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Background: In vitromodels of prostate cancer (PCa) are not always reliable to evaluate

anticancer treatment efficacy. This limitation may be overcome by using viable tumor

slice material. Here we report on the establishment of an optimized ex vivo method to

culture tissue slices from patient-derived xenografts (PDX) of prostate cancer (PCa), to

assess responses to PCa treatments.

Methods: Three PDX models were used that are characterized by different androgen

receptor (AR) expression and different homology directedDNA repair capacities, due to a

breast cancer associated two (BRCA2)wild-typeormutated status. Tumorswere removed

from mice, sliced using a vibratome and cultured for a maximum of 6 days. To test the

sensitivity to androgen antagonist, tumor slices from the AR-expressing and AR-negative

PDX tumors were treated with the anti-androgen enzalutamide. For sensitivity to DNA

repair intervention, tumors slices from BRCA2wild-type andmutated PDXswere treated

with the poly (ADP-ribose) polymerase-1 inhibitor olaparib. Treatment response in these

tumor slices was determined bymeasuring slicemorphology, cell proliferation, apoptosis,

AR expression level, and secretion of prostate specific antigen (PSA).

Results: We compared various culture conditions (support materials, growth media,

and use of a 3D smooth rocking platform) to define the optimal condition to maintain

tissue viability and proliferative capacity up to least 6 days. Under optimized

conditions, enzalutamide treatment significantly decreased proliferation, increased

apoptosis, and reduced AR-expression and PSA secretion of AR-expressing tumor

slices compared to AR-negative slices, that did not respond to the intervention.

Olaparib treatment significantly increased cell death inBRCA2mutated tumors slices as

compared to slices from BRCA2 wild type tumors.

Conclusions:Exvivo treatmentofPCaPDXtumor sliceswithenzalutamide andolaparib

recapitulates responses previously observed in vivo. The faithful retention of tissue

structure and function in this ex vivo model offers an ideal opportunity for treatment

efficacy screening, thereby reducing costs and numbers of experimental animals.
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any medium, provided the original work is properly cited and is not used for commercial purposes.
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1 | INTRODUCTION

Prostate cancer (PCa) is the second most common cancer in men

and the fourth most common tumor type worldwide.1 PCa

remains a high burden in the current healthcare system, especially

once it develops into castration resistant PCa (CRPC). Although

therapeutic strategies have improved over the past decades, their

gains are often transient and only marginally increase survival of

CRPC patients. Therefore, there is a clear unmet clinical need for

better treatment options and predictive markers for CPRC

patients. Currently, a multitude of novel targets and compounds

are in the pipeline for testing. In order to speed up the process

from development toward clinical use, faster and better test

models are urgently needed. When developing and testing novel

therapies, it is essential to have a cancer model that is both

reliable and representative.

Most preclinical studies of PCa depend heavily on immortalized

cancer cell lines, which are grown in culture dishes as a two-dimensional

model. These models do not recapitulate the complex architecture of

tumors nor the important interaction between tumor cells and their

microenvironment.2 They do therefore not always accurately predict

treatment efficacy and these limitations could lead to a failure when

transitioning a new drug from the bench to the clinic.

As an alternative, ex vivo culturing of tumor slices represent a

solid model system for drug sensitivity testing due to its relatively

short generation time and reflection of the tumor microenviron-

ment.3–7 For example, several studies have shown that

breast tumor tissue slices can be used to assess chemotherapy

response in the context of personalized medicine.8–10 In

recent years, efforts have been undertaken to establish such

strategies to generate primary cultures from human

prostate tumors and innovative complex culture systems.

Unfortunately, the establishment of primary PCa organotypic

cultures proved to be extremely challenging due to the slow-

growing characteristics of the PCa cells; basal epithelial cells

proliferate faster than tumor cells and often outgrow them during

prolonged culture.11–13

To allow testing of therapy responses in different genetic and

functional backgrounds of PCa, we set out to develop an optimized

tissue slice culture system. We used well-established patient-derived

xenograft (PDXs)models as a source for the tissue slices14–16 and show

that our tissue slice culture system provides treatment outcome that

recapitulates responses previously found in vivo.

