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Converging electrophysiological evidence suggests that the alpha rhythm plays an important and active role in
cognitive processing. Here, we systematically studied variability in posterior alpha peak frequency both between
andwithin subjects.We recorded brain activity usingMEG in51 healthy human subjects under three experimen-
tal conditions— rest, passive visual stimulation and an N-back working memory paradigm, using source recon-
struction methods to separate alpha activity from parietal and occipital sources. We asked how alpha peak
frequency differedwithin subjects across cognitive conditions and regions of interest, and looked at the distribu-
tion of alpha peak frequency between subjects. In both regions we observed an increase of alpha peak frequency
from resting state and passive visual stimulation conditions to the N-back paradigm, with a significantly higher
alpha peak frequency in the 2-back compared to the 0-back condition. There was a trend for a greater increase
in alpha peak frequency during the N-back task in the occipital vs. parietal cortex. The average alpha peak fre-
quency across all subjects, conditions, and regions of interest was 10.3 Hz with a within-subject SD of 0.9 Hz
and a between-subject SD of 2.8 Hz. We also measured beta peak frequencies, and except in the parietal cortex
during rest, found no indication of a strictly harmonic relationship with alpha peak frequencies. We conclude
that alpha peak frequency in posterior regions increases with increasing cognitive demands, and that the alpha
rhythm operates across a wider frequency range than the 8–12 Hz band many studies tend to include in their
analysis. Thus, using a fixed and limited alpha frequency band might bias results against certain subjects and
conditions.

© 2014 The Authors. Published by Elsevier Inc.Open access under CC BY license.
Introduction

The prominent posterior alpha rhythm was first recorded by Hans
Berger (1929) and long considered to reflect cortical idling (Adrian
andMatthews, 1934; Pfurtscheller et al., 1996).More recently, converg-
ing electrophysiological evidence suggests that the alpha rhythm actu-
ally plays an important and active role in cognitive processing (Cooper
et al., 2003; Jensen andMazaheri, 2010; Klimesch et al., 2007). In partic-
ular, alpha oscillations are proposed to reflect amechanismof functional
inhibition (Foxe and Snyder, 2011; Jensen et al., 2012;Mathewson et al.,
2011), regulating the engagement and disengagement of sensory areas
depending on task demands.

In support of this idea, several studies have shown that alpha oscilla-
tions reflect the focus of attention, both in the visual (Gould et al., 2011;
Thut et al., 2006; Worden et al., 2000) and the somatosensory system
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(Anderson and Ding, 2011; Haegens et al., 2011a; Jones et al., 2010),
with consequences for subsequent perceptual performance. Further-
more, alpha activity has been shown to increasewith load duringwork-
ing memory (WM) maintenance, presumably in order to facilitate WM
retention by preventing interfering inputs (Jensen et al., 2002; Sauseng
et al., 2009; Tuladhar et al., 2007).

Alpha peak frequency is known to change with age, increasing up to
adulthood and then decreasing with older age (Aurlien et al., 2004;
Lindsley, 1939). Inter-subject variability in alpha frequency is to a
large degree explained by genetic factors (e.g., Bodenmann et al.,
2009), with twin studies showing heritability estimates of about 80%
(Smit et al., 2006; Van Beijsterveldt and Van Baal, 2002). Inter-subject
differences in alpha peak frequency have been linked to various cogni-
tive measures, including WM performance (reviewed in Klimesch,
1999). Additionally, intra-subject variability in alpha peak frequency
has been described, whichmay reflect different alpha networks kicking
in dependent on task demands (Başar, 2012; Klimesch, 1999).

Thus, alpha frequency can be seen both as a ‘trait’ variable, with
inter-subject variability potentially explaining differences in overall
cognitive performance, as well as a ‘state’ variable, with intra-subject
variability possibly reflecting fluctuations in moment-to-moment
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Fig. 1. Experimental paradigm. (A) Visual condition: stimuli consisting of vertical, station-
ary gratings were presented in either the left or right lower visual field, while participants
maintained central fixation. Stimuli were presented for 2 s followed by a 2-s baseline win-
dow. Analysis windows (1 s length) are indicated in blue for stimulation and in red for
baseline. (B) N-back task: stimuli consisting of letters were presented for 200 ms at 2-s
SOA. In the 0-back task (upper panel) the subject had to respond to the letter X. In the
2-back task the subject had to respond if the letter was the same as that of two stimuli
back. (Targets are presented in green here for illustrative purposes only.) Analysis
windows (1 s length) are indicated in blue on the time axis.
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performance. Knowing the range within which the posterior alpha
rhythm operates, both between and within subjects, will be crucial in
order to interpret results from studies that try to explain performance
differences in terms of alpha activity modulations.

