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Abstract: Recent evidence has extensively demonstrated the anticancer potential of nutraceuticals,
including plant polyphenols. Polymeric nanocarrier systems have played an important role in
improving the physicochemical and pharmacological properties of polyphenols, thus ameliorating
their therapeutic effectiveness. This article summarizes the benefits and shortcomings of various
polymeric systems developed for the delivery of polyphenols in cancer therapy and reveals some
ideas for future work.
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1. Introduction

A large number of food ingredients have beneficial effects on human health. In particular, during
the last decade, polyphenols and antioxidants have been extensively investigated for their therapeutic
effectiveness after their intravenous administration [1].

Polyphenols contain a minimum of one aromatic ring, as well as hydroxyl groups ranging from a
minimum of one ring. They are different from each other on the basis of the number of aromatic rings
and phenol groups [2] and can be grouped into two main classes: flavonoids and non-flavonoids [3].
The former contains 15 carbon atoms, comprising two aromatic rings connected by a three-carbon
link, while the latter contains heterogeneous compounds with phenolic acids having between one and
six carbon atoms. Quercetin, kaempferol, apigenin, and myricetin belong to flavonoid class, while
resveratrol, vanillin, and ellagitannins are examples of non-flavonoids.

Polyphenols are biologically active compounds, having useful effects against various chronic
diseases, including cancer [4]. The biological activities of polyphenols are generally attributed to
their antioxidant potential [5]. However, a comprehensive explanation for the biological effects of
polyphenols is still uncertain [6]. In addition, their effects are also believed to be modulated via distinct
actions on the signaling pathways at a cellular level [7].

Clinical studies on cancer therapy have reported a significant decrease in the therapeutic
effectiveness of conventional cytotoxic compounds. The reduced efficacy is not only attributed to their
unsuitable physicochemical properties, such as lipophilicity, but also to inappropriate pharmacokinetic
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features, including multidrug resistance, poor penetration into tumor microenvironment, and toxicity
to non-diseased cells [8–10]. A wide array of research activities has been conducted to decipher these
issues by several approaches, including the investigation of alternative anticancer compounds, as well
as the development of targeted nanotherapeutics.

2. Polyphenol-Loaded Polymeric Nanotherapeutics for Cancer Treatment

The pathophysiology of cancer involves molecular-level changes in biological processes. Thus, in
recent years, approaches have emerged to develop nanodiagnostic and nanotherapeutic modalities,
such as lipid nanoparticles, nanohybrids, and polymeric nanoparticles [11–13]. In preclinical and
initial clinical trials, these nanocarriers have exhibited excellent performance as drug delivery
vehicles [14–16]. Nano-sized drug delivery systems have several promising features, including
improved stability, enhanced solubility, and increased surface area to volume ratio. In addition,
the surface properties of such carriers can be modified to attain controllable pharmacological
and physicochemical features, thereby reducing barriers to effective chemotherapy in cancer [17].
Additionally, an ameliorated therapeutic index and diminished toxicity to healthy cells are also
achieved through the nanotherapeutic approach [17]. It is remarkable that active and passive targeting
could be used to deliver drugs to specific sites. These properties are significantly important for
typical biologically active compounds, such as polyphenols for their translation into useful therapeutic
modalities. Regardless of the promising progress in basic cancer biology at the preclinical level,
polyphenols have inappropriate pharmacological properties, such as low bioavailability due to
inefficient systemic access, and thus require high doses for optimum therapeutic effect [18]. Although
in vitro studies have proved the biological effectiveness of polyphenols, these findings could not
be achieved in vivo due to their instability in the physiological conditions of temperature, pH, and
enzyme system. Their stability and therapeutic effectiveness could be improved by developing
polyphenol-loaded nanotherapeutics. Therefore, biologically active polyphenols could be combined
with nano-sized carriers to overcome the drawbacks of conventional anticancer therapy and develop a
clinically efficacious treatment for cancer.

2.1. Polymer-Based Nanovesicles

Polymeric vesicles are prepared using amphiphilic block copolymers, which contain a lipophilic
and a hydrophilic segment. These self-assembled structures have variable shapes and sizes, such as
polymersomes [19] and micelles [20]. These vesicular systems have drug delivery capabilities and
offer specific benefits.

Polymersomes are bilayered vesicles, composed of high molecular weight amphiphiles. Thus,
they allow slow permeability of drugs due to the strong mechanical properties of their membranes [21].
Additionally, the surface of polymersomes is modified by using shell-producing, water-soluble, flexible
polymers to reduce polymersomes–macrophages interactions [22]. Moreover, polymeric micelles are
composed of a lipophilic core and a hydrophilic shell, into which lipophilic and hydrophilic drugs can
be loaded and delivered, respectively [21]. These vesicles exhibit a narrow size distribution, ranging
between 20 and 80 nm, and are long-lasting in systemic circulation [23–25], but, due to their poor
stability, they undergo premature drug leakage in the bloodstream, resulting in reduced therapeutic
efficacy and enhanced undesired effects. Polyphenol-loaded polymersomes and micelles have been
synthesized by using natural polymers, such as dextran, chitosan, gelatin, casein, and polyethylene
glycols PEG, due to their biodegradable and biocompatible features Tables 1 and 2.