2 | MATERIALS AND METHODS

2.1 | Reagents

Reagents were purchased from Sigma-Aldrich (Darmstadt, Germany)

unless otherwise specified.

2.2 | Collection of PDX tumor tissue

PDXsofPCa(PC295,PC339,andPC310)wereestablishedbyvanWeerden

et al14 and were routinely passaged by subcutaneous grafting of small

fragments onto both shoulders of intact male athymic NMRI nu/nu mice

(Taconic Biosciences, Cologne, Germany). Characteristics of the different

PDXs are summarized in Table 1. Fresh PDX tumors with volume of

500–1000mm3were obtained. After removal frommice, the tumors were

kept on ice in Dulbecco'sModified EagleMedium (DMEM; Lonza, Verviers

Sprl, Belgium).

2.3 | Tissue slice and culture

Tumor slices were generated using a vibratome (Leica VT1200S; Leica,

Nussloch, Germany) with a thickness set at 300 µm, vibration

amplitude at 3.0mm and slicing speed at 0.6 mm/sec. Slices were

either submerged directly in 3mL culture medium or placed on Falcon

40 µm Cell Strainers or Millicell 0.4 µm Cell inserts (Merck Millipore,

Bedford, UK) and then cultured in 3mL culture medium in six well

plates. The culture media that were tested for quality assessment are

summarized in Table 2. Slices were put in culture within 3 h after the

tumor was removed from the mouse. Culturing was performed at 5%

CO2 at 37°C and at atmospheric oxygen levels. Culture plates were

TABLE 1 Overview of characteristics of different PDXs14–16

PDX Origin1 AD2 AR3 PSA4 BRCA TD (days)5 Pathology type

PC295 LN + + + WT5 9-11 adenocarcinoma

PC339 TURP - - - WT 4-7 adenocarcinoma

PC310 PC + + + HD6 9-11 adenocarcinoma

1LN, lymph nodemetastasis; TURP, transurethral resection of the prostate; PC, primary prostate tumor; 2AD, androgen dependence; 3AR, androgen receptor;
4PSA, prostate specific antigen; 5WT, wild type; 6HD, homozygous deletion; 5TD, Tumor doubling time
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standing still or were subjected to movement at 6 rpm using Luckham

4RT Rocking Table (Luckham 200 Ltd, West Sussex, UK). One third of

medium was refreshed and collected daily. Slices were harvested at

various time points and fixed in 10% neutral buffered formalin for at

least 24 h at room temperature (RT). Subsequently, tumor slices were

embedded in paraffin and 4 µm sections were made for further

microscopy analysis (for practical setup, see Figure 1).

2.4 | Ex vivo antiandrogen and PARP-1 inhibitor
treatment

To test the response of antiandrogen and poly (ADP-ribose)

polymerase-1 (PARP-1) inhibitor treatment, tissue slices were cultured

under optimal conditions and treated with enzalutamide (1 µM,

Sequoia Research Products, Pangbourne, UK), olaparib (10 µM, Selleck

Chemicals, Munich, Germany), or with vehicle control (dimethyl

sulfoxide, DMSO) for different time points.

2.5 | Hematoxylin and eosin staining

Histological tumor architecture was examined by hematoxylin and

eosin (H&E) staining. Briefly, sections were deparaffinized in xylene

followed by rehydration in graded alcohols. They were then stained

with hematoxylin for 1min, rinsed with tap water, stained with eosin

for 1 min, and rinsed again with tap water. The slides were then

dehydrated with increasing concentration of ethanol successively

followed by xylene and mounted with entellan.

2.6 | Immunohistochemical and fluorescent
procedures

Sections were deparaffinized in xylene followed by rehydration in

graded alcohols. Antigen retrieval was performed with target

retrieval buffer (Dako, Glostrup, Denmark). For diaminobenzidine

(DAB) staining, endogenous peroxidase activity was blocked by

using 3% hydrogen peroxide solution in methanol at RT for

TABLE 2 Overview of the different medium compositions

PGM aDMEM/F12 K M199: K-SFM DMEM

DMEM/Ham's F12 (1:1)

BSA (0.01%) FCS (2%)

Epidermal growth factor (10 ng/mL)

Insulin-transferrin-selenium (1%)