However, most studies define the alpha rhythm as a fixed narrow
band (most commonly 8–12 Hz), and average over spectral activity
within that fixed band for all subjects. It has been argued that using
the individual alpha frequency (IAF), determined per subject (defined
in terms of either peak or ‘gravity’ frequency), gives a more accurate es-
timate of alpha modulated activity (Doppelmayr et al., 1998; Klimesch,
1999; although see Smit et al., 2005; Shackman et al., 2010). The reason-
ing is that because of substantial inter-individual variability in alpha fre-
quency (a mean SD of 1 Hz is reported, cf. Klimesch, 1997), significant
portions of alpha power will fall outside a fixed frequency window,
and/or activity from neighboring frequencies (i.e., theta or beta) might
erroneously be included in the fixed alpha window. Along these same
lines, it was suggested that the alpha frequency range should be further
subdivided into low- and high-alpha subranges, whichmay behave dif-
ferently under certain task conditions (Klimesch et al., 1996, 1998).
While adopted by a substantial part of the field, this approach is by no
means common practice. Given the emergence of more sensitive
analyses of especially alpha phase (e.g., cross-frequency coupling
mechanisms, phasic modulation of stimulus processing), optimized
individual peak frequency detection might become essential.

Here, we systematically studied howposterior alpha peak frequency
varies both between andwithin subjects.We aimed to establish wheth-
er individual alpha peak variability indeed goes beyond the often-used
8–12Hzfixed band.We recorded brain activity usingMEG in 51 healthy
human subjects under three experimental conditions— rest, passive vi-
sual stimulation and an N-back WM paradigm. Using MEG in combina-
tion with source reconstruction methods allowed us to separate alpha
activity from parietal and occipital sources, which to the best of our
knowledge has not been done before in this context. We asked how
alpha peak frequency differed within subjects across cognitive condi-
tions and regions of interest, and looked at the distribution of alpha
peak frequency across this relatively large set of subjects. Furthermore,
we explored the relation between individual alpha and beta peak
frequencies, as a harmonic relationship between the two has been
suggested (Carlqvist et al., 2005; Gaarder and Speck, 1967; Klimesch,
2012).

Methods

Participants

Fifty-one healthy right-handed volunteers (27 female, 24 male;
mean age 24.2 years; range 19–34) with normal or corrected-to-
normal vision participated in this experiment. Ethical approval was ob-
tained from the NHS South Central Berkshire ethics committee (11/SC/
0053). Each subject participated in three experimental blocks that were
recorded successively: (1) resting state, (2) N-back, (3) visual gratings.

Paradigm

Resting state: 6 min of resting state was recorded while subjects
kept their eyes open and fixated on a fixation cross.

Visual gratings (Fig. 1A): stimuli consisting of vertical, stationary,
maximum-contrast, 3-cycles-per-degree gratings were presented on a
mean luminance background. Ninety stimuli were presented in either
the left or right lower visual field. Participants were instructed to main-
tain fixation on a dot in the middle of the screen for the duration of the
experiment. Stimuli were presented for 2 s followed by 2 s of fixation in
blocks of five, with each block of five followed by 20-s fixation during
which the subjects were allowed to blink.

N-back (Fig. 1B): the N-back paradigm consisted of a 0-back and a
2-back task, seven blocks each, presented in alternating fashion,
followed by 15-s breaks. Each block consisted of presentation of 15 letters
with 200-ms stimulus duration and 2-s SOA, i.e., 1.8-s WM retention/
decision period. Each block contained 2–4 targets. In the 0-back task,
subjects had to respond by button press to the letter X, while on the
2-back task subjects had to respond when the stimulus was the same
as the one two stimuli back.

Data acquisition

Whole-headMEG recordingswere acquired at a sampling frequency
of 1000 Hz, using an Elekta NeuroMag MEG System. Data from the 204
gradiometers were analyzed. A magnetic digitizer (Polhemus FastTrach
3D) was used to measure the relative positions of four head-position
indicator coils and three anatomical landmarks (nasion, left and right
auricular points). These coordinates were used for co-registration of
the sensor montage to the participant's anatomical magnetic resonance
image (MRI), which was acquired using a 3 T Siemens system.

Data analysis

The data were analyzed using custom-build Matlab code, the
FieldTrip toolbox for EEG/MEG-analysis (Oostenveld et al., 2011;
http://www.ru.nl/neuroimaging/fieldtrip/) and SPM8 (http://www.fil.
ion.ucl.ac.uk/spm). The data were down-sampled offline to a sampling
frequency of 500 Hz, after applying a 0.5 Hz high-pass filter and a
200Hz low-passfilter. Bad channels and trialswere rejected upon visual
inspection. We used independent component analysis (Jung et al.,
2000) to identify eye artifacts, which were then projected out of the
data.