Gelatin–dextran micelles loaded with tea polyphenols were studied for their effect on breast
cancer using MCF-7 cells and it was found that the encapsulated polyphenols had an enhanced
efficacy compared with their free form [26]. Later on, this carrier was loaded with curcumin for the
treatment of HeLa cancer cells. The results revealed an improvement in the pharmacokinetic and
therapeutic properties of the encapsulated curcumin, compared with its control [27]. In addition,
polyvinyl pyrrolidone–PEG conjugates were used to develop polymersomes loaded with Cotinus
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coggygria flavonoids for the treatment of glioblastoma [28]. Moreover, curcumin delivery systems were
prepared by using protein-type polymers, such as gelatin, casein, and keratin [29–33]. In addition to
their biocompatibility, these materials supported curcumin’s efficacy on cancerous cells of the lung
and cervix [29,30]. Curcumin-loaded chitosan–stearic acid conjugates exhibited an improvement
in the curcumin efficiency against colon cancer [34]. Curcumin polymersomes and micelles have
been prepared with an aim of enhancing their anticancer activity. Owing to its stealth properties
and biocompatible nature, PEG is extensively used in the fabrication of nanoparticulate systems.
In vitro testing of PEG–polyanhydride esters and PEG–polylactic acid vehicles for curcumin and
doxorubicin showed their synergism in HeLa and MCF-7 cancer cells. The polymer conjugates were
prepared by a solvent evaporation technique [35,36]. The solvent evaporation-induced synthesis
of curcumin-loaded micelles of polycaprolactone and PEG was aimed at the treatment of various
cancers, such as breast [37] and ovarian [38] cancer cells in vitro, and colon [39], breast [40], and
lung [41] in xenograft mouse models. The anticancer efficacy of these polycaprolactone–PEG–curcumin
nanomicelles against lung and brain tumors was further enhanced through their modification by
using different fatty acids, such as oleic acid, linoleic acid, and palmitic acid [42,43]. In some other
studies, 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[methoxypolyethylene glycol-2000] was
employed for the synthesis of curcumin micelles to treat colon and ovarian cancers in vitro and in vivo,
showing synergism with doxorubicin [44,45] and paclitaxel [46]. These in vitro and in vivo studies
depict the promising characteristics of the polymeric polymersomes and micelles for delivering various
polyphenols, including curcumin.



Molecules 2018, 23, 2787 4 of 21

Table 1. Polyphenol-loaded polymersomes for the treatment of cancer.

No. Components of
Nanoparticles Method of Preparation Polyphenol + Synergistic

Agent
Type of Cancer In Vitro Model/In Vivo Model Promisingly
Ttreated with the Fabricated Nanotherapeutic Formulation References

1 Polyvinyl pyrrolidone–PEG Emulsion evaporation Plant polyphenols Glioblastoma DBTRG-05MG [28]
2 Keratin Solvent evaporation Curcumin Cervical cancer HeLa [29]
3 Gelatin Solvent evaporation Curcumin Lung cancer H1299 [30]
4 PEG–Oleic acid Thin layer evaporation Curcumin Brain cancer U87MG [42]

PEG: polyethylene glycol.

Table 2. Polyphenol-loaded polymeric micelles for the treatment of cancer.

No. Components of Nanoparticles Method of Preparation Polyphenol + Synergistic Agent
Type of Cancer In Vitro Model/In Vivo Model

Promisingly Treated with the Fabricated
Nanotherapeutic Formulation

References

1 Gelatin–Dextran Self-assembly-Genipin-Crosslinking Plant polyphenols Breast cancer MCF-7 [26]
2 Gelatin–Dextran Self-assembly-Genipin-Crosslinking Curcumin Cervical cancer HeLa Healthy mice [27]
3 Casein Self-assembly Curcumin Cervical cancer HeLa [32]
4 Zein–PEG Self-assembly Curcumin Ovarian cancer NCI Healthy mice [33]
5 Chitosan–Stearic acid Self-assembly Curcumin Colon cancer Primary Xenograft mice [34]
6 PEG–Polyanhydride esters Solvent evaporation Curcumin Cervical cancer HeLa [35]
7 PEG–Polylactic acid Solvent evaporation Curcumin + Doxorubicin Breast cancer MCF-7 Xenograft mice [36]
8 PEG–Polycaprolactone Thin-layer evaporation Curcumin Ovarian cancer A2780t [38]
9 PEG–Polycaprolactone Thin-layer evaporation Curcumin Breast cancer MDA-MB-436 [37]