Hydrocortison (0.5 μg/mL)

Triiodothyronine (1 nM)

Phosphoethanolamine(0.1 mM)

Cholera toxin(50 ng/mL)

Fibronectin(100 ng/mL)

Fetuine (20 μg/mL)

R1881(0.1 nM)

Penicillin/streptomycin

(100 U/mL, 100 μg/mL)

PFMR-4A

(aDMEM/F12 K)

M199: K-SFM (1:1)

Antibiotic/antimycotic solution

DMEM-high glucose

Penicillin/streptomycin

(100 U/mL, 100 μg/mL)

FIGURE 1 PDX tissue culture methodology. The tumor was removed from the mice and sliced with a Leica Vibratome into 300 µm tumor
slices. Slices were either submerged in culture medium, on Cell Strainers or on Cell Culture inserts. Culture dishes were then placed on a
Rocking Table or incubated without movement. Slices were harvested at various time points and EdU was added 2 h before fixation.
Subsequently, fixed tissue was embedded in paraffin (FFPE). [Color figure can be viewed at wileyonlinelibrary.com]
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20 min. 5% bovine serum albumin (BSA) in phosphate buffered

saline (PBS, Lonza, Verviers, Belgium) was used to block

nonspecific binding. Primary androgen receptor (AR) antibody

(M4074, 1/200, SPRING Bioscience, Pleasanton, CA) and Ki67

antibody (ab16667, 1/200, Abcam, Cambridge, UK) diluted in

blocking buffer were applied to the sections at 4°C overnight.

Ki67 was detected with anti-rabbit Alexa Fluor 488 and mounted

with Vectashield containing DAPI (Vector Laboratories, Burlin-

game, CA). AR staining continues with a horseradish peroxidase

(HRP)-conjugated anti-rabbit IgG secondary antibody (Dako) at a

1:100 dilution for 1 h at RT. AR positive cells were visualized

using DAB staining kit (Agilent, Santa Clara, CA) followed by

counterstaining with hematoxylin. Negative controls were per-

formed for all samples by omitting the primary antibodies.

2.7 | EdU incorporation and Click-iT™ reaction

5-ethynyl-2′-deoxyuridine (EdU, Invitrogen, Carlsbad, CA) at a

concentration of 3 µg/mL was added to the culture medium 2 h

before fixation. For the Click reaction, tissue sections were deparaffi-

nized in xylene followed by rehydration in graded alcohols and then

blocked with PBS containing 1% BSA. After additional washing with

PBS, sections were incubated with freshly made Click-iT Alexa Fluor

594 cocktail buffer for 30min as previously reported.10 Samples were

mounted using Vectashield mounting medium with DAPI.

2.8 | TUNEL assay

Terminal deoxynucleotidyl transferase dUTP nick end-labeling (TU-

NEL) assay was performed using In Situ Cell Death Detection Kit

(Roche Life Sciences, Penzberg, Germany) according to instruction of

the manufacturer.

2.9 | Medium prostate-specific antigen (PSA)
measurement

Tumor slices culture medium (1mL) was collected daily for PSA

measurement. The PSA concentration was measured using a PSA

enzyme-linked immunosorbent assay (ELISA) kit (Abnova, Taipei City,

Taiwan) according to the manufacturer instructions. The accumulated

PSA concentration in the culture medium was calculated using the

following formula (which corrects for medium removal each day):

PSAtotal dð Þ ¼ PSAmeasured dð Þ*3þ 1=3 PSAtotal d� 1ð Þ

In which d ¼ day of culture:

2.10 | Image acquisition

AR staining was imaged using a light microscope (Olympus, Tokyo,

Japan) and four fields (200× magnification) from each section were

captured. For Ki67, EdU, and TUNEL staining quantifications, 10

random images (400× magnification) from each tumor slice section

were generated using a Leica fluorescence microscope (DM4000b) to

represent the slice heterogeneity. Representative EdU and TUNEL

photos were taken by using a Leica SP5 confocal microscope (Leica,

Nussloch, Germany). Image size:512 × 512 pixels, pixel size 0.7 µm,

200× magnification.