First, we studied the main effects in each condition by computing
sensor level power spectra and whole brain source reconstructions,
focusing on alpha activity within the band of 7–14 Hz. Second, we
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determined each subject's individual alpha peak frequency for
each condition and region of interest (ROI), using a time-domain
beamformer approach.

Spectral analysis
Power spectra were calculated on 1-s segments of data for each con-

dition: (1) for the resting state, the continuous recording was segment-
ed into 1-s epochs; (2) for the visual gratings a 1-s window prestimulus
(t = −1–0 s) and a 1-s window during stimulus (t = 0.5–1.5 s; i.e.,
500 ms after stimulus onset to exclude the initial evoked response);
and (3) for the N-back task, a 1-s window during the retention interval,
after stimulus offset (t= 0.2–1.2 s)was selected. The analyses included
on average 340 trials (range, 298–350) per subject for rest; 86 (72–90)
for baseline and for stimulus; 101 (83–105) for 0-back and 102
(82–105) for 2-back. These segments were zero-padded to 10 s and
multiplied with a Hanning taper, and power of 4–30 Hz was computed
using a fast Fourier transform (FFT) approach. To inspect the time
course of the frequency effects, we also computed time–frequency
representations (TFRs) of the power spectra for the full trials per exper-
imental condition. To this endwe used an adaptive sliding timewindow
of four cycles length (Δt = 4 / f) for each frequency represented and
applied a Hanning taper before estimating the power using an FFT
approach.

Source analysis
To localize the sources of the alpha band activity for each condition,

we applied a frequency-domain beamformer (Gross et al., 2001;
Schoffelen et al., 2008). This adaptive spatial filtering technique uses
the Fourier spectra, which were obtained by applying a multitaper FFT
approach to the 1-s data segments, centered at 10.5 Hzwith six orthog-
onal Slepian tapers resulting in ±3.5 Hz smoothing (Percival and
Walden, 1993), i.e., a band of 7–14 Hz. We constructed a realistically
shaped single-shell description of the brain for each subject, using the
individual anatomical MRI. The brain volume of each individual subject
was divided into a grid with a 1 cm resolution and normalized toward
the templateMontreal Neurological Institute (MNI) brain (International
Consortium for Brain Mapping, Montreal Neurological Institute,
Canada) using SPM8. Lead fields were calculated for all grid points
(Nolte, 2003). With the lead fields and the Fourier spectra (per para-
digm, per subject) a spatial filter was constructed for each grid point
(note that within the visual paradigm a common spatial filter was
used for baseline and stimulus windows, and within the N-back para-
digm a common spatial filter was used for 0-back and 2-back). Using
this filter, the spatial distribution of power was estimated for each
trial separately, and then averaged per condition and contrasted in
order to reduce the center bias (visual: stimulus vs. baseline; N-back:
2-back vs. 0-back; resting state: the lead fields were normalized to ob-
tain the bias reduction, since there was no condition to contrast with)
to reveal the sources of the alpha band activations.

Note: for one subject a standard brain template was used, as noMRI
was available for this subject.

Statistical analysis
Statistical analysis was performed both on sensor and source levels,

using the same procedure. For each subject, power spectra were nor-
malized by dividing with average power in the spectrum per condition
(for each sensor/grid point separately). This procedure reduces inter-
subject variability in the power estimates. We then tested for each ex-
perimental condition whether there was a significant alpha band mod-
ulation, using the following contrasts: 1) visual paradigm: stimulus vs.
baseline; 2) N-back paradigm: 2-back vs. 0-back; 3) resting state: rest
vs. pseudo-estimate (i.e., since there was no condition to contrast
with, we tested alpha against the average power in the spectrum). To
establish whether these contrasts were significantly different from 0, a
cluster-based nonparametric randomization test was applied (Maris
and Oostenveld, 2007). By clustering neighboring sensors (or grid
points in the source analysis) that show the same effect, this test deals
with the multiple-comparisons problem and at the same time takes
into account the dependency of the data. The normalized data were av-
eraged over the alpha frequency range (7–14 Hz) and for each sensor a
dependent-samples t value was computed. All samples were selected
for which this t value exceeded an a priori threshold (uncorrected p =
0.05), and these were subsequently clustered on the basis of spatial adja-
cency. The sum of the t values within a cluster was used as cluster-level
statistic. The cluster with the maximum sum was subsequently used as
test statistic. By randomizing the data across the two conditions and
recalculating the test statistic 2000 times, we obtained a reference distri-
bution of maximum cluster t values to evaluate the statistic of the actual
data.
Source-level peak detection
Next, in order to establish each subject's individual alpha peak fre-

quency across conditions and ROIs, we applied a linearly constrained
minimum variance (LCMV) beamformer technique to extract source-
reconstructed frequency spectra from the parietal and the occipital
lobe. ROIs were defined based on an anatomical atlas (Talairach and
Tournoux, 1988). Spheres with radius of 2.5 cm were centered at left
and right Brodmann area (BA) 7 for the parietal ROI, and similar spheres
were placed so to include both BA 17 and 18 for the occipital ROI.

