., 2016;
Mamidi et al., 2018).

Administration of mavacamten to mice with HCMmutations
before the development of overt ventricular remodeling pre-
vented cardiac hypertrophy and fibrosis (Green et al., 2016). Of
note, while treatment after the development of hypertrophy and
fibrosis slowed disease progression, it did not reverse the disease
phenotype. Fibrosis and myocyte disarray can serve as sub-
strates for arrhythmias; therefore, this is an important

consideration for eventual treatment regimens. HCM is a highly
dynamic disorder, and treatments may have particular time
windows during which they are most effective. Determining the
optimal timing of treatment to ameliorate symptoms and alter
the natural history of pathogenic remodeling remains a key goal
of further studies.

Prospects for the future
Taken together, the field has made incredible progress in un-
derstanding these complex and progressive diseases; however,
there is still much work that must be done. Continued progress
will require the field to consider the nuances in the molecular
mechanisms that drive the disease pathogenesis, as well as the
dynamic adaptive and maladaptive pathways that are activated
in these progressive and heterogeneous diseases.

The development of novel effective therapeutics will require
the field tomove beyond the current one-size-fits-all approaches
to these complex progressive disorders. While the proliferation
of next-generation and whole-genome sequencing technologies
have revealed insights into the genetic underpinnings of the
diseases, more work is needed to translate these discoveries to
the bedside. In particular, it will be important to understand the
complex networks of genetic modifiers that give rise to patterns
of remodeling with variable progression and incomplete pene-
trance. Realizing the power of precision medicine for managing
and treating cardiomyopathies will require pairing genomics
with functional assays and animal models to investigate inte-
grated disease mechanisms. Translational advances will require
the field to embrace the nuances of these highly complex clinical
disorders.

We propose that it might be possible to improve outcomes in
patient subgroups by focusing on shared primary molecular
mechanisms among groups of mutations or the earliest stages of
compensatory ventricular remodeling (Fatkin et al., 2019; Lavine
and Greenberg, 2020). Precision therapeutics will likely be ef-
fective for subgroups of patients with mutations producing
common molecular insults (Lynn et al., 2018). By deciphering
the molecular triggers that drive disease pathogenesis, it should
be possible to further refine rigorous biophysical bins that can
be coupled to discrete, targetable pathways.

While the field has developed many excellent biophysical
tools for examining the molecular underpinnings of cardiomy-
opathies, new basic science tools will be necessary to realize our
proposed precision medicine approach. Our current biophysical
tools have provided us with deep insights into the mechanisms
of individual mutants, but most lack the throughput necessary
for examining thousands of variants across organizational and
temporal scales. There is an outstanding need to identify robust
biophysical signatures for each of the proposed bins and to de-
velop high-throughput assays with sufficient resolution and
signal to screen multiple variants. Moreover, computational
techniques will likely contribute to screening of variants; how-
ever, this will require advances in computing power and
methods for probing longer time scales and accurately mea-
suring macromolecular interactions.

While we have made significant advances over the past few
decades, there is still work to be done. Taken together, this is
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an exciting time for both basic and clinical researchers in-
terested in the mechanisms and care of patients with genetic
cardiomyopathies.
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