2.11 | Image quantification

AR expression was quantified by Image J software to yield the pixel

ratio of AR positive to total nuclei. To quantify the TUNEL microscopy

images, all pictures were analyzed with the Fraction of overlap with

Otsu's thresholding method: The DAPI and the TUNEL image were

both thresholded according to Otsu's algorithm17 which resulted into

two binary images. The pixel number was measured and subsequently

the Mander's M1 coefficient was used to calculate the fraction of

TUNEL positive pixel overlapped with DAPI pixel.18 To quantify the

fraction of EdU positive cells, the fraction of overlap of silhouette

images method was used. This method relies on edge detection to

obtain a binary image. For both the DAPI and EdU pictures, a gradient

magnitude image was obtained from the image of entry. This binary

image was created using a modified triangle-thresholding method in

which black areas completely enclosed by white areas were filled.19

Next, a morphological dilation was applied using a circular structuring

element with a radius of three pixels. All pixels that still had a value of

one then constitute a newly formed gradient mask image. The same

thresholding was applied to the original grayscale image. The

intersection of this image and all pixels greater than themean intensity

of the original grayscale image formed the intensitymask image. A new

image was obtained through seeded region growing, whereby the

gradient mask served as a seed point image and the intensity mask as

the target image. This newly formed image was subjected to a median

filter with a 5 × 5 neighborhood and all pixels equal to one constitute

the final binary image. Finally, Mander's M1 coefficient was calculated

for the fraction of overlap.

2.12 | Statistical analysis

Results are expressed as the mean ± SEM or median ± quartile in bar

graph. Mann-Whitney test was used to analyze the differences

between two groups. Statistical analysis and generation of graphs was

performed using Graphpad Prism 6.0 (La Jolla, CA). P < 0.05 was

considered statistically significant. *P < 0.05, **P < 0.01, ***P < 0.001.

3 | RESULTS

3.1 | Culture condition selection

To establish the most optimal culture method for preservation of PCa

tissue slice viability we developed an optimized culture system and

compared it to previously reported systems.20,21 Tumor slices from

PC295, PC339, and PC310 PCa PDXs were generated using a

vibratome and these slices were cultured in prostate growth medium
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FIGURE 2 Effect of filter support and 3D orbital movement on PCa tissue slice morphology and viability. A, Representative H&E
images of PC295 tumor slice sections after 4 days of culturing under the different culture conditions, compared to an initial slice (day
0). Scale bar 50 µm. B, Representative EdU/TUNEL/DAPI images of PC295 tumor slice sections after 4 days of culturing under the
different culture conditions, compared to an initial slice (day 0) (blue = DAPI, red = EdU, green = TUNEL). Represented H&E and EdU/
TUNEL images of PC339 and PC310 tumor slices can be found in Figure S1. Scale bar 50 µm. C, Quantification of the fraction of EdU-
positive cells in the tissue slices. D, Quantification of the fraction of TUNEL positive cells in the tissue slices. For all graphs, 10 image
fields were analyzed per tumor slice. Each point represents one image field, interquartile range, and median values are indicated
(results from 1 representative tumor per graph). [Color figure can be viewed at wileyonlinelibrary.com]
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(PGM) for 4 days under the different conditions in which we compared

supporting materials (Figure 1). Furthermore, stationary condition and

3D orbital movement on a rocking table were compared as smooth 3D

orbital movement could increase oxygen and nutrition exchange as

reported previously.21 H&E stained sections of slices of all three

tumors showed that slices cultured on cell strainers maintained tissue

morphology, while slices cultured without support or on inserts lost

tissue integrity and showed an increase in apoptotic nuclei and

vacuolated structures over time (Figure 2A and Figure S1). Moreover,

in contrast what was observed previously using inserts, we did not

observe a viability gradient nor loco-regional changes inmorphology.15

The thymidine analog EdU was used as a real-time proliferation

marker to assess tissue viability. We tested the reliability of our newly

developed EdU quantification algorithm by comparing automatic

counting with manual counting and a good correlation was observed

(an R2 of 0.922 and 0.841, respectively for two individuals compared to

automatic counting; Figure S2). A large variability of EdU-positive cells

was observed between individual image fields, and therefore, 10 fields

of view were quantified per slice to provide a reliable assessment.