The LCMV beamformer is a time-domain beamformer, and the
spatialfilters are computed using the covariance-matrix, whichwas cal-
culated between all sensor pairs on the low-passfiltered (30Hz, FIR) 1-s
data segments per condition (the data were epoched as described
above, Spectral analysis section). Lead fields were computed as de-
scribed above (Source analysis section). Spatial filters were computed
for each subject, similarly as described above for the frequency-
domain beamformer (i.e., one filter for resting state, a common filter
for baseline and visual stimulus, and a common filter for 0-back and
2-back), and applied to reconstruct virtual channel time-courses for
both ROIs (occipital and parietal), for each condition: rest, baseline,
visual stimulus, 0-back and 2-back.

We then computed frequency spectra (4–30 Hz) on this virtual-
channel data using the same FFT approach as we used on sensor level.
To determine the subject's peak frequency, we detected the highest
local maximum within the 7–14 Hz band with a .1 Hz resolution, per
ROI and condition. If no peakwas present, it was set to Nan. Additional-
ly, we used an adaptive algorithm fitting a Gaussian curve to the power
spectra and used these for estimating the individual alpha peak fre-
quency (cf. Van Albada and Robinson, 2013), in order to confirm our
original peak detection. This approach may givemore accurate peak es-
timates, e.g., in case the spectrum contains two local maxima close to
each other in the alpha range, or in case of noisy spectra with spurious
peaks, as it effectively smoothes the spectra. Furthermore, it is a more
conservative approach as subjects without substantial modulation in
the alpha range are automatically omitted (i.e., Gaussian fit fails),
allowing us to verify that our initial analysis was not biased by inclusion
of potentially spurious peaks.

In order to detect the beta peak frequency, we first removed the 1/f
component of the spectrum, as this obscures the smaller peaks in the
beta range (14–30 Hz) by strongly biasing lower frequencies. In order
to compensate for the 1/f effect, linear regression (least-squares fit)
was used to fit a linear model to the log-transformed spectrum in the
beta range. The fitted linear trend was then subtracted from the
spectrum, allowing for a more reliable beta peak frequency estimate
(cf. Nikulin and Brismar, 2006).
Results

MEG datawere acquired in 51 subjects, for (1) resting state, (2) pas-
sive visual stimulation, and (3) an N-back paradigm.
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Main effect: widespread posterior alpha across conditions

First, we analyzed the main effect of alpha power modulation
(7–14Hz) for each of the conditions on sensor-level data.We calculated
the power spectra (4–30Hz) on1-s epochs for the following conditions:
(1) resting state, (2) baseline and stimulus window for the visual grat-
ings paradigm, and (3) 0-back and 2-back for the N-back paradigm
(Figs. 2A,B). Per subject, the spectra were normalized per condition
with the average power across frequencies. The sensor-level spectral
analysis revealed a peak in the alpha band for each condition,withmax-
imum activity located in posterior sensors. The sensor-level alpha
power modulation was significant for all conditions (cluster-based ran-
domization test, p b 0.01 for visual, and p b 0.001 for rest and N-back).

A time–frequency analysis showed a sustained increase of alpha
power during rest as compared to average spectral power, a decrease
of alpha during visual stimulation as compared to pre-stimulus baseline
activity, and a decrease of alpha during the 2-back as compared to
the 0-back task (Fig. 2C). The alpha modulation appeared strongest
right after the offset of the initial evoked response to the visual stim-
ulus, and after offset of the stimulus for the N-back paradigm.

Using a beamformer approach, the sources of alpha activity
(7–14 Hz) could be localized for each of the conditions (Fig. 3A). Based
on the source reconstructions averaged over 51 subjects, the resting
state alpha seemed somewhat more anterior than the visually induced
alpha which was more posterior localized, while N-back modulated
alphawas fairlywidespread. All conditions had a posterior-parietal dom-
inance (cluster-based randomization test, p b 0.001 for all conditions).
Comparing the locations of peak activity for each subject across
Fig. 2. Alpha activity per condition on sensor level. (A) Topographic plots showing alpha powe
erage power in the spectrum [arbitrary 1-s segments]; visual: stimulus [t = 0.5–1.5 s] vs. bas
Time–frequency windows used are indicated in C with dashed lines. (B) Power spectra (aver
peaks in the alpha band. (C) TFRs showing alpha power modulation per condition (averaged
power (arbitrary 1-s epochs); visual: decrease of alpha power during stimulus (t= 0–2 s) as co
to 0-back (stimulus: t = 0–0.2 s, retention: t = 0.2–2 s). All plots showing grand-averages ov
conditions, confirms the widespread origin of the alpha activity, includ-
ing occipital and parietal sources (Fig. 3B).