10 PEG–Polycaprolactone Self-assembly Curcumin Breast cancer 4T1–4T1 Xenograft mice [40]
11 PEG–Polycaprolactone Thin-layer evaporation Curcumin Cervical cancer HeLa Xenograft mice [39]
12 PEG–Polycaprolactone Thin-layer evaporation Curcumin Colon HT-29 [39]
13 PEG–Polycaprolactone Thin-layer evaporation Curcumin + Doxorubicin Lung cancer LL/2 Xenograft mice [41]
14 Linoleic acid-PEG-Polycaprolactone Self-assembly Curcumin Cervical cancer HeLa Healthy mice [43]
15 Linoleic acid-PEG-Polycaprolactone Self-assembly Curcumin Lung A549 [43]
16 PEG -Palmitic acid Self-assembly Curcumin Cervical cancer HeLa [32]
17 PEG2000-DSPE Thin-layer evaporation Curcumin + Paclitaxel Ovarian cancer SK-OV-3TR [45]
18 PEG2000-DSPE Thin-layer evaporation Curcumin + Paclitaxel Ovarian cancer NCI SK-OV-3TR Xenograft mice [46]
19 PEG2000-DSPE Thin-layer evaporation Curcumin + Doxorubicin Colon cancer HCT-116 Xenograft mice [44]
20 PEG- Doxorubicin Self-assembly Curcumin + Doxorubicin Cervical cancer HeLa HepG2 Xenograft mice [47]
21 PEG-Doxorubicin Self-assembly Curcumin + Doxorubicin Hepatic HepG2 [47]
22 Poloxamers F127 F68 Thin-layer evaporation Curcumin Cervical cancer HeLa [48]
23 Poloxamers-PEG-Succinate Solvent evaporation Curcumin Ovarian cancer NCI [49]
24 Poloxamers F127 Thin-layer evaporation Resveratrol, Curcumin + Doxorubicin Ovarian cancer SKOV-3 Healthy mice [50]
25 Poloxamers F127 Thin-layer evaporation Resveratrol, Quercetin + Doxorubicin Ovarian cancer SKOV-3 Healthy mice [31]
26 Apolipoprotein-E3 recombinant DNA Resveratrol Glioblastoma A-172 [51]
27 Polycaprolactone-PEG-Succinate Thin-layer evaporation Resveratrol Breast cancer MCF-7 [52]
28 Casein Self-assembly Epigallocatechin gallate Colon cancer HT-29 [53]
29 Polylactic acid-PEG Thin-layer evaporation Epigallocatechin gallate Pancreatic cancer MiaPaca-2 [54]

Note: PEG2000-DSPE—1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[methoxypolyethylene glycol-2000].
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Favorable disposition of curcumin and doxorubicin was achieved when these drugs were
combined in PEG micelles for cervical and hepatic cancer [47]. Few studies have documented a
profound toxicity of curcumin-loaded poloxamer nanocarriers towards HeLa [48] and ovarian cancer
cells [49]. In addition, poloxamer nanoformulations containing resveratrol and doxorubicin exhibited
a synergistic effect on ovarian cancer in mice [50]. A resveratrol–quercetin combination exhibited the
same effect in ovarian tumors [51]. Moreover, resveratrol was encapsulated into PEG–polycaprolactone
conjugate, and the resulting micelles were surface-modified with apolipoprotein and used for
the treatment of glioblastoma [51] and breast cancer [52]. Lastly, some other studies reported
epigallocatechin gallate delivery in colon cancer from PEG–polylactic acid [53] and in pancreas
cancer from casein micelles [54]. The micelles of various polymers, such as PEG and polycaprolactone,
showed an improved anticancer efficacy of the loaded polyphenols, such as quercetin, resveratrol,
and curcumin.

2.2. Polymer-Based Nanoparticles

High stability, uniform particle size, excellent drug loading efficiency, and controlled release
of drug are important characteristics of polymeric nanoparticles [55], which are spherical or
irregular shaped, colloidal systems loaded with drugs [56]. A wide range of biocompatible,
natural, and synthetic polymers have been utilized as polymeric nanoparticles to deliver anticancer
drugs [57,58]. Table 3 illustrates the representative examples of polymers used as nanoparticles for
the delivery of polyphenols. Due to their biocompatible and biodegradable features, chitosan and
polylactic-co-glycolic acid PLGA have been extensively studied for polyphenol delivery [59]. To
prevent the uptake of nanoparticles by macrophages, the surface functionalization of nanoparticles
can be modified by using polyethylene glycol PEG and its derivatives [60]. The selection of the
procedure for the fabrication of polymeric nanoparticles depends on various factors, such as the
properties of the employed polymer, drug, and the desired end product to achieve the desired,
controllable physicochemical and pharmacological performance in vitro and in vivo. Table 4 also
depicts some extensively employed approaches, such as emulsion solvent removal, polymer interaction,
and radical polymerization.

Compared with free polyphenols, polyphenol extracts loaded into chitosan, PLGA–
polycaprolactone nanoparticles exhibited boosted apoptosis induction and cell internalization,
resulting in the enhanced antiproliferative activity in various cell line studies [61–63].