Tissue slices cultured on cell strainers and under continues 3D orbital

movement outperformed the other tissue slice methods when looking

at maintenance of proliferation at day 4 (Figures 2B and 2C). We

further evaluated the induction of cell death during ex vivo culturing by

TUNEL staining, which labels DNA strand breaks generated during

apoptosis.22 In line with the results on proliferation, slices cultured on

cell strainers did not show an increase in apoptosis at 4 days of culture,

while slices cultured under the other conditions showed enhanced

apoptosis. No significant difference in TUNEL signal was observed

between slices in the stationary condition and those cultured on a

rocking table (Figures 2B and 2D). From the EdU and TUNEL results

combined, we concluded that cell strainer-support and continuous 3D

orbital movement are optimal for maintenance of tissue slice

morphology, proliferation, and viability.

3.2 | Optimal medium selection

The culture medium composition has vital impact on the viability of

tissue slices. To select the optimal medium, we therefore tested four

different culture media that have been reported previously for primary

prostate cell or tumor culturing (Table 2).20,21,23–25 Tissue morphology

analysis showed that Prostate GrowthMedium (PGM)24 and aDMEM/

F12 K outperformed the other media tested (Figure S3).We compared

incubation of tissue slices from PC295 and PC339 to determine which

medium preserved tumor cell viability most optimally. Average tissue

proliferation remained constant for PC339 (average 10%) up to 6 days

of culturing in both media while proliferation of PC295 reduced over

time in both media (initial 10.7%, and 2.5% and 3.6% in PGM and

aDMEM/F12 K, respectively after 6 days). There was no significant

difference in performance between the two culture media for both

PDXs (Figure 3A).

PGM constitutes 2% fetal calf serum (FCS) and is supplemented

with the synthetic androgen R1881 (0.1 nM), while aDMEM/F12 K

devoid of FCS and does not contain R1881. The clear benefit of using

serum-free medium led us to test the impact of addition of the same

concentration of R1881 to the aDMEM/F12 K medium. Three tumors

of PC295 and PC339 each were cultured under optimal conditions in

aDMEM/F12 K or in aDMEM/F12 K supplemented with R1881. We

found a significantly higher proliferation rate of the PC295 slices

cultured in aDMEM/F12 K supplemented with R1881 compared to

aDMEM/F12 K without R1881 (1.9 fold at day 6) (Figure 3B). As

expected, addition of R1881 did not affect proliferation rates of

androgen independent PC339 slices (Figure 3B). Some increase in

apoptosis was observed in PC339, while PC295 maintained its low

apoptosis levels for up to 6 days of ex vivo culturing (Figure 3C).

To further assess tissue maintenance, we measured AR expres-

sion, a major characteristic of androgen dependent prostate tumors.

Immunohistochemical stainings showed that AR expression was

largely maintained during ex vivo culturing of PC295 slices, with a

small but significant decrease of AR expression in slices cultured at

6 days in either PGM or aDMEM/F12 K (Figures 4A and 4B). The

addition of R1881 to aDMEM/F12 K medium preserved AR levels up

to 6 days of incubation (Figures 4C and 4D).

Because androgen stimulates PSA secretion from PCa cells, we

measured PSA levels in the culture media. Medium from PC295 tumor

slices was collected for up to 6 days and PSA accumulation was

monitored. After normalization to initial PSA levels, we observed a

continuous increase in PSA for up to 6 days in cultures supplemented

with R1881 while slices cultured in aDMEM/F12 K without R1881

showed a stabilization of PSA levels (Figure 4E). Altogether, we

concluded that serum-free aDMEM/F12 K plus R1881 is the optimal

medium for further use showing maintenance of tissue slice

morphology, viability, and AR-functionality.