Individual alpha peak frequency

Having established alpha band activity in each of the conditions, we
proceeded to determine each individual's alpha peak frequency for two
ROIs, occipital and parietal cortex (Fig. 4A), for each of the conditions
(Fig. 4B, showing grand-average spectra per condition for the parietal
ROI). The individual alpha peak frequency detection was performed
within the predefined alpha band of 7–14Hz, and defined as the biggest
local maximumwithin that range (refer to Fig. 5 for examples from four
representative subjects). The alpha peak frequencies increased for the
N-back compared to the other conditions, andwere fairly similar across
ROIs with a deviation during the N-back task (Table 1, Fig. 4C).

Within-subject variability
We computed a two-way repeated-measures ANOVA with factors

condition (rest, baseline, stimulus, 0-back, 2-back) and ROI (occipital,
parietal) to assess variability of the alpha peak frequency within
subjects. There was a significant effect of condition (F(4,180) =
26.485, p b 0.001) and no effect of ROI (F(1,45) = 0.939, p = 0.338)
on alpha peak frequency. Although there appeared to be a trend,
there was no significant interaction between condition and ROI
(F(2.731,122.899) = 1.880, p = 0.142; reporting Greenhouse–Geisser
correction as Mauchly's test showed that assumption of sphericity
was violated, p b 0.05). Note that 46 subjects were included in the
ANOVA analysis; the five excluded subjects had at least one missing
r (7–14 Hz) modulation per condition, computed on 1-s epochs (rest: alpha power vs. av-
eline [t = −1–0 s]; N-back: 2-back vs. 0-back during retention interval [t = 0.2–1.2 s]).
aged over sensors marked with asterisks in A) for each of the conditions, showing clear
over sensors marked in A). Rest: alpha power increase as compared to average spectral
mpared to baseline (t=−1–0 s); N-back: decrease of alpha power for 2-back compared
er 51 subjects.

image of Fig.�2


Fig. 3. Alpha activity per condition on source level. (A) Alpha power source reconstructions obtained using beamformer technique, shown on a standardized brain volume, per condition
(contrasts same as in Fig. 2A). Power valuesweremasked to only show grid points with significant alpha powermodulation (cluster-based randomization test, p b 0.05), showing grand-
average over 51 subjects. (B) Glass brain projections of peak activity per subject (N = 51), per condition. For each subject, the peak location of alpha activity was localized using the
beamformer source reconstruction, and projected to Talairach space. (Note that points appearing slightly outside the brain here are due to inaccuracies introduced by normalizing the
individual head model to that of standard brain in MNI space, and subsequently converting these coordinates to Talairach space, in addition to using a grid with 1-cm resolution.)
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alpha value. We further assessed the significant effect of condition by
performing post-hoc pairwise comparisons, which showed a significant
difference for rest, baseline and stimulus vs. 0-back (Bonferroni
corrected p b 0.01) and 2-back (Bonferroni corrected p b 0.001), and
between 0-back and 2-back (Bonferroni corrected p b 0.05).

These results were confirmed by estimating the individual alpha
peak frequency using a Gaussian fit (refer to Fig. 5 for example fits for
four representative subjects). In cases with a strong, unambiguous
alpha peak, the Gaussian fit leads to virtually similar estimates as our
original approach, whereas in other cases, for instance where alpha
consists of a broader or double peak (see e.g. baseline and stimulus for
subject 18, Fig. 5D), a more reliable estimate incorporating the full
alpha range is computed. The Gaussian-fit approach is more conserva-
tive and excludes more cases, as noisy ambiguous peaks that cannot
be fitted are omitted. Consequently, only 38 subjects were included
(i.e., Gaussian curve fitting failed in the remaining instances). Using
this conservative approach and applying the same two-way repeated-
measures ANOVA, we again found a significant effect of condition