Curcumin is a pharmacologically active polyphenol with low water solubility. Therefore, many
studies have been conducted to prepare its effective formulations. In this context, an important
effort is the development of curcumin-loaded nanoparticles. Therapeutic studies involving various
cancer cell lines, including cervical and prostate cells, osteoclasts, and melanocytes [64–68], revealed
that these nanoparticles exhibited controlled release of curcumin, resulting in effective passive
targeting. It is noteworthy that both free curcumin and curcumin-loaded nanoparticles have the
same mechanism of action. In addition, curcumin-loaded nanoparticles have been synthesized by a
free radical polymerization method using polyethylene glycol acrylate, N-isopropylacrylamide, and
N-vinyl-2-pyrrolidone for the treatment of pancreatic cancer. These nanoparticles showed insignificant
toxicity in mouse [69]. Another study reported the synthesis of curcumin-loaded nanoparticles by an
emulsion polymerization method using chitosan and butyl-cyanoacrylate together for the treatment
of hepatic cancer [69]. In addition, free curcumin and curcumin nanoparticles were compared in
various cell lines, such as colon, prostate, and ovarian. The nanoparticles of curcumin induced
cellular uptake and the apoptosis boosting resulting in the ameliorated anticancer activity than its
free form [70–72]. PLGA nanoparticles containing PEG were fabricated to improve curcumin efficacy
against prostate and colon cancer [73–75], while curcumin–silk fibroin nanoparticles have been shown
to have a potential role in human hepatocellular carcinoma Hep3B, human neuroblastoma Kelly
cells, and human bone marrow-derived mesenchymal stem cells hBMSCs [76]. Moreover, curcumin
was encapsulated into pH-responsive nanogels to enhance its efficacy against colon cancer [75]. To
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achieve a synergistic effect, curcumin nanoparticles containing conventional anticancer drugs, such
as doxorubicin [77] and 5-fluorouracil [78], have been employed for breast cancer treatment. For the
treatment of ovarian cancer, a useful association between curcumin- and cisplatin-loaded nanoparticles
has been noted [79]. Furthermore, curcumin combined with gemcitabine in nanoparticles, prepared
by free radical polymerization using N-isopropylacrylamide, N-vinyl-2-pyrrolidone, and acrylic acid,
exhibited a synergistic anticancer effect in animal models [80]. Thus, compared to that of free curcumin,
curcumin nanoparticles induce cellular uptake, and the apoptosis boosting leads to increased anticancer
activity in various cell lines, such as colon, prostate, and ovarian.

Using natural polymers, such as gelatin [81] and a PLGA–PEG combination [82], as well as
synthetic polymers, including chitosan–casein–PEG derivatives [82], the synthesis of epigallocatechin
gallate nanoparticles with improved stability and in vitro activity against various organs, such as
prostate, alimentary canal, breast, and stomach [81–84], was achieved. Furthermore, epigallocatechin
gallate nanoparticles containing doxorubicin were prepared which exhibited a synergistic anticancer
effect against Ehrlich ascites cancer [85]. In vivo studies in xenograft mice have also proved the
effective stability and activity of epigallocatechin gallate nanoparticles against stomach, prostate,
and melanocyte carcinoma [86–88]. In addition, epigallocatechin gallate combined with cisplatin
in a nanoparticulate formulation was developed as a new synergistic therapy for some invasive
cancers [89,90].

Some studies reported the nanoencapsulation of resveratrol into bovine serum albumin [91],
gelatin [92], PLGA [93], and PLGA–PEG derivatives [94], revealing an increase in resveratrol
activity against cancer of various organs, such as prostate, ovaries, breasts, and lungs [91–94].
Resveratrol-loaded PLGA–PEG nanoparticles were surface-modified using transferrin for active
targeting of glioma cancer cells in vivo [95].

Quercetin and 5-fluorouracil were co-encapsulated into chitosan, and the resulting nanoparticles
showed a synergistic effect against pancreatic cells in vitro [96]. Another synergistic study described
the promising potential of quercetin–tamoxifen loaded into PLGA nanoparticles for the treatment of
breast cancer in model mice [97]. Lastly, a four-component system was formulated using poly-butyl
cyanoacrylate, α-tocopherol, and PEG for the delivery of hyaluronic acid into liver cancerous cells
in vitro [98]. The preparation of nanoparticles loaded with epigallocatechin gallate, resveratrol,
quercetin, and 5-fluorouracil with improved stability and in vitro activity against various organs,
such as stomach, prostate, ovaries, alimentary canal, and breast, can be achieved using various natural
polymers, such as gelatin, PEG, and PLGA, alone and in combination with synthetic polymers, such as
chitosan and casein.
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Table 3. Polyphenol-loaded polymeric nanoparticles for the treatment of cancer in vitro.

No. Components of Nanoparticles Method of Preparation Polyphenol + Synergistic Agent
Type of Cancer In Vitro Model In Vivo Model

Promisingly Treated with the Fabricated
Nanotherapeutic Formulation

References

1 Polylactic-co-glycolic acid PLGA–PEG Emulsion solvent evaporation Pomgranade polyphenols Breast cancer MCF-7, Hs578T [61]
2 Chitosan Ionic gelation Tea polyphenols Hepatic cancer Hep G2 [62]
3 Polycaprolactone EXP Plant polyphenols Gastric cancer MNK28 [63]
4 Alginate–Chitosan–Poloxamers F127 Ionic gelation Curcumin Cervical cancer HeLa [64]
5 Fibrinogen CaCl2 Crosslinking Curcumin Prostate cancer PC3 [65]
6 PLGA Emulsion solvent evaporation Curcumin Breast cancer MCF-7 [65]
7 PLGA Emulsion solvent evaporation Curcumin Osteosarcoma U2OS [66]
8 Chitin Emulsion solvent evaporation Curcumin Melanoma A375 [67]
9 Peptide Ionic gelation Curcumin Medulloblastoma DAOY [68]