3.3 | Enzalutamide treatment of tissue slices

In order to validate the accuracy of the tissue slice system to reflect

clinical responses to relevant therapies, we investigated the response to

enzalutamide, a second generation antiandrogen which is currently

being tested in a randomized phase III trial.26 PC295 (AR positive and

androgen dependent) and PC339 (AR negative and androgen indepen-

dent) slices were treated with enzalutamide with or without R1881. As

shown inFigure5A,weobserveda significantdrop in the fractionofEdU

positive cells in PC295 slices treated with enzalutamide after 6 days of

culturing (decreased by a factor of 5.5), while we did not observe a

change in proliferation in PC339 slices. Simultaneously, a significant of

2.8 folds increase of TUNEL positive cells was observed in PC295 slices

treated with enzalutamide, with no effect in the PC339 slices

(Figure 5B). Presence of R1881 was unable to restore proliferation or

revert apoptosis induced by enzalutamide treatment in PC295 slices

(Figures 5A and 5B). AR staining of PC295 slices showed a dramatic

reduction of 45% upon enzalutamide treatment at day 6 which could

also not be reversed by the presence of R1881 (Figure 5C). PSA

measurement inmediumsamples further confirmed the inhibitoryeffect

of enzalutamideonARpositive tumor slices.After an initial rise in PSAat

day 2, PSA secretion decreased after enzalutamide treatment, both in

presence or absence of R1881 (Figure 5D). Similar antiandrogenic
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effects of enzalutamide were observed in tumor slices from the AR

positive and androgen dependent PC310 PDX model (Figure S4).

3.4 | Olaparib treatment of tissue slices

Mutations in the DNA repair gene BRCA2 have been identified in PCa

patients, and previous studies have shown that these specific patients

benefit from treatment with olaparib, an inhibitor of poly[adenosine

diphosphate (ADP)-ribose] polymerase-1 (PARP-1).27 We therefore

assessed the response to olaparib treatment in PC295 (BRCA2 wild-

type) and PC310 (BRCA2 mutated) tumors. A significant drop in the

fraction of S-phase cells was observed for both PC295 and PC310

tumor slices (decreased by a factor of 2.65 and 10, respectively) when

treated with olaparib for 6 days, with a more pronounced reduction in

FIGURE 3 Optimization of culture medium. A, Quantification of the fraction of EdU-positive cells of PC295 and PC339 slices cultured up
to 6 days in PGM and aDMEM/F12 K medium. B, Quantification of the fraction of EdU-positive cells for PC295 and PC339 slices cultured up
to 6 days in aDMEM/F12 K and aDMEM/F12 K supplemented with R1881. C, Quantification of the fraction of TUNEL-positive cells for
PC295 and PC339 slices cultured in aDMEM/F12 K and aDMEM/F12 K supplemented with R1881 at 6 days. For all graphs, 10 image fields
were analyzed per tumor slice section. Each point represents one image field, average and SEM are indicated (three independent experiments
for each tumor type). **P < 0.01, ***P < 0.001, ns, non-significant. [Color figure can be viewed at wileyonlinelibrary.com]
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cell proliferation for PC310 (Figure 6A). A significant increase of 10.9

folds of TUNEL positive cells was observed only in PC310 slices

treated with olaparib, and not in PC295 tumor slices (Figure 6B). AR

staining showed a reduction of AR positive tumor cells in PC310 tumor

slices upon olaparib treatment, while only a slight reduction of AR-

positive tumor cells was observed in PC295 tumor slices (Figure 6C).

PSA measurement revealed reduced PSA levels of both PC295 and

PC310 slices (Figure 6D). In conclusion, both BRCA2 deficient and

proficient tumors are hampered by olaparib treatment, but only BRCA2

deficiency causes induction of apoptotic cell death.

4 | DISCUSSION

We have established an optimized ex vivo tissue slice culture system

using PCa PDXs. Under optimal culture conditions, tumor morphology,

cell proliferation, and prostatic characteristics are preserved for up to

6 days with minimal induction of cell death. Furthermore, we showed

that this system is suitable for PCa drug testing: we observed responses

to enzalutamide in androgen dependent tumor slices as well as to

olaparib in BRCA2 mutant tumor slices that reflect in vivo therapy

responses.