image of Fig.�3


Fig. 4. Individual alpha peak frequency. (A) Projection of the parietal and occipital bilateral ROIs onto standard brain surface. (B) Power spectra per condition for the parietal ROI, averaged
over 51 subjects (normalized per subject with average power in all conditions). (C) Alpha peak frequency per condition per ROI, showing average over all subjects that had a discernible
alpha peak for that condition ∗ ROI. Error bars indicate the SEM. Significant increase of alpha peak frequency from rest/baseline/stimulus to 0-back, and from rest/baseline/stimulus/0-back
to 2-back. (D) Histogram showing distribution of individual alpha peak frequencies, including all measurements. Total number of observations was 510 (i.e., 2 ROIs, 5 conditions, 51 sub-
jects). Note: number of observations of undetectable peak frequencywas 11, not shown inhistogram. Binwith highest number of observationswas centered at 10.8Hz. (E)Histogramsper
condition for both ROIs combined, showing increase of alpha peak frequency and shift of distribution from left (lower alpha peak frequency) to right (higher alpha peak frequency).
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(F(2.557,94.607)= 39.132, p b 0.001, Greenhouse–Geisser corrected) and
no effect of ROI (F(1,37) = 0.242, p = 0.626). Now the condition ∗ ROI
interaction was significant (F(2.090,77.324) = 3.706, p b 0.05,
Greenhouse–Geisser corrected). Post-hoc tests confirmed a significant
difference for rest, baseline and stimulus vs. 0-back and 2-back
(Bonferroni corrected p b 0.001), and a trend for 0-back vs. 2-back
(Bonferroni corrected p = 0.068). Additionally, the correlation between
our original estimates and those based on Gaussian fit was significant

image of Fig.�4


Fig. 5. Single subject examples of alpha peak frequency detection. Power spectra showing alpha peak frequency detection on both the original ‘raw’ spectra (blue) and the Gaussian fit (red),
per condition, for four representative subjects. Showing example plots from (A) subject 5, parietal ROI; (B) subject 8, parietal ROI; (C) subject 11, occipital ROI; (D) subject 18, occipital ROI.
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(R2 = 0.739, p b 0.001), while a paired-sample t-test showed no signifi-
cant difference between the two estimates (t(479)= 0.165, p = 0.869).

To further establish the reliability of our original alpha peak detec-
tion, we split the dataset in two parts (median split, taking per subject
and condition the first vs. second half of trials) and repeated the alpha
peak frequency detection on each set of trials. We performed a
repeated-measures ANOVA, similar as before but now with the added
factor time (first, second half). The effect of time was not significant
Table 1
Individual alpha peak frequency. Showing per condition and ROI: mean ± standard
deviation (N). N indicates number of subjects that had a detectable peak for that particular
condition ∗ ROI combination.

Occipital ROI Parietal ROI

Rest 9.981 ± 1.088 (47) 10.143 ± 1.147 (49)
Base 9.916 ± 1.303 (50) 10.075 ± 1.107 (51)
Stim 10.102 ± 1.249 (51) 10.108 ± 1.092 (51)
0-back 10.716 ± 1.412 (49) 10.304 ± 1.344 (51)
2-back 11.118 ± 1.132 (50) 10.816 ± 1.311 (50)
(F(1,45) = 2.167, p = 0.148), while our previous results were con-
firmed: significant effect of condition (F(3.131,140.907) = 35.033,
p b 0.001, Greenhouse–Geisser corrected), no effect of ROI (F(1,45) =
0.056, p = 0.814). None of the interaction effects was significant
(p N 0.05).

Thus, alpha peak frequency increased significantly from the rest-
ing state and passive visual stimulation conditions to the N-back
paradigm, with a further increase of alpha peak frequency from
the 0-back to 2-back condition. Note that the latter effect was signifi-
cant in our initial analysis, and was confirmed by a statistical trend in
the more conservative Gaussian fit approach. No conclusive significant
difference was detected between occipital and parietal alpha peak
frequency, although the N-back increase seemed slightly stronger in
occipital than parietal ROI.

Between-subject variability
Next, we investigated the distribution of individual alpha peak

frequencies between subjects (Table 1, Fig. 4D). Taking all conditions
and ROIs into account, detected alpha peak frequencies spread the full

image of Fig.�5
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7–14 Hz search range. The bin with the highest number of observations
was centered at 10.8 Hz. Themean alpha peak frequency across subjects
was 10.3 Hz with a between-subject SD of 2.8 Hz (compare with a
within-subject SD of 0.9 Hz), and the median was 10.4 Hz. Inspecting
the histograms per condition shows how the peak bin shifts to the
right (higher alpha peak frequency) and the entire distribution becomes
more rightward skewed (Fig. 4E).
Beta peak frequency in relation to alpha

While almost all subjects had clear alpha peaks in their spectra (al-
though not necessarily for each condition and ROI), there were two sub-
jects that even upon visual inspection of their spectra lacked a systematic
alpha peak (Fig. 6A). However, both these subjects did have a distinct
beta band peak. Additionally, the majority of subjects (approximately
2/3) that did have a clear alpha peak also showed a, usually much small-
er, beta peak (Fig. 6B). We explored the potential harmonic relationship
between alpha and beta by detecting for each subject (if present) the
beta peak frequency in the 14–30 Hz range, for all conditions and ROIs.
First, we tested whether there was any effect of condition or ROI on
beta peak frequency (Fig. 6C). Since there were many more ‘missing
values’ here (bar one subject, all had some condition ∗ ROI where no
beta peak could be detected), rather than using the repeated-measures
ANOVA as we did for the alpha peak frequency, we now applied a one-
way ANOVA treating each condition ∗ ROI as a separate ‘group’. This
showed no significant difference in beta peak frequency across condi-
tions or ROIs (F(9,294) = 0.58, p = 0.82).