10 N-Isopropylacrylamide-N-vinyl-2-pyrrolidone-
Polyethylene glycol acrylate Self-assembly Curcumin Pancreatic cancer Capan-1, MiaPaCa2, PL-5, PL-8,

Su86.86, BxPC-3, PANC-1, E3LZ10.7 Healthy mice [69]

11 PLGA–PEG Nanoprecipitation Curcumin Colon cancer HT-29 Healthy mice [70]
12 PLGA Nanoprecipitation Curcumin Ovarian cancer A2780, A2780CP [71]
13 Cellulose Nanoprecipitation Curcumin Prostate cancer C4-2, PC-3, LNCaP, DU-145 [72]
14 PLGA Nanoprecipitation Curcumin Prostate cancer DU-145, PC-3 Xenograft mice [73]
15 Human serum albumin Emulsion solvent evaporation Curcumin Colon cancer HCT116 HCT116 Xenograft mice [74]
16 Human serum albumin Emulsion solvent evaporation Curcumin Pancreatic cancer MiaPaCa2 [74]
17 Gelatin–Polyacryl-amidoglycolic acid Emulsion polymerization Curcumin Colon cancer HCT-116 [75]

18 Silk fibroin Physical adsorption and coprecipitation Curcumin
Human hepatocellular carcinoma Hep3B, human

neuroblastoma Kelly cells, Human bone
marrow-derived mesenchymal stem cells hBMSCs

[76]

19 Chitosan–Polybutyl cyanoacrylate Emulsion polymerization Curcumin + Doxorubicin Breast cancer MCF-7 [77]
20 PLGA Emulsion solvent evaporation Curcumin + 5-fluorouracil Breast cancer MCF-7 [78]
21 PLGA Nanoprecipitation Curcumin + Cisplatin Ovarian cancer A2780CP [79]
22 PLGA Nanoprecipitation Curcumin + Cisplatin Breast cancer MDA-MB-231 [79]

23 N-Isopropylacryl-amide-N-vinyl-2-pyrrolidone–
Acrylic acid Radical polymerization Curcumin + Gemcitabine Pancreatic cancer Pa03C Xenograft mice [80]
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Table 4. Polyphenol-loaded polymeric nanoparticles for the treatment of cancer in vitro.

No. Components of Nanoparticles Method of Preparation Polyphenol + Synergistic Agent
Type of Cancer In Vitro Model In Vivo Model

Promisingly Treated with the Fabricated
Nanotherapeutic Formulation

References

1 Gelatin–Polyelectrolyte Layer-by-layer Epigallocatechin gallate Breast cancer MBA-MD-231 [81]

2 PLGA–PEG Nanoprecipitation Epigallocatechin gallate Prostate cancer LNCaP [82]
3 Casein-phospho-peptide–Chitosan Genipin-Crosslinking Epigallocatechin gallate Hepatic cancer HepG2 [83]
4 Casein-phospho-peptide–Chitosan Genipin-Crosslinking Epigallocatechin gallate Gastric cancer BGC823 [83]
5 Casein-phospho-peptide–Chitosan Genipin-Crosslinking Epigallocatechin gallate Colon cancer Caco-2 [84]

6 Hyaluronic acid Self-assembly Epigallocatechin gallate +
Doxorubicin Cancer of the external auditory canal [85]

8 Chitosan Ionic gelation Epigallocatechin gallate Prostate cancer 22R_1 Xenograft mice [87]
7 Chitosan Ionic gelation Epigallocatechin gallate Melanoma Mel928 Mel928 Xenograft mice [88]
9 Chitosan–Gelatin–PEG Ionic gelation Epigallocatechin gallate Gastric cancer Luc MKN45 Xenograft mice [88]

10 PLGA Nanoprecipitation Epigallocatechin gallate + Cisplatin Lung cancer A549 [89]
11 PLGA Nanoprecipitation Epigallocatechin gallate + Cisplatin Cervical cancer HeLA [89]
12 PLGA Nanoprecipitation Theaflavin Leukemia THP-1 [89]

13 PLGA Solvent evaporation Epigallocatechin gallate + Cisplatin Lung cancer A549 Ehrlich ascites carcinoma Xenograft
mice [90]

14 PLGA Solvent evaporation Epigallocatechin gallate Cervical cancer HeLA [90]
15 PLGA Solvent evaporation Theaflavin Leukemia THP-1 [90]
16 PLGA Solvent evaporation Theaflavin Cancer of the external auditory canal [90]
17 PLGA–PEG Nanoprecipitation Resveratrol Prostate cancer DU-145, LNCaP [91]
18 Bovine serum albumin Nanoprecipitation Resveratrol Lung cancer NCI-H460 [92]
19 Bovine serum albumin Nanoprecipitation Resveratrol Ovarian cancer SKOV3 [93]
20 PLGA Emulsion method Resveratrol Breast cancer MCF-7 [94]
21 Maleimide–PEG–Polylactic acid Self-assembly Resveratrol Glioblastoma CT26, U87 CT26 Xenograft mice [95]
22 Chitosan Ionic gelation Quercetin + 5-fluorouracil Pancreas cancer MiaPaCa2 [96]
23 PLGA Emulsion solvent evaporation Quercetin + Tamoxifen Breast cancer MCF-7 Xenograft mice [97]
24 PLGA Emulsion solvent evaporation Quercetin + Tamoxifen Colon cancer Caco2 [97]