An ex vivo tumor culture system should maintain cancer

characteristics and tumor proliferating capacity during ex vivo

culturing to allow reliable therapy response evaluation. Since the

1970s, various studies have been described that aim to establish an ex

vivo culture system for PCa tumors. This has resulted in the

development of different tumor culture methods, ranging from direct

culturing of 1-2mm3 human tissue samples in medium to more

recently developed techniques to culture precision cut tissue slices on

various scaffolds and supporting filters, such as gelatin, collagen

sponges, or titanium mesh inserts.21,23,28,29 As reported in these

studies, maintenance of prostate or PCa tissue slices for a week could

FIGURE 4 Prostate characteristics during prolonged ex vivo culturing. A, Representative images of AR staining of PC295 tumor slice
sections cultured in two media for different time points, compared to the stained section of the initial slice (day 0). B, Quantification of the
AR staining. Four image fields were analyzed per tumor slice, each point represents one image field, average, and SEM are indicated (three
independent experiments). C, Representative images of AR staining of PC295 tissue slice sections cultivated in aDMEM/F12 K and aDMEM/
F12 K supplemented with R1881 for different time points, compared to the stained section of the initial slice (day 0). D, Quantification of the
AR staining. Four image fields were analyzed per tumor slice, each point represents one image field, average, and SEM are indicated (three
independent experiments). E, Normalized accumulated PSA concentrations of PC295 slices from day 1 to day 6 cultured in aDMEM/F12 K
and aDMEM/F12 K supplemented with R1881. Line represent mean values and bars indicates SEM (three independent experiments). For all
graphs scale bar 50 µm and *P < 0.05, **P < 0.01, ***P < 0.001, ns, non-significant. [Color figure can be viewed at wileyonlinelibrary.com]
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be achieved, but conservation of tissue structure and functionality was

not always comprehensively reported with extensive variability in

tissue origin and evaluation in the different studies. Application of the

ex vivo culture system for drug testing was only reported in a few

studies, describing reduced cell proliferation in response to genis-

tein,29 cisplatin combined with a BcL-2 antagonist,30 heat shock

protein 90 inhibitors28 PARP-1 inhibitors,31 and most recently

published studies with bicalutamide32 and docetaxel.33 However

detailed cell cycle progression (proliferation) of the tumor cells was not

investigated, making direct comparison to our studies difficult.

Importantly, our study validates the response to different tumor

genotypes, represented by different PDXs, and hence provide

evidence that ex vivo drug testing can indeed predict in vivo responses.

Although ex vivo tumor cultures from other cancer types can be

maintained for weeks or months,8,11,12,34–36 PCa tissue maintenance

of primary tumors has been challenging probably due to the slow-

growing characteristics and fast proliferation of basal cells.25,37,38 Also,

obtaining aggressive metastatic PCa material is met with limitations as

metastatic disease is predominantly found in bone restricting easy

excess. Nowadays, prostate-specific membrane antigen (PSMA)

guided biopsy and salvage lymphadenectomy is reported,39–41 which

may offer new opportunities for acquiring aggressive PCa material for

FIGURE 5 Response to ex vivo enzalutamide treatment. A, Quantification of the fraction of EdU-positive cells for PC295 and PC339 slices
at different time points. Scale bar 100 µm. B, Quantification of the fraction of TUNEL-positive cells for PC295 and PC339 slices at different
time points. Scale bar 100 µm. C, Representative images of AR staining for PC295 tissue slice sections at day 6 and quantification of the AR
stainings. Scale bar 50 µm. D, Normalized accumulated PSA concentrations of PC295 and PC339 slices from day 1 to day 6 treated or not
with Enzalutamide. Line represent mean values and bars indicates SEM. Ten image fields for EdU/TUNEL and four image fields for AR were
analyzed per tumor slice section. Each point represents one image field, average, and SEM are indicated (four independent experiments for
each tumor type). *P < 0.05, **P < 0.01, ***P < 0.001, ns, non-significant. [Color figure can be viewed at wileyonlinelibrary.com]
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FIGURE 6 Response to ex vivo olaparib treatment. A, Quantification of the fraction of EdU-positive cells of PC295 and PC310 slices treated
with olaparib for 6 days. B, Quantification of the fraction of TUNEL positive cells of PC295 and PC310 slices treated with olaparib for 6 days. C,
Representative images of AR staining of PC295 and PC310 slices treated with olaparib for 6 days. Scale bar 50µm. D, Normalized accumulated PSA
concentrations of PC295 and PC310 slices from day 1 to day 6 treated or not with olaparib. Ten image fields for EdU/TUNEL and four image fields
for AR were analyzed per tumor slice section. Each point represents one image field, average and SEM are indicated (three independent experiments
for each tumor type). *P < 0.05, **P < 0.01, ***P < 0.001, ns, non-significant. [Color figure can be viewed at wileyonlinelibrary.com]
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ex vivo drug response tests. Our tissue slice culture platform for PCa

defined in this study may be helpful to standardize ex vivo culturing of

patient material.