Having found no systematic variability in beta peak frequency across
conditions and ROIs, we then asked how beta peak frequency related to
alpha peak frequency. There was a significant positive correlation
Fig. 6. Individual beta peak frequency. (A) Power spectrum of one example subject who did no
(B) Log-transformed power spectra showing procedure for beta peak detection using linear fit (
peak (showing example for subject 39, parietal ROI during rest). Note that in theuncorrected spe
beta peak is detected at 20.6 Hz (right panel). (C) Beta peak frequency per condition per ROI, s
Error bars indicate the SEM. No significant difference in beta peak frequency across conditions o
and beta peak frequencies for parietal ROI during rest (linear regression model in green; dashe
scatterplot for all other conditions (light blue data points).
between alpha and beta peak frequency during rest in the parietal ROI
(R2 = 0.402, Bonferroni corrected p b 0.001, N = 32; Fig. 6D). We
found no significant correlation between alpha and beta peak frequen-
cies in any of the other conditions, nor for the occipital ROI (Bonferroni
corrected p N 0.1 for all; not shown). We then further explored the
relation between alpha and beta peaks during rest in the parietal ROI.
Comparing alpha and beta peaks, there was a difference of factor
1.995 (SD, 0.235; range, 1.406–2.869). To test the potentially harmonic
nature of this relationship, we multiplied each individual's alpha peak
frequency with factor 2 to get the estimated harmonic beta peak
(mean, 20.3 Hz; SD, 2.3 Hz), and compared this with the actual
beta peak frequency (mean, 20.2 Hz; SD, 3.1 Hz) using a paired-
sample t-test. There was no significant difference between the two
beta-estimates (t(31) = 0.139, p = 0.89), suggesting that beta peak
frequency as observed during rest in the parietal cortex could be a sec-
ond harmonic of alpha. However, note that for the other conditions, we
found no sign of correlation between alpha and beta peak frequencies
(light blue data points in Fig. 6D), which argues against a simple
harmonic relationship.
Discussion

Here we studied variability in individual alpha peak frequency both
within and across subjects, in the occipital and parietal cortex under dif-
ferent experimental conditions, in 51 human subjects using source-
reconstructed MEG. The average alpha peak frequency across subjects,
conditions, and ROIs was 10.3 Hz with a within-subject SD of 0.9 Hz
and a between-subject SD of 2.8 Hz. In both regions we observed an in-
crease of alpha peak frequency from resting state and passive visual
stimulation conditions to the N-back paradigm (approximately 1 Hz
t have an alpha peak, but did show a clear beta peak (subject 50, parietal ROI during rest).
dashed line) to remove 1/f component from spectrum in order to reliably estimate the beta
ctruma localmaximumwas foundat 16.3Hz (left panel), whereas after 1/f subtraction the
howing average over all subjects that had a discernible beta peak for that condition ∗ ROI.
r ROIs. (D) Scatterplot (dark blue data points) showing positive correlation between alpha
d line indicates beta = alpha ∗ 2, i.e., purely harmonic relationship). Additionally showing

image of Fig.�6
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increase),with a significantly higher alpha peak frequency in the 2-back
compared to the 0-back condition. The increase in alpha peak frequency
for the N-back task seemed to be strongest in the occipital cortex, but
evidence for a significant ROI interactionwas inconclusive.We observed
a significant positive correlation between parietal alpha and beta peak
frequencies during rest, suggestive of a harmonic relationship. Howev-
er, the correlation disappeared in other conditions, and was not ob-
served for the occipital ROI.

Intra-subject variability: increase of alpha frequency with engagement

The increase in alpha frequency from rest to N-back conditions
seems to be related to active engagement of the system. Since no
increase in alpha frequencywas observed for the passive visual stimula-
tion condition, we can exclude that stimulation per se (and the
accompanying evoked response) caused an apparent frequency shift.
Moreover, the additional increase from the 0-back to themore demand-
ing 2-back task further supports an active engagement or cognitive
demand interpretation.

(Note that the latter effect was accompanied by a decrease in alpha
power. This load-dependent decrease of alpha power has been reported
before for the N-back paradigm (Gevins et al., 1997; Pesonen et al.,
2007) and contrasts with the load-dependent alpha power increase
that has been reported for the Sternberg paradigm and visuospatial
WM tasks (Jensen et al., 2002; Roux et al., 2012; Sauseng et al., 2009;
Tuladhar et al., 2007). It has been suggested that this dissociation be-
tween WM paradigms can be explained by the different nature of the
tasks: in the latter tasks, increased alpha power during retention is
interpreted to reflect suppression of distracting input to prevent inter-
ference with the WM trace, while in the N-back paradigm decreased
alpha power is thought to reflect active engagement since encoding,
retention and decision processes overlap in time here.)