25 Hyaluronic acid–Polybutyl
cyanoacrylate–a-Tocopheryl–PEG–Succinate Radical polymerization Morin hydrate Lung cancer A549 S180 Xenograft mice [98]

26 Hyaluronic acid–Polybutyl cyanoacrylate
–Tocopheryl–PEG–Succinate Radical polymerization Morin hydrate Hepatic cancer L02 [98]
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2.3. Polymer-Based Conjugates

An important class of the emerging systems for the treatment of cancer is polymer-based
conjugates, which consist of a drug molecule and a hydrophilic polymeric macromolecule covalently
bonded to each other. In recent years, tremendous research has been conducted to explore new and
functional therapeutic conjugates. Like nanoparticles, polymeric conjugates are also high molecular
weight systems that affect a drug’s pharmacokinetics, toxicity, and efficacy [99].

Polymer–drug conjugate–a water-soluble system is composed of a drug-associating unit, another
unit for linking an active targeting molecule, such as monoclonal antibody, and a portion for linking
an element useful for the modulation of physicochemical features [100]. The therapeutic potential of
polymeric conjugates is profoundly improved by using antioxidant polymers, which can be acquired
either by the conjugation of polyphenol monomers with macromolecules or the polymerization of
monomer units of polyphenols. High molecular weight antioxidants can be prepared by three different
approaches, namely, enzymatic catalysis, condensation, and radical grafting [101].

Enzymatic catalysis refers to the catalyst-mediated chemical reaction between non-toxic reagents
in milder reaction conditions of pH, temperature, and pressure, resulting in the synthesis of distinct
structures having controlled chemical properties [102]. In general, a peroxidase or a tyrosinase is used
as the catalyst in a coupling reaction.

In condensation reactions, the functional groups of an antioxidant molecule and a polymeric
chain react with each other, producing well-defined products with specific mechanical and physical
features. As a result of these reactions, the mechanical properties of the product are similar to those
of the parent materials. Esterification and acetylation are two important examples of condensation
reactions. Generally, these reactions take place in several steps.

Lastly, the radical grafting approach involves free radical coupling between the polyphenol unit
and the polymeric moiety in the presence of mild reaction conditions [103], resulting in the synthesis
of a characteristic product that retains chemical features of the parent polyphenols.

Polyphenol-loaded polymeric conjugates for the treatment of cancer are summarized in
Table 5. For the treatment of pancreatic cancer, a curcumin–gemcitabine combination was loaded
with PEG conjugates through a condensation reaction in the presence of carbodiimide [104].
Also, PEG conjugates containing just curcumin have also been prepared for prostate [105] and
glioma cancer [106]. Through the same conjugation technique, synergistic cytotoxicity was
achieved with resveratrol–bicalutamide–PEG conjugates in breast and cervical cancer cells [107]
and quercetin–paclitaxel–carboxymethyl chitosan conjugates in hepatic cancer cells [108]. Another
study reported the synthesis of curcumin–dithiopropionic acid copolymer, followed by conjugation
with PEG [109]. PEG hydrogels containing triphosgene–curcumin conjugates showed an increased
effect against proliferation in breast cancer cells [110].

Compared with the free forms of the tested polyphenols, the anticancer activity of PEG–catechin
amides against breast cancer was synergistically increased in the presence of bortezomib [111].
Therapeutic synergism was also observed when hyaluronic acid–epigallocatechin gallate amides
containing granzyme B were tested against colon cancer [112]. The therapeutic analysis of
catechin–dextran conjugates showed the increased efficacy of catechin in pancreatic cancer cells [113]
and in a neuroblastoma model animal [114]. Other studies showed an increase in the anticancer
activity of quercetin-loaded polymethacrylic acid conjugates towards cervical cancer [115] and gallic
acid-loaded gelatin conjugates towards cervical cancer [116]. All these conjugates were prepared by
a free radical approach. For the treatment of hepatic, pancreatic, prostate, glioma, and breast cancer,
curcumin, resveratrol, and quercetin in combination with standard anticancer agents, such as paclitaxel,
gemcitabine, or bortezomib, have been successfully loaded to polymeric conjugates.
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Table 5. Polyphenol-loaded polymeric conjugates for the treatment of cancer.