We used PDX tumors to thoroughly evaluate the impact of different

culture condition and the ability of tissue slices to recapitulate tumor

responses characteristic for a particular genotype. PDX tumors have

limited intra-tumoral heterogeneity and high tumor content which allows

for intensive technical studies. In order to reduce slice heterogeneity from

the same tumor as much as possible, slices were consecutive allocated to

each experimental treatment. We were able to keep longevity of tumor

slices by using serum-free aDMEM/F12K medium with the addition of

synthetic androgen up to 6 days. This medium shares many similar

ingredients with medium PFMR-4A which was reported previously for

successful maintenance of benign andmalignant prostate tissue slices for

5 days.21 Serum-free medium allows more precise evaluations of cellular

function and better control over physiological responsiveness.

One of the strengths of this study is the use of EdU incorporation

to assess cell proliferation, allowing real time measurement of DNA

synthesis during replication.We believe that this is a more reliable way

to measure early treatment effects compared to the commonly used

Ki67marker. Ki67 protein is present in all cycling cells, even for several

days after cells have ceased to proliferate.42 Indeed, we observed a

disparity between EdU ratio and Ki67 expression: after 6 days

culturing EdU ratio dropped significantly while Ki67 only showed a

slight reduction (Figure S5). In the majority of tumor slices from all

three PDXs tested, we observed an increase of proliferation after one

day of incubation, followed by maintenance of proliferation for PC339

and PC310, or only a slight decrease of proliferation in case of PC295

compared to day 0. The first-day proliferation boost might be a result

of the availability of a high level of nutrients and oxygen. The initial high

TUNEL level in PC339 slices is most likely due to a higher level of

necrosis in the original tumor sample, since TUNEL assay is unable to

distinguish necrosis and apoptosis.43

We observed a marginal effect of androgen deprivation on tumor

slice viability in androgen responsive PDX tissue slices. This might be

caused by the presence of endogenous androgen maintained in the

tumor slices and which is gradually released into the medium during

culturing. Thus,endogenouslypresentandrogencanbeused tomaintain

activation of AR signaling and proliferation for a few days. Similar

observations were done by Zhou et al44 in rat prostates that retained

similar androgen tissue levels independent of the serum concentrations.

A clear antiandrogenic response to enzalutamide was observed in

androgen dependent tissue slices of PC295 and PC310. Our ex vivo

response of tissue slices to enzalutamide are also supported by in vivo

data reported by Guerrero et al45 in which enzalutamide inhibits tumor

growth significantly during the first 6 days of treatment comparedwith

vehicle-treated mice. Additionally, we showed that olaparib induced

cell death in the BRCA2 mutant PC310 tumor slices, confirming the

expected response when targeting DNA damage repair deficient

tumors. This was in concordance with recent clinical studies, showing

that that CRPC patients with somatic loss and germline mutation of

BRCA2 respond well to olaparib.27 Similar was reported by Beshiri

et al46 for PCa PDX organoid cultures in which BRCA2 deficiency

correlates with olaparib sensitivity. PARP-1 inhibitors with high PARP

trapping potency, such as olaparib, can yield intense replication

stress,47,48 which can explain the decrease of fraction of S-phase cells

in the BRCA2 wild-type PC295 slices.

So far, several publications have suggested that tumor tissue slice

culture can be utilized to predict drug response in breast cancer8–10 and

monitor cytotoxic drug effects in liver, intestine, and lung.49–51Wehave

established dedicated tissue slice system for PCa that shows robust and

specific antiandrogen and PARP-1 inhibition treatment effects and that

can be extended to testing of novel compounds relevant to PCa.

5 | CONCLUSIONS

The faithful retention of tissue structure and function in our ex vivo

culture system offers an opportunity to evaluate PCa response to

therapeutic compounds making it an ideal system for low to medium

throughput testing in drug discovery.
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