What could the functional role be of the increase in frequency with
increasing task demands? Given the functional inhibition hypothesis
of alpha, the lower the frequency the longer the windows of phasic
suppression (Haegens et al., 2011b; Jensen et al., 2012). This may be
beneficial during rest, but active engagement in a task context may
require different parameters. Or perhaps the frequency shift simply re-
flects different neuronal populations being activated, depending on task
demands (Sadaghiani et al., 2010). These different networksmay run on
slightly different alpha frequencies (e.g., due to differences in physiolog-
ical makeup), and their differential activation may result in the
observed shift. Whether this means there are indeed different alpha
rhythms (Başar, 2012; Klimesch, 1999), or rather that there is an oper-
ating range within which these networks function, remains to be seen.
Future research using intracranial methods (e.g., local field potential re-
cordings in non-human primates, electrocorticographic recordings in
surgical epilepsy patients, laminar recordings) to measure more closely
the population activity of local networks under changing task condi-
tions would be imperative to answer this question: is it the same
networks producing different rhythms, or do different networks run
on slightly different alpha frequencies?

Similarly, the positive (potentially harmonic) correlation between
alpha and beta peak frequencies observed in the parietal cortex during
rest, which was not apparent in other conditions, may reflect different
networks being activated. The lack of betamodulation across conditions
while alpha frequency increased, suggests that they are largely indepen-
dent. Previous studies that showed (quasi-)harmonic relationships also
did so only under resting-state conditions (Carlqvist et al., 2005;
Gaarder and Speck, 1967; Nikulin and Brismar, 2006; Van Albada and
Robinson, 2013). Computational modeling may provide further insight,
as Jones et al. (2009) showed for the somatosensory system how the
same neural networks, dependent on timing of feedforward and feed-
back inputs, can generate both alpha and beta rhythms that are interde-
pendent but not strictly harmonic (nor fully overlapping in time).
Perhaps a similar mechanism is at play for posterior alpha and beta
dynamics — such a model could potentially explain differences in
alpha/beta patterns between conditions as well as between subjects.

Inter-subject variability

As expected, inter-subject variability exceeded intra-subject vari-
ability. Individual alpha peak frequency values were found including
the entire search range of 7–14 Hz, with a between-subject SD of
2.8 Hz (note that the fact that we find a higher SD than previously re-
ported may be due to the use of various tasks and more subjects).
Thus, using a fixed narrow alpha range (say 8–12Hz) to analyze all sub-
jects would bias against those with an alpha peak frequency outside of
that range. Even limiting our search range to 7–14 Hz may have pre-
cluded alpha peak detection in some participants. A small subset of sub-
jects did not present a systematic alpha peak but had a prominent beta
peak instead. The question remains whether 1) these subjects truly do
not have an alpha rhythm, or 2) thatwe simply did not pick up alpha ac-
tivity in these cases due to e.g. lack in SNR or suboptimal orientation of
their dipoles (i.e., anatomical variation) for the MEG measurement, or
3) that their “alpha” rhythm runs at a frequency outside our search
range.

Occipital vs. parietal alpha

The posterior alpha activity observed across conditions was driven
by both occipital and parietal sources. Given the limited spatial resolu-
tion of MEG, we cannot be sure that our occipital and parietal signals
were fully separated (i.e., there may have been residual mixing of
signals even after source reconstruction), although we did observe a
trend of divergence between occipital and parietal alphapeak frequency
during the N-back tasks. Previous studies have claimed regional differ-
ences in alpha peak frequency, however, most of this work was based
on sensor-level EEG studies, with even further limited spatial resolution
(e.g., Klimesch et al., 1993).

In any case, given the distribution of maximum alpha power locali-
zation across the occipital and parietal cortices, it appears that posterior
alpha as observed on scalp level has a widespread origin. It is likely that
this reflects summation of several local network rhythms. Whether
these networks interact and whether they receive (driving or modulat-
ing) inputs from the same sources (e.g., thalamic nuclei and frontal
control regions) remain important questions for future research.

Conclusion

The alpha rhythm operates across a wider frequency range than the
8–12 Hz band many studies tend to include in their analysis. Using a
fixed, limited frequency band might bias against certain subjects and
conditions. Furthermore, we showed that alpha peak frequency in-
creases with cognitive demands and task engagement, which should
be taken into account when comparing power values between different
conditions (i.e., power differences could be confounded with frequency
shifts). We propose future research looking into this flexibility of
the alpha rhythm, using intracranial methods to determine whether
frequency shifts originate from within a population or are due to
engagement of different networks.
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