No. Components of Nanoparticles Method of Preparation Polyphenol +
Synergistic Agent

Type of Cancer In Vitro Model In
Vivo Model Promisingly Treated

with the Fabricated
Nanotherapeutic Formulation

References

1 PEG Condensation method Curcumin Glioma C6 [106]
2 PEG Condensation method Curcumin Prostate cancer PC-3 [105]

3 PEG Condensation method Curcumin + Gemcitabine Pancreatic cancer MiaPaCa2,
PANC-1, BxPC-3, AsPC-1 [104]

4 PEG Condensation method Resveratrol +
Bicalutamide Cervical cancer HeLa [107]

5 PEG Condensation method Resveratrol +
Bicalutamide Breast cancer MCF-7 [107]

6 Carboxymethyl chitosan Condensation method Quercetin + Paclitaxel Hepatic cancer HepG2 HepG2
Xenograft mice [108]

7 PEG Condensation method Curcumin Cervical cancer HeLa, Breast cancer
EMT6 EMT6 Xenograft mice [109]

8 PEG–Desaminotyrosyl-tyrosine
ethyl ester Condensation method Curcumin Breast cancer MDA-MB-231 [110]

9 PEG Condensation method Catechin + Bortezomib Breast cancer MDA-MB-231 [111]

10 Hyaluronic
acid–Polyethyleneimine Condensation method Epigallocatechin gallate +

Granzyme B Colon cancer HCT-116 [112]

11 Dextran Free radical grafting Catechin Pancreatic cancer MiaPaca-2, PL45 [113]

12 Dextran Free radical grafting Catechin
Neuroblastoma IMR-32,

IMR-32-CisRes, BE2-C Xenograft
mice

[114]

13 Dextran Enzyme laccase catalysis Catechin Neuroblastoma IMR-32 [114]
14 Polymethacrylic acid Free radical grafting Quercetin Cervical cancer HeLa [115]
15 Gelatin Free radical grafting Gallic acid Prostate cancer DU-145, PC-3 [116]
16 Gelatin Free radical grafting Gallic acid Renal cancer A498 [116]
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2.4. Carbon-Based Nanostructures and Nanohybrids

A class of nano-sized materials, known as carbon nanostructures, is extensively being investigated
for its therapeutic applications [117]. The representative examples of this interesting group of
compounds are graphene and carbon nanotubes because of their good permeability, cheap availability,
excellent physicochemical features, and large surface area for the likely interaction with bioactive
compounds [118,119].

Graphene is a bidimensional honeycomb-like structure, consisting of a layer of six sp2 carbon
atoms [120]. These bodies undergo cell internalization through endocytosis or active processes [121].
Graphene oxide, an oxidative product of graphene, is an efficient drug delivery vehicle, because it
contains numerous functionalities, such as carboxylic and hydroxyl groups Figure 1 [122].
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cytocompatibility of graphene and carbon nanotubes.

Carbon nanotubes are obtained by the condensation of benzene rings having a composition of
sp2 carbons, prepared as tube-like structures with a single layer single-walled carbon nanotubes or
multiple layers multiple-walled carbon nanotubes [123]. Carbon nanotubes have a strong affinity
with different proteins and undergo spiraling movement, thus they are efficiently uptaken by cells,
revealing their promising membrane permeability [124].

Graphene oxide and carbon nanotubes are suitable drug delivery vehicles due to their quick
physiological distribution, accumulation in various organs, including liver, lungs, kidney, and stomach,
and excretion through bile and urine [125–127]. In addition, graphene oxide is a biocompatible and
cytotoxic substance [128,129]. However, carbon nanotubes could be toxic and produce inflammation,
necrosis, fibrosis, and granuloma due to their reducing potential: this feature of carbon nanotubes may
hinder their use in drug delivery [129].

These toxicity problems can be eliminated by combining these materials with biocompatible,
water-soluble compounds, especially polymers, generating carbon nanohybrids [130].

Numerous studies have reported the successful application of graphene oxide and carbon
nanotubes in drug delivery for cancer therapy [131]; however, only a few studies describe their role in
the delivery of polyphenols. For instance, a promising modality describes the polyphenol-induced
reduction of graphene oxide, resulting in the bond formation between polyphenols and graphene
oxide [132]. In this regard, tea polyphenol extract nanohybrids exhibited an improved antiproliferative
action in colon cancer cells [133]. Similarly, the proliferation was profoundly inhibited by resveratrol
nanohybrids in ovarian cancer cells [134].

On the other hand, pristine carbon nanotubes have been used in some studies for the
delivery of polyphenols [135]. Owing to their toxic features, carbon nanotubes have been made
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biologically compatible by coating with suitable polymers, including gelatin Table 6. In this context,
multiple-walled carbon nanotubes were combined with polycaprolactone, resulting in the formation
of nanohybrids. These nanohybrids loaded with tea polyphenol exhibited a promising therapeutic
effect towards hepatic and lung cancer [136].

Functional nanohybrids Table 6 have also been prepared by developing covalent bonds between
the polyphenol and the polymer through a radical reaction. In this regard, catechin–gelatin
conjugate [137,138] and quercetin–methacrylic acid conjugate [139,140] were used as the coating
material for multi-walled carbon nanotubes. The obtained nanotherapeutics were found to have
enhanced anticancer activity in HeLa cancer cells, compared with the free flavonoids [137,139]. It is
remarkable that a synergistic anticancer effect can be achieved by using these flavonoid nanohybrids
and radiotherapy together towards neuroblastoma [140] and prostate cancer treatment [138]. All these
studies demonstrated that carbon nanotubes and graphene oxide could be successfully utilized for the
delivery of the polyphenols, including quercetin and catechins, for the effective treatment of cancer,
including hepatic, prostate, and lung cancer.

Table 6. Polyphenol-loaded carbon-based nanohybrids for the treatment of cancer.

No. Components of
Nanoparticles

Method of
Preparation

Polyphenol +
Synergistic Agent

Type of Cancer In Vitro
Model/In Vivo Model

Promisingly Treated with the
Fabricated Nanotherapeutic

Formulation

References

1 Graphene oxide Reduction
method Tea polyphenols Colon cancer HT29, SW48 [133]

2 Graphene oxide Reduction
method Resveratrol Ovarian cancer A2780 [134]

3 Polycapro-lactone–MWNT Electrospinning Tea polyphenols Lung cancer A549 [136]
4 Polycapro-lactone–MWNT Electrospinning Tea polyphenols Hepatic HepG2 [136]

5 Gelatin–MWNT Coating Catechin + Radiotherapy Prostate cancer DY-145, PC-3,
LNCap [138]

6 Gelatin–MWNT Coating Catechin Cervical cancer HeLa [139]

7 Polymeth-acrylic acid–MWNT Radical
coupling Quercetin Cervical cancer HeLa [137]

8 Polymeth-acrylic acid–MWNT Radical
coupling Quercetin + Cisplatin Neuroblastoma IMR-32 [140]

Note: MWNT—Multiple-walled carbon nanotubes.

2.5. Magnetic Nanoparticles Manipulation of Nanoparticles Using Magnetic Field

The nanoparticles modulated by a magnetic field, termed magnetic nanoparticles, are extensively
studied drug delivery vehicles for the treatment of inflammation, cancer, and other chronic
diseases [141,142]. In addition to remote actuation, an alternate magnetic field with high radiofrequency
can be applied for the heating of nanoparticles Figure 2 to augment the microenvironment temperature
and enhance the probability of synergism.

In recent years, several studies Table 7 have reported the application of magnetic nanoparticle
as a vehicle for the delivery of polyphenols for the treatment of tumors. It has been reported that
curcumin conjugates possess profound cytotoxicity in Caco-2 cells, glioma [143], and breast cells [144].
Another study described the improved pharmacokinetics and cytotoxicity of curcumin–poloxamer
nanoparticles, compared with curcumin alone [145]. Furthermore, magnetic nanoparticles coated
with catechin–dextran conjugate exhibited an excellent anticancer activity towards pancreatic
cancer [146]. A similar therapeutic outcome was observed when colon cancer cells were treated
with epigallocatechin gallate–dextran conjugate [147]. The in vitro treatment of SMMC-7721 tumor
cells with quercetin-loaded nickel nanoparticles exhibited synergism between the therapeutic effect
and the permeability-enhancing effect of quercetin and nickel nanoparticles, respectively [148]. The
nanocarriers for the delivery of polyphenols are studied in vivo to a limited extent, likely due to the
fact that these nanoparticles, like any nano-sized drug delivery system, circulate for a short time
in the blood as well as exhibit non-specific features. A representative study [147] reporting in vivo
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experiments on green tea-coated magnetic nanocrystals described their promising transport and uptake
properties, suggesting their potential use in therapeutics and multimodal imaging.Molecules 2018, 23, x FOR PEER REVIEW  15 of 23 
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Table 7. Polyphenol-loaded magnetic nanoparticles for the treatment of cancer.

No. Components of
Nanoparticles

Method of
Preparation

Polyphenol +
Synergistic Agent

Type of Cancer In Vitro
Model/In Vivo Model

Promisingly Treated with the
Fabricated Nanotherapeutic

Formulation

References

1 Hyaluronic acid–Iron Layer-by-layer Curcumin Colon cancer Caco-2 [143]
2 Polyvinyl pyrrolidone–Iron Layer-by-layer Curcumin Glioma C6 [143]

3 Iron–Poloxamers F127 Nanopre-cipitation Curcumin Pancreatic cancer HPAF-II,
Panc-1/Xenograft mice [145]

Iron–Dextran Solvation
method Catechin Pancreatic cancer MIA Paca2 [146]

4 Iron Reduction
process Epigallocatechin gallate Colon cancer CT-26/Xenograft

mice [147]

5 Nickel Electro-chemical
deposition Quercetin Hepatic cancer SMMC-7721 [148]

3. Conclusions

In spite of extensive research struggles, the limitations to achieving effective cancer therapy
are still unresolved. Similarly, natural products, including polyphenols, have been known for their
anticancer effects for a long time, but their clinical use is still a dream. The above discussion reveals
that the exclusive use of polyphenols as cancer therapy is inadequate for translation into therapeutic
protocol; rather, due to the substantial synergism observed in study models, polyphenols can be
suggested in combination with standard therapeutic modalities. Moreover, it is encouraging that a
wide range of safe and effective polymeric nanoparticulate systems are available for the delivery of
multiple compounds. Thus, polyphenols could be recommended for clinical use in the future.
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